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Abstract

Evolutionary history can be reconstructed by protein phy-
logeny, from data retrieved from sequences of amino acids.
The most common methods, maximum likelihood and maxi-
mum a posteriori, are using the transition probabilities from
an ancestral sequence to a descendant sequence to estimate
the evolutionary distance between the sequences. There exists
weakness in these methods. For example there exist sequences
of amino acids that are identical and are retrieved from differ-
ent species, but the methods will always estimate the evolu-
tionary distance between identical sequences to zero.

This study aims to determine how it is possible to improve
the estimates of the evolutionary distances. Specifically, it in-
vestigates whether the discretization in the estimator of the
expected values of evolutionary distances can be improved.

The discretization method developed in the study shows it is
possible to speed up the computation of the expected values.
This finding implies it is possible to implement an efficient es-
timator of the expected value, which can be used to robust the
estimates of evolutionary distances. We therefore introduce a
new procedure, called ExpDist, for fast and accurate estimates
for the expected values of evolutionary distances between se-
quences of amino acids.



ExpDist: En uppskattare
for vantevarden av evolutionara avstand

Sammanfattning

Evolutionar historia kan sparas med hjélp av protein fylogeni.
Protein fylogeni kan rekonstrueras genom att uppskatta evo-
lutionédra avstand mellan sekvenser av aminosyror. For att
uppskatta evolutiondra avstand anviands vanligtvis maximum
likelihood-metoden och a posteriori-férdelningar. Metoderna
uppskattar ett evolutionédrt avstand mellan sekvenser genom
att parvis linjera sekvenserna och berdkna Overggangssanno-
likheterna mellan aminosyrorna i sekvenserna. Det existerar
svagheter i dessa metoder, till exempel ar det mojligt att iden-
tiska sekvenser har hdmtas fran olika arter, trots det kommer
dessa metoder att uppskatta det evolutiondra avstandet mel-
lan sadana sekvenser till noll.

Syftet med denna studie &r att undersoka hur det dr mojligt
att forbattra uppskattningar av evolutionéra avstand, specifikt
undersoker vi om diskretiseringen i uppskattaren av vintevér-
den for evolutiondra avstand kan forbéttras.

Diskretiseringsmetoden som utvecklats i studien visar att berak-
ningar av vintevarden kan goras mer effektivt. Detta resultat

antyder att det ar mojligt att implementera en effektiv upp-

skattare av vantevirden for evolutiondra avstand, vilket kan

anviandas for att forbattra de evolutionéra avstand som up-

pskattas med maximum likelihood eller andra metoder. Vi

introducerar darfor en ny metod, ExpDist, for snabba och rik-

tiga uppskattningar av vintevirden for evolutionara avstand

mellan sekvenser av aminosyror.
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1 Introduction

This thesis explores how it is possible to improve the reconstruction of
biological evolution using the conditional expected values of evolutionary
distances. We will look into the basics of protein phylogeny, probability
in biological evolution and some probability methods. We will study the
problem which is that for the most common probability methods there
exist weakness in the prediction of the evolution. Two of these methods
are maximum likelihood and maximum a posteriori. We will discuss why
the expected value of evolutionary distances are necessary and how it is
possible to implement an efficient procedure for the expected value. The
thesis introduces ExpDist, an efficient estimator for the expected value of
evolutionary distances between sequences of amino acids.



2 Theoretical framework

This chapter contains information about the basics of protein phylogeny,
probability in biological evolution and probability methods.

2.1 Sequence alignments
and phylogenetic trees

An approximation of the evolutionary distance between two sequences of
amino acids is regularly estimated by aligning the sequences, observing the
number of sites the sequences differ and assigning a cost for each mutation.
The cost of a mutation between a pair of amino acids usually depends on
which kind of amino acids the mutation occur between. Example of a
sequence alignment can be seen at Figure

[1] L
|
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> — to
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[21  AGLIV

Figure 1: A sequence alignment. The number of sites that differ is two and
all of the pairwise mutations A - A,G - G, L —- L, L — LLV — V and
E — A are assigned with a cost in the estimation of the evolutionary distance
from sequence [1] to sequence [2].

