
Inverse Kinematics for Arm Pose
Reconstruction in Virtual Reality

Erik Stolpe

Bachelor’s Thesis in Computer Science

at Stockholm University, Sweden, 2021

Inverse Kinematics for Arm Pose
Reconstruction in Virtual Reality

Erik Stolpe

Bachelor’s Thesis in Computer Science (15 ECTS credits)

Bachelor’s Programme in Computer Science

Stockholm University year 2021

Supervisor at the Department of Mathematics was Woosok Moon

Examiner was Lars Arvestad

Department of Mathematics

Stockholm University

SE-106 91 Stockholm, Sweden

Abstract

Immersion is a key property of virtual reality technology. It has previously
been shown that providing the user with a virtual avatar inside VR ap-
plications can increase their embodiment and therefore immersion. How-
ever, most consumer grade VR only includes tracking hardware for head
and hands, making user reconstructions of the upper body non trivial, and
accurate full body reconstructions not possible. In this paper we examine
how two heuristic inverse kinematics methods, forward and backward reach-
ing inverse kinematics, and cyclic coordinate descent, together with a pole
target for the elbow, can be used for arm reconstruction using a VR head-
set and two VR hand controllers. Both methods are run on an arm model
with three joints, and compared with respect to their computational speed
and ability to replicate user arm poses. The results show that forward and
backward reaching inverse kinematics is the faster method, but that both
methods are fast enough for real time applications, and perform very similar
in regards to pose recreation when paired with a pole target. Both methods
are able to recreate observably accurate arm poses, but the result is depen-
dent on the pole position. Without a pole, most recreations do not match
the user. Based on the results, we believe both methods can be used for arm
reconstruction, but suggest using the forward and backward reaching inverse
kinematics method since it is faster.

ii

Inverterad kinematik för
armrekonstruktion i virtuell verklighet

Sammanfattning

Immersion är en nyckelegenskap hos virtual reality-teknologi. Det har tidi-
gare visats att genom att förse användaren med en virtuell avatar i VR-
applikationer kan man öka känslan av kroppslig närvaro och därmed im-
mersionen. De flesta VR-konfigurationer av konsumentkvalitet har dock
bara sp̊arningsh̊ardvara för huvud och händer, vilket gör rekonstruktioner
av användarens överkropp icketrivial, och noggranna helkroppsrekonstruk-
tioner ej möjliga. I det här arbetet undersöker vi hur tv̊a heuristiska invert-
erad kinematikmetoder (forward and backward reaching inverse kinematics
respektive cyclic coordinate descent), tillsammans med en referenspunkt för
att styra armb̊agens position, kan användas för armrekonstruktion med VR-
headset och tv̊a VR-handkontroller. B̊ada metoderna körs p̊a en armmodell
med tre leder och jämförs med avseende p̊a deras beräkningshastighet och
förmåga att replikera användarens armpositioner. Resultaten visar att for-
ward and backward reaching inverse kinematics är den snabbare metoden,
men att b̊ada metoderna är tillräckligt snabba för realtidsapplikationer och
fungerar mycket lika när det gäller armrekonstruktion med referenspunkt.
B̊ada metoderna lyckas återskapa observerbart noggranna armpositioner,
men resultatet är beroende av referenspunktens position. Utan en refer-
enspunkt matchar de flesta rekonstruktioner inte användaren. Baserat p̊a
resultaten tror vi att b̊ada metoderna kan användas för armrekonstruktion,
men föresl̊ar användning av forward and backward reaching inverse kinemat-
ics eftersom den är snabbare.

iii

Acknowledgements

I would like to thank my supervisor Woosok Moon for supporting my chosen
project idea, and for advising on how to work with and plan this kind of
project. I also wish to thank my family and friends for all support throughout
the work.

iv

Contents

1 Introduction 1

1.1 Problem description . 1
1.2 Research questions . 2
1.3 Delimitations . 2

2 Background 3

2.1 Related work . 3
2.2 Kinematics . 3

2.2.1 Kinematic chain . 4
2.2.2 Degree of freedom . 4
2.2.3 Constraints . 5
2.2.4 Forward kinematics . 5
2.2.5 Inverse kinematics . 5

2.3 Forward and backward reaching inverse kinematics 6
2.3.1 Convergence . 11

2.4 Cyclic coordinate descent . 13
2.4.1 Convergence . 16

2.5 Pole . 18

3 Method 21

3.1 Hardware . 21
3.2 Implementation . 21

3.2.1 Human arm model . 21
3.2.2 Virtual reality integration 21
3.2.3 Inverse kinematics methods 22

3.3 Tests . 22

4 Results 25

4.1 Convergence rate towards specific error tolerances 25
4.2 Arm pose reconstruction with tracking input 26

5 Discussion 29

5.1 Conclusions . 31

References 32

v

1 Introduction

The market for Virtual Reality (VR) has seen a steady increase in size during
recent years as headsets get cheaper, more consumer friendly and o↵er higher
performance. Since the industry for VR games and experiences is relatively
new, and is not yet a mainstream technology adopted by the computer enter-
tainment audience, there have been few triple-A titles. A majority of popular
titles are developed by smaller studios. Accordingly, one could speculate that
common standards in VR experiences have yet to be established.

One implementation detail that di↵ers between games or applications is
how the user views their own virtual body. A common approach is to make
most of the user body invisible to the user, and only show a pair of floating
hands which are used to interact with the virtual environment. The floating
hands are occasionally accompanied with a floating torso. Physical hand con-
trollers tracked in real time are included in most VR systems. Therefore, the
floating hands are easy to implement and can naturally follow the users own
hand movements. However, a more comprehensive virtual body is essential
to increase user immersion. Due to the lack of other tracked points on the
body, recreating and animating naturally moving body parts other than the
hands requires sophisticated mathematical methods.

Given the position and rotation of a VR hand controller, and a model
of the human arm consisting of limb segments and joints connected to each
other. It is possible to calculate the parameters of the elbow and shoulder
joints that result in the hand controller position. The mathematical process
is called Inverse Kinematics (IK). Elbow and shoulder joint parameters can
in turn be used to recreate the arm pose. Therefore, by continuously solving
the IK, the arm can be animated in a realistic fashion. In this paper we
examine two commonly used IK algorithms and test them individually, and
on a VR setup.

1.1 Problem description

Inverse kinematics is a mathematical process used to calculate the parameters
needed to place the end of a kinematic chain in a desired position. There ex-
ist two distinct groups of methods used to solve IK problems, analytical and
iterative. Analytical solutions are closed form and can be significantly faster
than iterative methods. However, they are not suitable for computer anima-
tion due to complex geometry for long kinematic chains. Iterative methods

1

start with an initial guess or kinematic chain configuration and calculates an
improving approximate solution every iteration until they converge.

We want to investigate how IK methods can be used to enhance the
embodiment of a virtual reality user by implementing realistically moving
arms. Two commonly used heuristic iterative methods, Forwards and Back-
wards Reaching Inverse Kinematics (FABRIK) (Aristidou & Lasenby 2011)
and Cyclic Coordinate Descent (CCD) (Wang & Chen 1991), are to be im-
plemented in the Unity3D game engine. Both methods are computationally
fast making them well suited for real time applications. In addition, some
extension to improve the realism of the arm movement should be considered.

A simple kinematic chain representing a human arm should be imple-
mented in Unity3D with the help of in-engine parent child relationships.
Both methods need to be able to run in real time on the kinematic chain
with the targets being the tracked VR hand controllers. The shoulder po-
sitions can be o↵set from the tracked headset position. Tracking of the VR
hardware is made possible by Unity support for VR development.

Furthermore, the performance of the methods should be compared based
on specified testing scenarios and the results discussed with relevant back-
ground theory. To evaluate performance, the calculation time, number of
iterations, and error, need to be considered.

Finally, we aim to suggest the method most suited for VR experiences,
based on individual performance, and how well the method followed the VR
users arm pose while wearing both headset and hand controllers.

1.2 Research questions

Which method had the highest performance in regard to calculation time
and convergence rate? Which method could best replicate the movements of
the human arm, and produced least unnatural poses?

1.3 Delimitations

Implementations will be tested on an arm model with three joints. The
Unity3D VR application will be a proof of concept, not containing any extra
assets apart from the necessary scripts for the methods, and a simple model
of the arm.

2

2 Background

This section of the report covers necessary background required to better
understand the results and discussion. Specifically, it contains related work, a
brief introduction to kinematics, forward kinematics, and inverse kinematics.
As well as the theory behind each implemented method. As a prerequisite,
the reader should have an understanding of linear algebra.

2.1 Related work

E↵orts of examining ways to increase user immersion in virtual reality with
the help of inverse kinematics have been done before. Human Upper-Body
Inverse Kinematics for Increased Embodiment in Consumer-Grade Virtual
Reality (Parger et al. 2018) investigates the viability of using the limited
tracking options provided by most consumer grade VR setups (hand and
head tracking) together with their own upper body inverse kinematics solu-
tion to increase embodiment in the virtual world. In their user study, the
participants preferred their method to floating hands, but also to a motion
capture system.

An analysis of the Jacobian inverse IK methods and how they can be
used for full body reconstruction in VR was done by Caserman et al. (2019).
To make a full body reconstruction they tracked the head, hands, feet, and
hip using HTC Vive controllers and trackers. Additionally, a user study was
conducted for subjective evaluation. The users found that they felt a high
presence in the virtual world when using the recreated body.

In this paper we investigate how two other commonly used IK methods
FABRIK and CCD can be used to recreate human arm poses in VR using
only tracking data of head and hand positions. In addition to the base
methods, a pole target is implemented and tested to see how it can be used
for elbow positioning. Furthermore, the methods are compared based on
computational performance. Prior performance review of known IK methods
has been done by Aristidou & Lasenby (2009).

2.2 Kinematics

Kinematics is the study of the geometry of motion of points, bodies, and
systems of points or bodies, without considering the mass and forces applied
to those objects (Beggs 1983). In general, a kinematics problem involves

3

describing the structure of the system of objects, setting initial conditions
and constraints, and then solving for specified parameters (position, rotation,
etc) on some part(s) of the system.

2.2.1 Kinematic chain

Kinematics are applied to many di↵erent structures of bodies. This report
focus on kinematic chains in a three dimensional space since that is what is
used to model the arms in the application.

A kinematic chain consists of a finite number of joints and links connected
in a hierarchical structure using parent-child relationships. Joints and links
are rigid bodies, which means all points in the body keeps the same distance
and angle in relation to each other at all times, i.e. the body is solid and
can not deform (West 2015). Joints are constrained by the parent position
and rotation such that if the parent joint translates or rotates, all child joints
move accordingly.

A kinematic chain with n 2 N joints can be represented with a set of
three dimensional vectors P = {~p1, ~p2, . . . , ~pn} ⇢ R3, where ~p1 is called the
root joint and ~pn is called the end e↵ector. The rest being called intermediate
joints. A joint ~pi is the child of ~pj if i = j + 1 and a grandchild if i > j + 1,
conversely ~pi is the parent of ~pj if i = j � 1 and a grandparent if i < j � 1,
with i and j such that pi, pj 2 P . The root joint is therefore a parent or
grandparent of all other joints, and the end e↵ector is a child or grandchild of
all other joints. The length of any link between two joints in P is determined
by distance between the joints at the links endpoints || ~pi+1 � ~pi||, with 0 <
i < n. The links inward and outward joints are ~pi and ~pi+1 respectively.
The set of joint positions can be used to determine the pose of the kinematic
chain, which is normally given as the set of joint rotations.

Figure 1 shows a representation of a simple two dimensional kinematic
chain with four joints and its pose.

2.2.2 Degree of freedom

A Degree of Freedom (DoF) within kinematics refers to the ability to trans-
late or rotate about an axis. In a three dimensional space, a joint can trans-
late along three axis, and rotate about three axis, it therefore has six DoF.
The number of DoF is dependent on how many dimensions the joint is in,
and any constraints applied on the joint.

4

Figure 1. Example kinematic chain with four joints. The black joint represents the

root and the red the end e↵ector. The counterclockwise rotation from a horizontal

axis is marked on each joint, making up the pose of the kinematic chain in this

example.

2.2.3 Constraints

When modeling a real world scenario using kinematic chains, putting con-
straints on certain joints often becomes a necessity. A human arm for in-
stance, is very limited in terms of how many degrees its individual joints
(shoulder, elbow and wrist) can rotate about certain axis. The elbow only
has two rotational DoFs. With rotational constraints on the relevant joints,
this can be modeled more accurately.

2.2.4 Forward kinematics

A kinematic chain can be positioned using two opposite processes, Forward
Kinematics (FK) and Inverse Kinematics (IK). In both processes, the lengths
of each link connecting the joints, and the root joints position are given.
Additionally, in FK the rotation of each joint is given. Using these known
parameters, FK calculates the position of the end e↵ector. E↵ectively, a
FK function takes the root position, link lengths, and pose as input, and
calculates the position of the end e↵ector as its output. A commonly used
convention for dealing with FK is the Denavit-Hartenberg convention (Kucuk
& Bingul 2006).