When sequences of amino acids are aligned and the length of the sequences
are not equal, there exist gaps in the alignment, see Figure Usually,
the gaps are replaced by amino acids or the amino acids in the longer
sequences are deleted (Garrett and Grisham 2014).



[1] AGLLVE
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Figure 2: A sequence alignment with a gap.

Visualization of evolutionary history can be reconstructed with a phylo-
genetic tree. A phylogenetic tree is a diagram that depicts the branching
history between species, organisms or genes of common ancestry (Baum
2008). A phylogenetic tree can be seen in Figure .

Humans

Chimpanzees

Bonobos

Gorillas

Orangutans

Figure 3: A phylogenetic tree.



2.2 Substitution models

At the simplest level, the proportion of sites p where the amino acids have
not been conserved can be used to measure the evolutionary distance
between two sequences. This proportion is called the p-distance and can
be measured by:

A g
p=—,
n

where n is the total number of amino-acids in the sequence and ny is the
number of different amino acid for the pair.

The Poisson correction distance is another measurement for evolutionary
distance at a simpler lever. It assumes the probability of mutation among
the sites follows a Poisson distribution, with an uniform rate per site per
time unit. The Poisson correction distance can be estimated by a formula
which takes the p-distance p as input (Nei and Zhang 2005). Poisson
correction distance can be measured by:

p=—In(1-p).

If p is small, the p-distance approximately is equal to the number of sub-
stitutions per site. If p is large, there may be multiple substitutions at
a given site, so the p-distance will give an underestimate of the number
of substitutions. There exists a number of correction methods, based on
probabilistic models, which have been developed to give a more accurate
estimate for the p-distance and the Poisson correction distance.

Some of these models are PAM (Dayhoff, Schwartz, and Orcutt 1967),
JTT (Jones, Taylor, and Thornton 1992), WAG (Whelan and Goldman
2001) and LG (Le and Gascuel 2008).
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The process of substitution in the models are described with continuous-

time Markov chains using matrices of substitution rate and vectors of
equilibrium frequencies.

The relationship between sequence divergence and the Poisson correction
distance can be seen in Figure

The relationship between sequence divergence
and the Poisson correction distance
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Figure 4: The relationship between sequence divergence and the Poisson cor-
rection distance. The plot shows a rough estimate of the evolutionary distance
in relation to the difference in the sequences. The plot also show the existence
of the uncertainty in Poisson correction distances for greater values.
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2.3 Probability theory

In this section, definitions and theorems are presented. The definitions
and theorems are necessary to understand how it is possible to compute
the expected value of an evolutionary distance given a sequence alignment.

2.3.1 Definitions and theorems

In the theory of probabilistic, a random variable, also known as stochastic
variable, is a variable for which the values depend on the outcome of a
random experiment. The random variable can be discrete or continuous.
A discrete random variable takes a finite set of discrete values. A contin-
uous random variable takes on values that vary continuously within one
or more real intervals. The set of possible values in a random experiment
is called the sample space. Certain subsets of the sample space of an
experiment are referred to as events.

The notation P(X) refers to the probability that event X occurs and
P(X]Y) refers to the likelihood that event X occurs, given that event YV
occurred.

Each of the following definitions are presented both for discrete and con-
tinuous random variables. This is due to the fact that this study relies
on research where the expected values are found from discrete random
variables and in the study are implemented as continuous.

Let us look at the definitions of the expected value.

Definition 2.1. (Expected value)

Suppose X s a discrete random variable that takes values x1, s, ..., x,, with
probabilities P(x1), P(xs), ..., P(x,). The expected value of X is denoted
E(X) and is given by

E(X) = Z P(z;)x; = P(x1)x1 + P(22)33 + ... + P(2,) Ty

If X is a continuous random variable with probability density function
f(z), then the expected value E(X) is given by

E(X) = /_Oo zf(x)dx.

[e.9]
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The conditional expectation of X given that Y=y is the weighted average of
the values that X can take, where each possible is weighted by its respective
conditional probability that Y = y. The expectation of a discrete random
variable X conditional on Y=y is denoted by

E(X|[Y =y) =) P(x;|Y = y)a;,
=0
The expectation of a continuous random variable X conditional on Y=y
15 denoted by

o0

BOXY =y) = [ afoymy(o)de

—00

We observe that to estimate the conditional expectation, the posterior
distribution has to be known. To compute the posterior distribution, we
can use Bayes theorem.

Theorem 1. (Bayes’ Theorem)
For a sample space €2 consisting of disjoint events X, with probability
P(X;) > 0 fori = 1,..,n, such that U, X; = §, the probability for
any event Y = U (Y N X;) occurring is given by
P(X) - P(Y|X)

Py

PX]Y) =

The distribution of the prior probability of the evolutionary distances
is assumed to be uniform and the likelihood of the alignment given an
evolutionary distance is possible to retrieve from substitution models (See
details in section 2.3.1). To be able to use Bayes’ theorem, we have to
find the prior distribution of the alignments. Since the likelihood of the
alignment and the prior probability of the distances are known, we can
use the law of total probability to retrieve the probability of an alignment.

Theorem 2. (Law of total probability - Discrete random variable)

For a sample space ) consisting of disjoint events Y; with probability
P(Y;) > 0 fori=1,..,n such that U_,Y; = Q, the probability of any event
X =U (X NY;) occuring is given by

P(X) = ZP(X Y;) P(Y;)

13



Theorem 3. (Law of total probability - Continuous random variable )
Suppose we have a continuous parameter 6 in the range |a,b] and discrete
random data X. Assume 0 is itself random with density f(0) and that X
have likelihood P(X|0). In this case, the total probability of X is given by
the formula:

P(X) = /6 P(X]0)(6)db.

By Bayes’ theorem and the law of total probability, we can retrieve the pos-
terior distribution and therefore compute the conditional expected value
of an evolutionary distance.

2.3.2 Probabilites in biological evolution

We assume (a, b) represents an alignment of two protein sequences a and
b where a is the the ancestral sequence and b is the descendant sequence.
The calculation of the likelihood of (a,b) given an model A requires us
to find the transition probabilities from a to b, as well as the equilibrium
frequencies of a.

Let Q) = {Qx};; denote the instantaneous rate matrix which defines the
Markov process in a substitution model A\. Each entry in the matrix cor-
responds to the rate of change from amino acid ¢ to amino acid j. Let
F', denote the vector that consists of all of the equilibrium frequencies of a.

Let P = {P},; denote the matrix of transition probabilities for the Markov
process. Each entry p; ; in P corresponds to the probability of a site being
in state j after time ¢ given that the process started in state ¢ at time 0.
To find the matrix P one has:

P(Q)\,t) = €tQ)‘.
where (), is the instantaneous rate matrix from a substitution model and

t is a time unit (Kosiol 2006)).

Let a matrix M = {M},; denote the number of changes from amino acid ¢
to j in the alignment (a,b). Let Ay, = {A,;};; denote the matrix we will
be given if we element-wise raise the elements in the probability matrix P
with the elements in matrix M.

14



The likelihood of (a,b) is retrieved by multiplying the rate of change a;;
between sites from matrix Ay, with the frequency of a particular state
fi from the vector of equilibrium frequencies (Salemi, Vandamme, and
Lemey [2009).

The likelihood of the alignment is given by the product of F'y and Ay ;:

P((L, b|t) = FA . A)\,t = H fiaij.

1]

If we assume the prior probability of the time units is P(t), the prior
probability of the alignment is P(a,b) and the sequence data has the
likelihood P(a,b|t), then by Bayes’ rule the posterior probability of ¢ is

P(a,b|t)P(t)
P(tla,b) = —————F——=
(Ho,b) = =505
From the law of total probability we can calculate the prior probability of
the alignment by

P(a,b) = /tP(a,b|t)f(t)dt

where f(t) is the density function for the time units and P(a,b|t) the
likelihood of the alignment.

The distribution of the prior probability of the time units is assumed to
be uniform. The reason for this is lack of prior knowledge.

2.3.3 Probability methods

The estimation of the evolutionary distance is usually performed with a
maximum likelihood estimation or a maximum a posteriori estimation.
A maximum likelihood estimation returns a distance which represents a
hypothesis on the evolutionary history, which according to the underlying
model, most likely would have given rise to the respective sequence data.
By taking the prior probabilities about the distances into account in the
hypothesis, we are instead retrieving a maximum a posteriori estimate.
Since we assume the distances to be uniformly distributed, the estimates
are equal.