2.2.5 Inverse kinematics

In many real world scenarios, the pose is unknown. What is really interesting
is how we can configure the kinematic chain, such that the end e↵ector gets
placed at a specified target position. This is a common problem in robotics,
and is also of interest in computer animation (Aristidou et al. 2018). Inverse
kinematics solves this problem. An IK function is the inverse of a FK func-

5

tion, it takes the end e↵ector position as input, and calculates the pose or
joint positions as the output using an initial guess or joint configuration. Note
that several joint configurations may result in the same end e↵ector position,
but the same IK function should always give the same output given a specific
end e↵ector position. Figure 2 shows an example of inverse kinematics on a
simple chain.

There exist a variety of numerical solutions for IK. They mostly fall in two
categories, Jacobian inverse methods and heuristic methods. An extensive
review of existing methods was done by Aristidou & Lasenby in 2009. In
the two following chapters two commonly used heuristic IK methods are
examined, FABRIK and CCD.

Figure 2. Example of IK. Before IK on the left, and after IK on the right. The

black joint represents the root, and the red the end e↵ector. The green disk is the

target position.

2.3 Forward and backward reaching inverse kinematics

Forward and backward reaching inverse kinematics is an iterative method
used to solve the IK problem (Aristidou & Lasenby 2011). The method uses
simple calculations involving points, distances, and lines, to calculate the
joint configuration. Computationally expensive operations such as matrix
manipulation are not involved, making it fast, and avoiding problems such
as matrix singularities. In an iterative fashion, FABRIK uses the joint po-
sitions of the previous iteration to adjust the kinematic chain such that the
distance from the end e↵ector to the target is reduced, while also keeping the
proportions of the chain intact. A brief overview of the ideas and methodol-
ogy involved in FABRIK is given before moving onto a formal description.

The method is composed of two stages throughout each iteration. A
forward, and a backward stage. The forward stage starts at the end e↵ector

6

and traverses the kinematic chain until it reaches the root joint, adjusting
joint positions along the way. The backward stage moves in the opposite
direction and is needed to correct unwanted movement of the root. Assuming
a kinematic chain and a target position, we must first measure the distance
to the target from the root. If the total length of the kinematic chain is
shorter than the measured distance, the target is unreachable and there are
no solutions. In this case, the kinematic chain is stretched towards the target.
If the target is reachable, an iteration can begin, starting with the forward
stage. The forward stage starts with updating the end e↵ector position to
have the same position as the target. Any given joint between end e↵ector
and root is adjusted according to the their childs new position (the previously
adjusted joint), their current position, and the link length between them and
their child given by the chain. Finally, the root joint is adjusted, and the
forward stage ends. The movement of the root joint is undesirable, and is
corrected in the backward stage. The backward stage begins with setting the
root joint position back to its original position. It then adjusts the following
joints in a similar way as the forward stage, until the end e↵ector is reached
and adjusted. Note that the forward stage set the end e↵ector position
to the same as the target position, but the backward stage then moved it,
creating a distance between the target and the end e↵ector (a consequence
from correcting the root). The error tolerance for this distance has to be set
by the user. The method iterates until the tolerance is reached, or until it
reaches a maximum iteration limit set by the user. It can be shown that this
distance does indeed decrease with each iteration. One iteration of FABRIK
is presented in figure 3.

Continuing with the formal description. Assume a kinematic chain (as
described in section 2.2.1) with an arbitrary set of joint positions P =
{~p1, . . . , ~pn} where ~p1 is the root position and ~pn is the end e↵ector, and
a target position ~t 2 R3. To check if the target is reachable, we calculate
the distance di = || ~pi+1 � ~pi|| between each pair of joints ~pi and ~pi+1 for
i = 1, . . . , n� 1. And sums the distances to get the maximum length of the
chain,

chainlength =
n�1X

1

di. (1)

Now, we proceed to check if the maximum length of the chain is shorter than
the distance from the root to the target,

7

(a) Initial positions of kinematic chain

(black) and target (red). Links are black

line segments.

(b) The forward stage. The end e↵ec-

tor is placed at the same position as the

target and the rest of the joints are posi-

tioned on lines passing through their old

position and their children’s new posi-

tions. New positions are gray. Old links

are dashed lines.

(c) The backward stage. The root is

repositioned at its original position and

the rest of the joints are positioned as in

(b) but in the opposite direction. New

(final) positions are white. Old links are

dashed lines.

Figure 3. Display of one iteration of forward and backwards stages of FABRIK on

a 2D kinematic chain with 3 joints. The final configuration is shown in (c).

8

n�1X

1

di < ||~t� ~p1||. (2)

If the inequality (2) is true, the forward stage begins. If it is false, the target
is unreachable, and the chain is stretched towards the target. In any case,
let P 0 = {~p01, . . . , ~p0n} be the set of new joint positions. In the case where (2)

is false, these are; ~p01 = ~p1, and

~p0i =
~p0i�1 + di�1

~t� ~p1
||~t� ~p1||

, (3)

for i = 2, . . . , n. Note that ~p0i is calculated using ~p0i�1, hence (3) has to be
calculated recursively.

We continue with the case where the target is reachable. Then the forward
stage begins. The forward stage starts at the end e↵ector ~pn and works
through the joints of the kinematic chain until it reaches ~p1. It starts by
letting the new end e↵ector position be the same as the target position,
~p0n = ~t. The next joint position to be set is the end e↵ectors parent position
~p0n�1. Which is positioned dn�1 units from ~p0n along the line passing through
~p0n and ~pn�1. That is,

~p0n�1 = ~p0n + dn�1
~pn�1 � ~p0n

|| ~pn�1 � ~p0n||
. (4)

Figure 4 contains a visual representation of this step.
Naturally, the next position to be set is ~p0n�2, and the process continues

until ~p01 is reached. Consequently, in the forward stage, any joint position ~p0i
with i = 1, . . . , n� 1 is placed according to the (backwards) recurrence

~p0i =
~p0i+1 + di

~pi � ~p0i+1

||~pi � ~p0i+1||
, (5)

starting with ~p0i = ~t for i = n.
With i = 1 in (5) the position of the root joint is changed. The backwards

stage is needed to reposition the root joint and move the rest of the joints
accordingly.

The backward stage uses the same positioning strategy as the forward
stage, but moves in the opposite direction, starting at the root joint and

9

(a) Initial positions of target ~t (red), and elements in P (black).

(b) End e↵ector ~p0n (gray) set to target position. End e↵ector parent ~p0n�1 (gray) positioned

along line L according to expression (4).