15



For this reason maximum likelihood and maximum a posteriori are both
measured by finding the evolutionary distance d, such that d maximizes
the likelihood P(a, b|d):

arg max P(a, b|d).

If a maximum likelihood or a maximum a posteriori estimate has been
found, we know that the likelihoods of the alignment, with each of the
distances in a set used as given data, have been computed. From the set
of likelihoods, we can retrieve the posterior probability of an alignment.

We can estimate the posterior distribution of the alignment and compute
a maximum likelihood or maximum a posterior estimate during the same
iteration. We would then only have to compute one more integral to
retrieve the expected value of an evolutionary distance.

2.3.4 Bayesian inference

The evolutionary distance can be estimated using Bayesian inference. In
a paper written by Agarwal and States (1996), an estimation of the con-
ditional expected value of evolutionary distances using Bayesian inference
is presented.

Let (a,b) represent an alignment of the two protein sequences a and b, let
D denote a finite set of evolutionary distances and let d be an evolutionary
distance in the set D. The conditional expected value of the distance d
given the sequence alignment (a,b) is by Agarwal and States (1996) given
by:
E(d|a,b) =) _d-Pr(d|a,b).
deD

The random variable in the estimate is discrete and is described as all
possible time units given our sequence data is (a, b).

The prior probabilities of the distances are assumed to be uniformly dis-
tributed and therefore treated as a constant. The prior probability of an
evolutionary distance d is therefore given by

1

Pr(d) = D

16



The prior probability that the alignment (a,b) has been generated in the
model is, by the law of total probability, given by:

= Pr(d) - Pr(a,bld) = ZPr a, bld).

deD deD

By following the steps in section 2.3.1, to obtain the posterior Pr(d|a,b),
one has

1
Pr(d) - Pr(a,bld) D] ~ Pr(a,bld)

By that, the conditional expected value by Agarwal and States (1996) is
given by:

Pr(a, b|d)
Pr(d|a,b) =

r(a,b|d)
E(d|a, b) d-
“ X B

The expected value in the paper by Agarwal and States (1996) is found
from a discrete random variable, meaning the number of evolutionary
distances the alignment can have is finite. The evolutionary time units can
be defined over an interval of time units and be described as a continuous
random variable instead. For that reason a calculation of the conditional
expected value of a continuous random variable will be presented.

To be able to use numerical integration to approximate the value of the
integral in the continuous case, the infinite set of values in the integral is
replaced by a discrete representation. The infinite set of time units are
thus transformed at each input of an alignment, to a finite set T. Let ¢
denote an evolutionary time unit in 7. The time units are still assumed
to be uniformly distributed. We set the probability density function as

From these assumptions, the posterior probability is given by:

Pla,blf) -
flap) - PO Plasbin) (a i) [N
’ Pla,b)  [f,op Pla,blt) f(t)dt mfteT P(a, blt)dt

17



@M@
fteT a, b|t)dt

The conditional expected value is:

MW)

E(t|a,b)I/tETt'f(ﬂaab)dt:/ b [ P(a,blt)dt
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3 Problem

The evolutionary distance between two identical sequences will, using
maximum likelihood, always be estimated to zero. There exist sequences
that are 100 percent identical, but are retrieved from different species,
therefore a maximum likelihood estimate does not always have to be accu-
rate (Kumaraswamy and Hatfield 2002). A maximum likelihood estimate
does not provide any information regarding the expected values of the
evolutionary distances, although, the expected values may reinforce the
estimations. In a research by Agarwal and States (1996), the right tools to
approximate an expected value of an evolutionary distance using Bayesian
inference are presented, but not how an estimation is made efficiently.

3.1 Motivation

The aim of the project is to speed up the integration in the estimation of
the conditional expected value of evolutionary distances between sequence
of amino acids. We will explore how it is possible to efficiently estimate
the expected value by adjusting the discretization of the integral in the
computations.

3.1.1 ExpDist

In this report, we propose a new estimator for the evolutionary distances,
ExpDist. The data set for the estimator will consist of aligned sequences
without any gaps.