Figure 4. Visual representation of a typical situation in the forward stage.

finishing at the end e↵ector. Let P 00 = {~p001, . . . , ~p00n} be the final set of joint

positions. First, the root is relocated to its starting position, ~p001 = ~p1. The
next joint position, ~p002, is then positioned d1 units from ~p001 along the line
passing through ~p001 and ~p02. The rest of the joints are positioned in the same
way. In a comparable way to the forward stage, we place the final joint
positions according to the following recursion,

~p00i =
~p00i�1 + di�1

~p0i � ~p00i�1

||~p0i � ~p00i�1||
, (6)

for i = 2, . . . , n, and ~p00i = ~pi when i = 1. When the backward stage reaches
the end e↵ector, a full iteration is completed, and the configuration of the
kinematic chain is contained in P 00.

With i = n in (6), the final end e↵ector position is changed, and is not
the same as the target. The error tolerance has to be specified by the user.
If the error || ~p00n � ~t|| is larger than the tolerance, another iteration begins
with initial positions set to those in P 00.

10

2.3.1 Convergence

A formal proof of convergence is given in the follow up paper to FABRIK by
Aristidou et al. In this section we investigate which cases cause the algorithm
to not converge, and examine the given proof.

There exist three cases in which FABRIK, without any modifications, is
not able to converge. In the first case the target is unreachable in regard
to the maximum length of the chain, see equation (2). Then the chain is
extended towards the target as in equation (3). The second case is similar,
the target is reachable in terms of distance, but the lengths of the links are
constraining movement such that it is ultimately unreachable. For instance,
a kinematic chain with three joints where one link is long and the other one
is short, in such a way that the target cannot be reached. Seen in figure
5. Formally, given a kinematic chain containing a link dmax longer than
all other links combined dmax >

Pn�1
i=1 di � dmax and a target located in

a distance less than 2dmax �
Pn�1

i=1 di from the root, the method will not
converge. In an implementation, this can be handled by putting a maximum
number of iterations, or by comparing the position of the end e↵ector between
iterations and stopping if the distance is not large enough according to some
set tolerance.

Figure 5. No solution exists as long as ~t is outside of the circle with origin ~p2 and

radius ||~p2 � ~p3||.

In the third case, the kinematic chain is straight, and the target is lo-
cated on any of the line segments (links) connecting each joint position. In
this situation, performing the forward and backward stages of the algorithm
always results in a straight chain and the end e↵ector is unable to reach the
target. Aristidou et al. suggests allowing a small degree of sideways bending
in the backward stage of the first iteration to account for this.

Assuming none of the three cases above are current, it has been shown
that the solution converges. Let P be the set of n initial joint positions,

11

and let P 0 be the set of new joint positions produced by the forward stage.
An iteration consists of two identical, albeit reverse, processes. The forward
stage has a target Ft (the root), and the backward stage has a target Bt

which coincides with the IK target. Forward stages bring us closer to Ft

while backward stages bring us closer to Bt. We wish to show that after
some number of iterations, the end e↵ector reaches the target position Bt.
We do this by examining what happens in each of the steps in one of the
stages.

Each stage consist of n � 1 steps, at each step there are three positions
involved. The acting target ~t(= ~p0i), the acting end e↵ector ~pi, and the parent
of the acting end e↵ector ~pi�1, with i = 2, . . . , n. The acting target is the
position we wish to move ~pi to. We call the distance between the acting end
e↵ector and target the residual distance dt. An overview of the situation is
given in figure 6a.

(a) Beginning of a step. Including acting

target ~t, acting end e↵ector ~pi, parent

of acting end e↵ector ~pi�1, and residual

distance dt.

(b) End of a step. Including the new

acting target ~t0, new acting end e↵ector

~pi�1, and new residual distance d0t.

Figure 6. Shows the configurations of joint positions and distances within a step

in one of the stages.

Note that the acting target and acting end e↵ector coincides with the real
target (Bt) and real end e↵ector (~pn) in the first step of the forward stage.

In each step, the acting end e↵ector ~pi moves to the acting target position
~p0i, and the new target position is denoted ~t0(= ~p0i�1). The new residual

distance d0t is the distance between the new acting target ~t0 and the new
acting end e↵ector ~pi�1. Resulting situation is shown in figure 6b. Showing

12

that the residual distance decreases in each step, implies that the distance
between end e↵ector and target is decreasing as well. Thus, by generalizing
for each iteration and showing that

d0t < dt, (7)

in each step, we can prove that the solution is converging.
Given an arbitrary step, a triangle is formed by the three involved points

~t, ~pi, and ~pi�1, as shown in figure 6a. Because of triangle inequality we have,

di�1 < dt + dist, (8)

and
dist < dt + di�1. (9)

Where di�1 is the length of the link between ~pi and ~pi�1 (as before), and dist
is the distance between ~pi�1 and ~t.

At the end of the given step, ~pi�1, p0i, and ~t0 lie on the line defined by ~p0i
and ~pi�1. Giving us the following equalities,

d0t = di�1 � dist if di�1 > dist, (10)

and
d0t = dist� di�1 if dist > di�1. (11)

Substituting (8) in (10) and (9) in (11) gives,

d0t < dt + dist� dist = dt if di�1 > dist,

and
d0t < dt + di�1 � di�1 = dt if dist > di�1.

Hence, proving that d0t < dt (Aristidou et al. 2016).
Since the steps within both stages perform the same process only in di↵er-

ent directions, this shows that both stages converge toward their respective
targets Ft and Bt. With Bt being the target of the IK.

2.4 Cyclic coordinate descent

The Cyclic Coordinate Descent (CCD) method is a commonly used iterative
IK solver first introduced by Wang & Chen in 1991. It is computationally
fast, and straightforward to implement, making it well suited for real time

13

applications. The general idea of CCD is to rotate the joint links in the kine-
matic chain one at a time such that the distance between the end e↵ector
and the target always decreases. An outline of the algorithm follows: The
algorithm starts at the parent of the end e↵ector, rotating the link between
the end e↵ector and its parent such that the distance to the target is min-
imized. Now moving onto the next joint, we still wish the rotation of this
next link to bring the end e↵ector as close to the target as possible. This is
done by calculating the angle between the vector from the current joint to
the end e↵ector, and the vector from the current joint to the target. Then,
rotation of the current link by the calculated angle is done about the axis
perpendicular to those two vectors. The same is done at each joint until the
root is reached. If the distance between the end e↵ector and the target is less
than a set distance, the algorithm stops, otherwise it moves onto the next
iteration. One full iteration of CCD on a kinematic chain with three joints
can be observed in figure 7. The procedure is described formally below.

Let P be a kinematic chain (section 2.2.1) with n joints, ~t be the target
position, and ~pi be any joint except the end e↵ector (i = 1, . . . , n � 1). As-
suming all previous links have been properly rotated according to equations
(12) and (13). We wish to calculate the smallest angle ✓ between vectors
~pn� ~pi and ~t� ~pi, as well as the rotational axis ~r. We use the dot product to
calculate the angle, and the cross product to determine the rotational axis.
We get,

cos ✓ =
(~pn � ~pi) · (~t� ~pi)

||(~pn � ~pi)|| ||(~t� ~pi)||
, (12)

and,

~r =
(~pn � ~pi)⇥ (~t� ~pi)

||(~pn � ~pi)⇥ (~t� ~pi)||
. (13)

Notice that if we use right hand rotation, the direction of the rotation will
always be correct as a result of the properties of the cross product. See figure
8 for clarification.

After acquiring the angle axis rotation R at the current joint, we need
to rotate the child and grandchild joints positions to update the kinematic
chain, that is all joints ~pj with i < j n. This has to be done if the
implemented kinematic chain structure is not a rigid armature, if it is, it is
enough to rotate only the current joint link (as the rest of the armature will

14

(a) Initial positions of kinematic chain

and target. The angle to rotate is ✓1,
the angle between vectors from current

joint to end e↵ector and target, current

joint being ~p2.

(b) The most outward link has been ro-

tated such that the end e↵ector is as

close to the target as possible. The cur-

rent joint is now ~p1 and the angle to ro-

tate is ✓2.

(c) The final configuration. Finally, the

link from the root was rotated by ✓2,
moving both ~p2 and ~p03.

Figure 7. Displays one iteration of CCD on a 2D kinematic chain with 3 joints.

Two rotations are performed, one per link, and the final configuration is shown in

(c). Rotations are clockwise in this example.

rotate with it). Letting the new joint positions be ~p0j, we relocate the joints
by,

~p0j = ~pi +R(~pj � ~pi), (14)

for j = i+ 1, . . . , n.
Naturally, this positioning update has to be performed at every joint

except the end e↵ector (since we start at the parent of the end e↵ector),
resulting in n� 1 rotations each iteration of the algorithm, one for each link.
When the root joint is reached, we check if the distance between the end
e↵ector and target is within the predetermined tolerance. If it is, we stop.
Otherwise, a new iteration begins with the final joint positions from the

15

Figure 8. Right hand rotation around ~r will always rotate in the wanted direction.

As seen from the opposite direction of ~r, the situation in the figure would result in

clockwise rotation. Should we swap the positions of ~pn and ~t, ~r would be pointing

in the opposite direction, resulting this time in counterclockwise rotation. Both

being correct for their respective situation. Dotted lines are joints between current

joint and end e↵ector. Vector ~r is perpendicular to both ~pn � ~pi and ~t� ~pi.

previous iteration as the new initial set of joint positions. Iterations continue
until the error is within the tolerance.

The baseline CCD method favors higher rotation of joint links close to
the end e↵ector. This can be regulated by damping factors, which put a
restriction on the rotation of certain links. Or by reversing the algorithm
to start at the child of the root, which favors higher rotation of links close
to the root instead (Kenwright 2012). When modeling human arm motion
with CCD, we want to start from the end e↵ector, since the forearm tends
to move more than the upper arm when moving the hand.

2.4.1 Convergence

This section discusses the cases where CCD does not converge, as well as
give an idea of why the method converges if none of these cases are current.

Three cases exist where the method can not converge, all of them being
the same as those in FABRIK. The first one being that the target is out of
reach. The second one being the situation depicted in figure 5. In the third
case, the kinematic chain is straight, and the target is located on the chain,
leading to no rotation or 180 degrees rotation by equation (12).

If the target is out of reach, the chain will straighten towards the target,
regardless of the initial joint positions. This happens since the links always
rotate such that the end e↵ector gets closer to the target, and eventually it

16

reaches the closest position possible, which is when the chain is straightened
in the direction of the target. See figure 9.

Figure 9. Shows how the CCD algorithm proceeds when the target is unreachable.

Eventually, the chain is straightened towards the target. Joints in the chain are

black and the target is red.

The second case is handled by putting a restriction on the amount of
iterations in the implementation. And the third case can be handled by
recognizing the situation and introducing a random rotation of any link in
the chain, which would cause the algorithm to proceed normally.

The following gives an idea of why the CCD algorithm converges, it should
not be considered a proof. Assume none of the three cases above are current,
and let P contain the initial joint positions of the kinematic chain, and ~t be
the target position. By the construction of the method, we are looking for
the angle ✓ (see equation (12)) which by rotation around ~r (see equation (13))
brings the end e↵ector as close to the target as possible. Let the distance
between ~pn and ~t before a rotation be called dt. And let the distance between
the end e↵ectors new position ~p0n and ~t be called d0t. Assume dt d0t, then
we rotated away from the target, or we did not rotate at all. By the design
of the algorithm, we did not rotate away from the target, leaving us with
dt = d0t. In this case, we did not rotate at all, but then ✓ must be zero.
This means the chain is straight and we are either in the first case, where
the target is unreachable, or in the third case, where the chain is straight
and the target is located on the chain. This contradicts our assumption that
none of the three cases were current. We have d0t < dt each rotation, and the
method converges.

17

2.5 Pole

In some applications, a↵ecting the way the kinematic chain bends could be
an important addition. For instance, the elbow of a human arm tend to
bend outward or downward from the body instead of inward when moving
the hand. These situations are most often modeled using joint constraints.
However, this section discusses a di↵erent approach, using the concept of a
pole.

A pole is a predetermined position which dictates what direction the
kinematic chain should bend towards. Unlike joint constraints, the pole
does not a↵ect the chains ability to reach the target. The pole method
presented below repositions the intermediary joints such that they end up
in the position closest to the pole without constraining the kinematic chain.
A 2D simplification of the general idea is shown in figure 10. The pole
calculations are performed on all intermediary joints after the final kinematic
chain configuration has been obtained by the IK method and can therefore
be added to both FABRIK and CCD implementations.

Figure 10. Shows the idea of a pole in two dimensions. There are two valid

positions available for the intermediary joint (red), but the position closest to the

pole (blue) is chosen. The dashed elements make up the alternative configuration.

In three dimensions, the situation is more complex than what is shown
in figure 10. Any intermediary joint is repositioned in the following way.
Given a pole ~a, and any three joint positions from the final configuration
~u,~v, ~w 2 Pfinal such that ~u is the parent of ~v, which in turn is the parent
of ~w. We wish to move ~v such that the distance to ~a is minimized, without
compromising the lengths of the interconnecting links. The solution is based
on the idea that ~v can rotate freely around the vector ~n = ~w�~u, as depicted in
figure 11. By projecting ~a and ~v onto a plane defined by the normal vector ~n

18

and the position ~u, finding the rotation angle ✓ about ~n which minimizes the
distance between the projected points, and translating back into 3D space,
we can obtain the updated position of ~v.

Figure 11. Shows the idea of a pole in three dimensions. The intermediary joint

(red) is positioned where the distance to the pole (blue) is the shortest, without

compromising the kinematic chain. As long as the intermediary joint resides on

the circle (as seen along the vector), the links (dashed lines) can keep their length.