3.2 Related work

There exists multiple programs to estimate evolutionary distances using
maximum likelihood estimations, two of these are FastMG (Dang et al.
2014) and PhyML (Guindon et al. 2005). These programs do not contain
any method to estimate the expected values of the evolutionary distances.

A research made by Agarwal and States (1996) contains tools to estimate
the expected value of evolutionary distances. The research does not in-
clude any information about how the estimates can be done efficiently.

19



4 Method

This section contains information about how the biological data for the
project was generated, how ExpDist was developed and how the discretiza-
tion method was improved.

4.1 Generating sequence data

Phylogenetic trees were constructed manually. In each construction, the
distances between two species were at least 0.0 and as most 3.0. A phylo-
genetic tree can be seen in Figure 5

1A 02288 B

taxa

3 4 03329 A

01278

4 - 01757 D

T T T

0.0 0.1 0.2 0.3 0.4 0.5
branch length

Figure 5: Phylogenetic tree for the species: A, B, C, D

The trees were constructed in a format called Newick format. The Newick
format is a phylogenetic tree format for representing trees in a computer-
readable form (See Figure [6)).
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(B:0.2288 ,C:0.1348 ,(A:0.3329,D:0.1757):0.1278);

Figure 6: The phylogentic tree in Figure @ represented in Newick format.
The species are grouped by parentheses and the length of the branches are
included using colons followed by the length of the branch. For example the
branch length of A is 0.3329 and the branch length of D is 0.1757. This pair
are sibling species and are therefore grouped by parentheses followed by a
colon and the branch length which is 0.1228.

The program Seq-Gen (Rambaut and C. Grass [1997) was used to sim-
ulate the evolution of sequences of amino acids along these phylogenetic
trees. Seq-Gen takes a phylogenetic tree in the Newick format and a sub-
stitution model and returns sequences of amino acids in a format called
FASTA format. The FASTA format is a text-based format for represent-
ing sequences of amino-acids (See figure .

>B
PIVLSCSYVRHSLPPVTATYLKARQGIVSY GDEYAEPSAYAGDATMLPDFDANFSKEQVEAV
TGATGDDKYGIFVLQRVVGGGHRVAATYINEIDLVAPGTNGGGVLLVE

>C

PIVLPCSYVRSSLPQVDCTYFCARKDFIASGDQ
YAEPSAYPGDGAMLPLFTGRFSSEKCEAVDGATGNSSYG
IMVLQAVVGNGHRVAASYIRVLDSVPPETEGTGVLIVA

Figure 7: Ezample of sequences of amino acids in FASTA format generated
with Seq-Gen. The data is generated from the phylogenetic tree in Figure @

4.2 Methods for numerical integration

For the integration in the implementation, the Simpson rule and the
Trapezoidal rule were implemented. The default method in the imple-
mentation of ExpDist is the Simpson rule.

21



4.3 Probabilites

Rate matrices and equilibrium frequencies from evolutionary models were
loaded through a Python module called modelmatcher (Arvestad 2019).
The module contains a variety of useful tools for estimations in phylo-
genetics. In the implementation of ExpDist, substitution models and a
method to calculate the transition probability matrix were loaded from
the module.

4.4 Discretization

In order to compute the expected value of an evolutionary distance, we
used numerical integration. A discretization of the evolutionary distances
was done to replace the infinite set of values in the integral by a discrete
set of distances, finite in number. In the discretization method, we wanted
to construct a set of distances such that it was possible to estimate the
expected value fast without loosing important data.

To construct such a set, we used the Poisson correction distance as guid-
ance in the discretization. The Poisson correction distance is fast, but a
quite weak estimate of the evolutionary distance. By extending the upper
and the lower limit in the intervals with the Poisson correction distance
as an initial value, we were able to construct a set of distances which
contained the most probable distances.

We created an estimator, ExpDist, where the conditional expected value
of the evolutionary distance was implemented as

E(t|a,b):/t¢ﬂ t-f(t|a,b)dt:/t¢ﬁ g Plabl) ()

— o —¢a f;ﬁﬂ P(a,blt)dt

where the Poisson correction is denoted by ¢, the extension of the Poisson
correction distance in the lower limit is denoted by « and the extension
of Poisson correction distance in the upper limit is denoted by f.