We begin with finding the projections of ~v and ~a on the plane in the

direction of the plane normal ~n. Let ~X =
⇣

x
y
z

⌘
with x, y, z 2 R, then the

equation of the plane is,

~n · (~u� ~X) = 0, (15)

where · is the dot product. The projections onto the plane are given by,

~vproj = ~v � ~nt1,

~aproj = ~a� ~nt2,

with t1, t2 2 R such that ~X = ~vproj and ~X = ~aproj solves equation (15). The
next step is to find the angle between ~vproj�~u and ~aproj�~u. And to determine
which direction to rotate. By using the definition of the dot product (and
the fact that we are in the standard basis) we can find the smallest angle ✓
between the two vectors,

(~vproj � ~u) · (~aproj � ~u)

||~vproj � ~u|| ||~aproj � ~u|| = cos ✓, (16)

using the algebraic definition to calculate the numerator. To determine the
direction of rotation we can use the cross product in the following way. Since

19

the cross product (~vproj�~u)⇥(~aproj�~u) is orthogonal to ~vproj�~u and ~aproj�~u,
and points in the direction given by the right hand rule (note that the cross
product is anticommutative). There are two cases, (1): it will point in the
same direction as the plane normal ~n; indicating counterclockwise rotation,
and (2): in the opposite direction of the plane normal; indicating clockwise
rotation. The full situation is depicted in figure 12. We have,

~n · ((~vproj � ~u)⇥ (~aproj � ~u))

(
> 0 in case (1)

< 0 in case (2).
(17)

Finally, the signed angle ✓sign is determined by (16) and (17) such that ✓sign =
✓ if the expression in (17) returns a positive value, and ✓sign = �✓ otherwise.

What remains is to update the original joint position ~v based on ✓sign. To
do this, we construct the new vector ~vnew according to ~vnew = ~u+R(~v � ~u).
Where R is the angle axis rotation according to ✓sign and ~n.

Figure 12. Displays an example situation with the elements included in the pole

calculations. The goal is to rotate ~v � ~u (dashed line) about ~n such that ~v (red)

is as close to the pole ~a (blue) as possible. The pole and intermediary point are

projected (gray) onto the plane defined by ~u and ~n = ~w � ~u, and the rotation

angle ✓ is determined by the projected points ~vproj and ~aproj . The direction of

the rotation is determined by the cross product of the projected points. In this

figure the cross product is pointing in the opposite direction of the plane normal

~n, which indicates that we should use clockwise rotation.

20

3 Method

This section lists the hardware used, gives a brief overview of the implemen-
tation, and an explanation of the tests conducted on the IK methods.

3.1 Hardware

All tests were run on a Windows 10 (version 19041.572) 64-bit machine with
an Intel Core i5-4670 CPU @ 3.4 GHz, 8 GB of RAM, and a GTX 1060
GPU with 6 GB of VRAM. The VR hardware used was a Lenovo Explorer
Windows Mixed Reality (WMR) headset, and WMR motion controllers.

3.2 Implementation

The human arm model and IK methods were both implemented using the
Unity game engine (version 2019.4.9f1). A Unity plugin called SteamVR
(version 2.6.1) was used to handle tracking of the VR hardware.

3.2.1 Human arm model

The arm model was implemented using the base three dimensional cube in
Unity, as well as parent child relationships. A total of three cubes were used,
representing the shoulder, elbow, and hand. The cubes were configured such
that the hand cube was a child of the elbow cube, which in turn was a child of
the shoulder cube. E↵ectively, making it a kinematic chain with three joints,
the shoulder being the root, and the hand being the end e↵ector. Each cube
in the model had 6 degrees of freedom.

3.2.2 Virtual reality integration

Unity has built in VR support, but for this application, we opted to use
the SteamVR plugin maintained by Valve. The plugin handles loading 3D
models for VR controllers, input from those controllers, and estimation of
what the users hand looks like while using the controllers (Valve 2015). Hand
estimation was never used in the application. Headset and controllers were
tracked in 6 degrees of freedom.

21

Figure 13. Shows the human arm model with joints as cubes and links as blue

outlines. The gray sphere is a pole, and the red sphere is the target. The arms

end e↵ector is inside the target.

3.2.3 Inverse kinematics methods

Both methods, as well as the pole, were implemented according to the theory
in section two using C# scripts. The scripts were attached to the end e↵ector
in the human arm model described in section 3.2.1 and had access to all
positional parameters of each joint in the chain. Code for running the IK
with a pole were included in both scripts, along with an option to turn it on
and o↵. The error tolerance as well as the maximum number of iterations
allowed were configurable. The target of the IK could be any object in Unity
with a positional component known as a transform. Therefore, making it easy
to use VR controllers as targets. The pole target could be any object with
a transform component as well, and was positioned using 3D coordinates.
The human arm model, pole, and target, can be observed in figure 13. All
implementation code is available on the projects Github page (Stolpe 2020).

3.3 Tests

Two tests were conducted on both methods. The first test examined their
ability to converge. It proceeded as follows. The human arm model de-
scribed above were put in an initial configuration, and an error tolerance

22

was specified. Then, the selected method was tested on 30 reachable target
positions. For each position, the number of iterations and time required to
reach the specified error tolerance were measured. Both methods were tested
using the same initial configuration of the human arm model, and the same
target positions. Seven di↵erent values for the error tolerance were tested:
0.1, 0.075, 0.05, 0.025, 0.01, 0.005, and 0.001. Unity units are in meters. For
each one, the average number of iterations per position and the average time
to converge were computed. Any points on which a method did not manage
to converge were not counted towards the averages, but were noted. The
pole calculations were excluded during the measurements. Averaging over
several target points was done to reduce any unwanted bias towards any of
the methods.

The second test examined both methods ability to replicate human arm
movement using a pole. The SteamVR CameraRig asset was used to track
the two hand controllers and VR headset position in real time. Two human
arm models were positioned on opposite sides of the tracked VR headset
position, each with a shoulder width o↵set. The hand controllers were set as
targets of the IK scripts, and poles were added to the scripts on both arm
models with the intent to improve positioning of the elbow joints. Then, a
wearer of the VR hardware performed several poses, and in the meantime
both wearer and Unity application were recorded. One recording was done
without poles for comparison. The resulting poses of the human arm models
were then compared with the real life poses. The same scene view camera
angle, and real life poses, were used for both IK methods. The VR setup is
shown in figure 14.

All code, Unity scene configuration, and target positions used for testing
are available in the projects Github repository (Stolpe 2020).