To be able to decide which values of a and [ in (1)) which gave both
fast and accurate outputs, Expdist was compare to a slower but accurate
estimator. The estimator was classified as slow but accurate if in the
discretization, the interval is between 0 and 3.0 with the step length 0.008.
We discovered that the most appropriate values for a and g were changing

22



Table 1: The evolutionary distances between the species in the trees.

Tree | Evolutionary distance between species
W 0.8-1.5
X 0.0-0.3
Y 0.3-1.0
W 24-3.0

depending on the Poisson correction distance. Therefore the discretization
was split into different cases which did depend on the Poisson correction
distance. Testing was then made for each of these cases, in order to decide
the most appropriate values for o and f.

4.4.1 Test cases

Four different phylogenetic trees were constructed, each tree with three
species. The trees have species with different evolutionary distances. The
trees and their different interval of evolutionary distances can be seen in
Table I} The main idea was from these distances, be able to adjust the
Poisson correction distance in the discretization.

Sequences were generated from the trees using PAM, WAG, LG and JTT
as substitutions models. The sequences were generated 35 times per tree
and substitution model. Therefore a total of 420 alignments per model
were constructed.

The same model that was used as input for Seq-Gen to generate the se-
quences was used to estimate the expected value of the evolutionary dis-
tance between the sequences. The regular length of the sequences was
110.

The estimator ExpDist and all test cases is available at a repository at

GitHub (Radenholt [2020).
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4.4.2 Discretization method

We recognized that, the expected value estimated with the slow and ac-
curate estimator, did in in some cases differ from the correct answer. It
would be improper to request ExpDist to approach the correct answer,
if the correct answer is not approached with the slow, accurate estima-
tor. For this reason, the expected value estimated with ExpDist was both
compared to the correct answer and to the expected value estimated with
the slow estimator.

The idea was that the expected value, computed from the set of distances
constructed in the discretization, had to fulfill the following conditions.
Either we wanted the expected value computed with ExpDist to be as
most 10 percent from the expected value estimated by the slow estimator
or the correct answer to be in at most a standard deviation from the
expected value computed with ExpDist. The standard deviation o was
calculated as

9 P(a, b|t)
o = /E((£2]a,b)) — E(t|a,b)? = (2 —t)
/t:¢a S Pla, blt)dt

During the testing, different values for o and [, the step-size At were
tried.

The discretization was divided into four different cases. In these cases we
let the values of «, § and At in the interval be dependent of the Poisson
correction distance of the alignments. The cases can be seen in Table 2.

Table 2: The different cases for the construction of the set of discretization

points.
Case | Poisson correction distance ¢ | Lower limit | Upper limit | At
1 ¢ <0.1 0.0 0.2 0.008
2 ¢ <0.4 0.4¢ 1.45¢ 0.01
3 09 <¢ <135 0.9¢ 1.9¢ 0.15
4 ¢ >1.35 0.8¢ 3.0 0.4
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5 Result and analysis

ExpDist demonstrates that it is possible to efficiently estimate the ex-
pected value of evolutionary distances. To speed up the integration in
the computations, without losing important data, the Poisson correction
distances can be used as a quick and easy guidance in the construction of
the set of discretization points.

In the following figures, ExpDist is compared to the slow and accurate
estimator. In Figure[§ we can see how close the estimates are to the correct
answers, the difference in the discretization points between the estimators
and the standard deviations of the expected values approximated with
ExpDist. In Figure [9) and Figure [10] we can see the posterior distribution
in ExpDist compared to the posterior distribution in the slow estimator.
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Fast estimator (ExpDist)

('BL,'CYq e e QA
""" Interval (Discretization)
® Maximum likelihood
@® Newick Tree distance
(AL'CYH e —ll—— Mean (Slow estimator)
Expected value with
* tandard deviation
('A" 'B') o eesssaas .—*.’.—_ ..............
T T T T T T T
0.6 0.8 1.0 1.2 1.4 1.6 1.8
Slow estimator
(B,'C) e [ ——.—.—_—_—_

----- Interval (Discretization)
® Maximum likelihood

® Newick Tree distance

(A, 'CY | ceveerecrecsecieciiinm @l e - Expected value with

standard deviation

(A, 'B) o e L T T EEEE PP

Figure 8: The plots are from estimates of evolutionary distances between
sequences from test case "W’ (For details, see section 4.4.1). The estimates
with ExpDist (first plot) can be compared to the estimates with the slow es-
timator (second plot). The x-axis represents the evolutionary distances. The
y-axis represents the pair of sequences which been used as input. From these
plots it is possible to read and compare the expected value, the mazximum like-
lihood estimate, the correct answer and the specific discretization of the evolu-
tionary distances.

26



Posterior: ('A', 'C")

¢
10 e Interval (Discretization)
Correct answer (distance=0.301)

Pr(dja,b)

T T T T T T T
0.26 0.28 0.30 0.32 0.34 0.36 0.38
distances

Posterior: ('A', 'C")

f
e Interval (Discretization)
6 Correct answer (distance=0.301)

Pr(d|a,b)

T T T T T T T
0.0 0.5 L0 15 20 25 3.0
distances

Figure 9: The posterior distribution in ExpDist compared to the slow es-
timator. The first plot demonstrates the posterior distribution in ExpDist.
The second plot demonstrates the posterior distribution in the slow estima-
tor for the same test case. The x-axis represents the evolutionary distances
and the y-axis represents the posterior probability. The dots visualize the spe-
cific discretization of evolutionary distances and the vertical line represents
the correct answer. In the first plot, we can see that the discretization points
are concentrated near the Poisson correction distance and hit mazimum likeli-
hood. The posterior distribution is retrieved from the estimate of the expected
value of the evolutionary distance between sequences from test case "X’ (For
details, see section 4.4.1).
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Figure 10: The posterior distribution in FxpDist compared to the slow es-
timator. The first plot demonstrates the posterior distribution in ExpDist.
The second plot demonstrates the posterior distribution in the slow estima-
tor for the same test case. The x-axis represents the evolutionary distances
and the y-axis represents the posterior probability. The dots visualize the spe-
cific discretization of evolutionary distances and the vertical line represents
the correct answer. In the first plot, we can see that the discretization points
are concentrated near the Poisson correction distance and hit maximum likeli-
hood. The posterior distribution is retrieved from the estimate of the expected
value of the evolutionary distance between sequences from test case "X’ (For
details, see section 4.4.1).



The size of the set of discretization points for the slow estimator is 375.

The actual minimum and maximum number of discretization points in
ExpDist are found in Table

Table 3: The minimum and the maximum size of the sets in the discretiza-
tion in FxpDist. The size of the set is dependent on the Poisson correction
distance ¢.

Poisson correction distance ¢ | Lower limit | Upper limit | min |T| | max |T|
6 <01 0.0 0.2 2% %

b 0.4 0.4¢ 1.45¢ 3 13

09 < ¢ <135 0.9¢ 1.9¢ 6 9

¢ >1.35 0.95¢ 3.0 19 -

5.1 Limitations in the implementation

In the estimations for the expected value of the evolutionary distance
between longer sequences, there exists cancellations effects. Consequently,
the length of the sequences used as input for ExpDist is limited. Details
about how it is possible to approach this problem are presented at section
6.1 in this report.
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6 Conclusions

In the study of protein there exist weaknesses in the most commonly
methods which are used to predict the evolution. The expected value of
an evolutionary distance has been shown to robust the estimation and
in this report we have developed an efficient estimator for the expected
values of evolutionary distances.

The result shows that if we, in the discretization, let the upper limit,
the lower limit and the change At in the intervals be dependent of the
Poisson correction distance, the number of discretization points can be
reduced without losing important data.

During the implementation, a problem regarding the length of the se-
quences used as input for ExpDist occurred. Fortunately, possible ap-
proaches for the problem are presented for further research.

6.1 Suggestion for further research

Because of cancellations effects in the estimator, the expected values of
the evolutionary distances for sequences with just over 110 sites could not
be approximated. For this reason, suggestions to implement the methods
using logarithms have been made (Baldi and Brunak 2001).

In this report and in the implementation of ExpDist, the discretization has
been based on four cases. If one continues to investigate how the selection
of the set of points can be adjusted from particular proportion of Poisson
correction distances, there are opportunities to improve the estimation of
the expected value of evolutionary distances to a greater extent.
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