23

Figure 14. Shows the VR setup used in the Unity application. The white camera

is the VR headset position. The sphere is a pole (the other pole is not in line of

sight). The cubes are the joints in the human arm model, and the blue outlines

are the links.

24

4 Results

Two tests were conducted on both IK methods, in this section the results
are presented. The reader is advised to read section 3.3 were both tests are
described in detail before continuing.

4.1 Convergence rate towards specific error tolerances

In the first test, both methods were examined based on their ability to con-
verge towards a specified error tolerance etol. Both the number of iterations
and computation times were measured, table 1 shows the averages of both
methods over 30 target points.

Table 1. Showing the results of the convergence rate test for FABRIK and CCD.

The first column shows all error tolerance values, the second and third column

shows the results for FABRIK, and the fourth and fifth column shows the results

for CCD. Time is measured in seconds, tolerance in meters. View section 3.3 for

details about the test.

FABRIK CCD
etol (m) iterations time (s) iterations time (s)
0.1 1.033 3.393 · 10�6 2.333 1.606 · 10�5

0.075 1.067 3.640 · 10�6 2.767 1.602 · 10�5

0.05 1.100 3.799 · 10�6 3.600 2.016 · 10�5

0.025 1.500 4.029 · 10�6 5.433 2.153 · 10�5

0.01 2.233 4.649 · 10�6 8.333 3.105 · 10�5

0.005 3.300 5.905 · 10�6 11.00 3.623 · 10�5

0.001 6.200 9.274 · 10�6 14.37 4.649 · 10�5

As seen in the table, FABRIK converged in fewer iterations, and in less
time, for all error tolerances. Times were in the 10�6 second range for
FABRIK and in the 10�5 range for CCD. Iteration count were at least two
times higher for CCD for all tolerances. The times for a single iteration were
inconsistent. For example, looking at the FABRIK results, a tolerance value
of 0.1 results in a single iteration being approximately 3.3·10�6 seconds, while
for a tolerance of 0.001 the same result is approximately 1.5 · 10�6 seconds.

Graph representations of the data in table 1 can be observed in figure 15.
While iterations and IK time seem to increase dramatically with decreasing
error tolerance for CCD, FABRIK starts o↵ more linear. This is especially

25

(a) Shows number of iterations vs. error tol-

erance (m).

(b) Shows time (s) vs. error tolerance (m).

Figure 15. Graph representations of the data in table 1.

clear for the number of iterations on the first three error tolerance values. For
error tolerances 0.01 and below, both time and number of iterations starts
increasing rapidly for both methods.

The number of iterations were consistent during several runs of the test.
With etol set to 0.001 CCD failed to converge on three out of thirty target
positions, the results for these positions were not counted towards either
of the averages. To determine for which error tolerance FABRIK started
to fail, it was decreased further than 0.001. Which revealed that FABRIK
consistently converged on all target positions down to an error tolerance of
10�7 where it failed to converge on one position. Observational di↵erences
in the end e↵ectors position were almost unnoticeable when decreasing the
tolerance below 0.005.

4.2 Arm pose reconstruction with tracking input

The second test examined how well the methods could replicate movements
of the human arm using VR hardware to track hand and head positions,
hand positions being set as targets for the IK. Both methods were tested and
recorded with, and without, the addition of poles.

Two of the real life poses and resulting arm model poses from the record-
ings can be observed in figures 16 and 17, poles were used in both. The poses
will be referred to as pose 1 and pose 2, respectively. As seen in the figures,

26

both methods manage to recreate arm poses that are observably similar to
that of the VR wearer (note that the wearer is shot from a slightly di↵erent
angle). Slight di↵erences can be seen in the subfigures comparing CCD and
FABRIK, mostly as a result of the wearer not being able to perform the ex-
act same pose twice. Most other resulting poses were also observably similar,
excluding those were pole placement did not coincide with the VR wearers
elbow position.

Pole positioning was critical for improving the similarity between arm
pose recreations and real arm poses, the results of both methods were very
similar when the same poles were used. Positioning the poles as in figures
16 and 17 (down and slightly outwards from the shoulders) prevented the
arm models elbows from pointing inwards or upwards, and was subjectively
considered as the position which resulted in the most natural pose recon-
structions. However, those positions also resulted in some reconstructions
being inaccurate. For instance, when flaring the elbows outwards in real life,
the elbows of the arm models would point downwards instead.

In figure 18 the results of the same poses, performed without poles, can
be observed. They are noticeably di↵erent from the real life poses, with
the elbows flaring inwards in pose 1 and outwards in pose 2. Using the IK
without poles often resulted in non accurate positioning of the elbows.

A couple of observations were made by the wearer during the VR tests.
Most notably, when using CCD, the end e↵ector position flickered slightly
from side to side. The e↵ect was almost unnoticeable, but when focusing
on it, it was clearly present. Additionally, when using the methods without
a pole, FABRIK resulted in the arm model moving in a more predictable
fashion, with the hand position always moving in a line towards the elbow.

A link to a demo recording of FABRIK as well as all additional pictures
from the tests are available on the projects Github (Stolpe 2020).

27

(a) Shows the pose of the VR

wearer.

(b) FABRIK result on the

human arm models.

(c) CCD result on the human

arm models.

Figure 16. Shows the results of the wearer of the VR hardware performing pose 1.

(a) Shows pose of the VR

wearer.

(b) FABRIK result on the

human arm models.

(c) CCD result on the human

arm models.

Figure 17. Shows the results of the wearer of the VR hardware performing pose 2.

(a) Pose 1 performed without poles. (b) Pose 2 performed without poles.

Figure 18. Shows the results of the wearer of the VR hardware performing pose 1

and 2 without poles attached to the IK. The spheres, which are poles, can be seen

in the figures, but they were not enabled.

28

5 Discussion

Inverse kinematics is a feasible solution to animating user avatars in virtual
reality with limited tracking data. Increasing user immersion is a key fea-
ture of VR hardware, and accompanying software should strive to enhance
this property. Particularly, the users embodiment in the virtual world is an
important factor in increasing immersion. In a lot of VR experiences, em-
bodiment is found lacking. The user is often presented with a pair of floating
hands, dislocated from their body, as their means to interact with the virtual
environment. In most mainstream consumer VR hardware, the only tracked
points are the head and hand positions. Thus, making a full body recreation
with moving arms and legs matching the wearers is hard. While additional
tracking sensors is needed for recreating accurately moving legs, the tracking
of head and hands makes it possible to animate the arms of a virtual user
avatar using inverse kinematics. Several methods for solving IK exist, and
the question becomes what method to use. A novel method for upper body
IK was presented by Parger et al. (2018), and Jacobian inverse IK methods
were examined by Caserman et al. (2019), both containing user studies which
show an increase in immersion when using IK for the users virtual avatar.
The purpose of this study was to compare two commonly used heuristic IK
methods, FABRIK and CCD, by testing them in regard to computational
performance, and the ability to recreate arm poses using tracking of head
and hand positions. In addition to the IK methods, a pole was implemented
to help with the positioning of the elbow.

We found that both methods’ computational performance was su�cient
for real time environments, with convergence times less than one tenth of
a millisecond for all tested error tolerances. This came as no surprise since
both methods are computationally simple, and the human arm model is only
three joints. However, FABRIK was consistently faster than CCD by approx-
imately one order of magnitude. This is a result of CCD requiring a signifi-
cantly larger number of iterations before converging. We can only speculate
about why CCD requires more iterations given the provided background. A
reasonable speculation would be that since FABRIK always starts with the
end e↵ector placed at the target position, and then corrects it slightly based
on the movement of the root, the distance to the target is often low after a
single iteration. On the other hand, CCD starts with the end e↵ector in its
initial position and has to rotate each link to bring it closer, which means the
distance it can cover at each step is limited by the rotation of the other links

29

in the chain. Additional theory would be required to make this clear. Simi-
lar time di↵erences between FABRIK and CCD were measured by Aristidou
& Lasenby (2009). Another important observation was that CCD failed to
converge on some target positions when decreasing the error tolerance below
a certain value. This could be because of numerical instabilities in the CCD
method stemming from the use of rotations. There is also the possibility that
the method was incorrectly implemented. If not, this result would clearly tip
the scales in favor of FABRIK from a computational performance standpoint.

In regard to pose recreation, we found that the choice of method did not
have any noticeable impact when poles were used. Both methods managed to
create observably similar poses to that of the wearer of the VR hardware as
long as the pole position was somewhat correspondent of the wearers elbow
position. To improve the elbow positioning further, rotational constraints
would have to be implemented. Based on the background describing how
the pole functions, we see that as long as the root and end e↵ector positions
of the human arm model are the same, the elbow (intermediate joint) will
end up in the same place, regardless of what the elbow position was in the
final joint configuration from the IK method. The di↵erent methods would
produce slightly di↵erent end e↵ector positions, but it would not be enough
for a noticeable di↵erence in the elbow position produced by the pole. Con-
sistently recreating arm poses without using poles did not succeed since there
would be no correction of the elbow. The preferred method of the wearer
was FABRIK since CCD produced a slight side to side flickering of the end
e↵ector, probably because of the method being based on rotation.

None of the cases were the methods cannot converge were of any problem
during the VR pose testing. With link lengths in the arm model being
adjusted for the wearers arm lengths, such situations would not occur since
the wearers real arm would limit the movement of the target hand controller.
However, note that the arm model used was slightly shorter than the wearers
arms to allow for the chain to stretch to its full length when the wearer
extended his arms (intentionally allowing for one of the unreachable cases).

Unfortunately, the VR pose testing falls short of doing any proper mea-
surements of the wearer’s real arm pose, and only relies on visual observations
of the recordings for each method. Any value based comparison of the meth-
ods’ resulting poses was not done. This is an obvious limitation of the study,
but we still think the results show that any of the two methods combined
with the usage of poles is a viable option for arm pose recreation.

30

5.1 Conclusions

To conclude, we try to answer the research questions stated in the introduc-
tion. The first question was ”Which method had the highest performance in
regard to calculation time and convergence rate?” The answer to this ques-
tion is simply the FABRIK method, as it had both lower IK computation
times, and lower iteration count, for all tested error tolerances.

The second question was ”Which method could best replicate the move-
ments of the human arm, and produced least unnatural poses?” This question
is harder to answer since no proper value based measurements were done to
compare the methods. But from an observational standpoint, both methods
produced a lot of unnatural poses when used without poles. And with poles,
both methods produced su�cient arm poses for a majority of the tested real
life poses.

Future directions would include trying the methods on longer kinematic
chains with more than one target, perhaps to model the neck and spine.
Additionally, to improve elbow positioning further, rotational constraints
could be added. And to assess if the arm models increase user embodiment
in VR, a user study could be conducted.

Finally, while both methods (with poles added) are viable options to use
for arm pose recreation for VR avatars, we suggest using FABRIK based on
the results of the convergence test.

31

References

Aristidou, A., Chrysanthou, Y. & Lasenby, J. (2016), ‘Extending fabrik with
model constraints’, Computer Animation and Virtual Worlds 27(1), 35–
57.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1630

Aristidou, A. & Lasenby, J. (2009), ‘Inverse kinematics: a review of existing
techniques and introduction of a new fast iterative solver’.

Aristidou, A. & Lasenby, J. (2011), ‘FABRIK: A fast, iterative solver for the
inverse kinematics problem’, Graph. Models 73(5), 243–260.
URL: http://dx.doi.org/10.1016/j.gmod.2011.05.003

Aristidou, A., Lasenby, J., Chrysanthou, Y. & Shamir, A. (2018), ‘Inverse
kinematics techniques in computer graphics: A survey’, Computer Graph-
ics Forum 37(6), 35–58.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13310

Beggs, J. S. (1983), Kinematics, Hemisphere Publishing Corporation, United
States.

Caserman, P., Achenbach, P. & Göbel, S. (2019), Analysis of inverse kine-
matics solutions for full-body reconstruction in virtual reality, in ‘2019
IEEE 7th International Conference on Serious Games and Applications
for Health (SeGAH)’, pp. 1–8.

Kenwright, B. (2012), ‘Inverse kinematics - cyclic coordinate descent (ccd)’,
J. Graph. Tools 16, 177–217.

Kucuk, S. & Bingul, Z. (2006), Industrial Robotics: Theory, Modelling and
Control, InTech, London.

Parger, M., Mueller, J. H., Schmalstieg, D. & Steinberger, M. (2018), Human
upper-body inverse kinematics for increased embodiment in consumer-
grade virtual reality, in ‘Proceedings of the 24th ACM Symposium on
Virtual Reality Software and Technology’, VRST ’18, Association for Com-
puting Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/3281505.3281529

32

Stolpe, E. (2020), ‘Inversekinematicsvr’, https://github.com/tayloh/InverseKinematicsVR.
Contact the author on erst2297@student.su.se for access.

Valve (2015), ‘Steamvr’, https://assetstore.unity.com/packages/tools/integration/steamvr-
plugin-32647. Accessed: 2020-11-06. Latest release: 2020-08-11.

Wang, L. . T. & Chen, C. C. (1991), ‘A combined optimization method
for solving the inverse kinematics problems of mechanical manipulators’,
IEEE Transactions on Robotics and Automation 7(4), 489–499.

West, M. (2015), ‘Rigid bodies’, https://dynref.engr.illinois.edu/rkg.html.
Accessed: 2020-09-23.

33

