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Abstract

This report finds and implements a method for portraying non-euclidean
spaces in a modern, euclidean game engine that also allows the player to in-
teract with these non-euclidean spaces in a believable way, in real-time. The
method does not allow the use of ray-tracing or modification of game engine
source code. The chosen method is a portal system. The portals created by
this portal system are completely seamless and thus, when placed in certain
configurations, they can make a euclidean space appear non-euclidean. Since
the system essentially creates an illusion of a non-euclidean space, it does
not break any of the underlying logic in the euclidean game engine or its
scripting API. A performance analysis is performed on the end-result (before
any optimization) which concludes that the method has a linear time com-
plexity (portal rendering cost grows linearly with the complexity of the 3D
scene). This is deemed to not be ideal for large, complex game environments,
but suitable for enclosed, less complex game environments. If the system is
optimized and some of its other flaws get fixed or improved, it has the po-
tential to be a universal solution for games needing to portray non-euclidean
concepts.



Visualisering och fysisk interaktion av
icke-euklidiska rum i euklidiska spelmotorer

Sammanfattning

Denna uppsats hittar och implementerar en metod för att framställa icke-
euklidiska utrymmen i en modern, euklidisk spelmotor som ocks̊a gör det
möjligt för spelaren att interagera med dessa icke-euklidiska utrymmen p̊a
ett trovärdigt sätt, i realtid. Metoden till̊ater inte användning av ray-tracing
eller modifiering av källkod i spelmotorer. Den valda metoden är ett portal-
system. Portalerna som skapats av detta portalsystem är helt sömlösa och
kan därför, när de placeras i vissa konfigurationer, f̊a ett euklidiskt utrym-
me att verka icke-euklidiskt. Eftersom systemet i princip skapar en illusion
av ett icke-euklidiskt utrymme s̊a förstör det inte den underliggande logi-
ken i den euklidiska spelmotorn eller dess skript-API. En prestanda-analys
utförs p̊a slutresultatet (innan n̊agon sorts optimering) som drar slutsatsen
att metoden har en linjär tidskomplexitet (kostnaden av att rita portalerna
växer linjärt med 3D-scenens komplexitet). Detta anses inte vara idealiskt
för stora, komplexa spelmiljöer, men räcker för slutna, mindre komplexa spel-
miljöer. Om systemet är optimerat och n̊agra av dess andra brister fixas el-
ler förbättras, har det potential att vara en universell lösning för spel som
behöver framställa icke-euklidiska koncept.
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Introduction

The concept of euclidean geometry is an ancient concept that has shaped
the science behind our world as we know it [5, 14]. It is a mathematical
system that has laid the foundation and defines most of modern geome-
try. This mathematical system was first described by Greek mathematician
Euclid (born around 300 B.C) who wrote a mathematical treatise which
consisted of 13 volumes called “The Elements”. “The Elements” is a com-
pilation of mathematical definitions, propositions, postulates and proofs of
earlier knowledge of geometry (of that time). “The Elements” is essentially a
rigorously structured system of proofs of many mathematical concepts built
up by earlier definitions and Euclid’s own set of “common notions” (Euclid’s
own wording for “axioms”) and postulates. He proposed five main postu-
lates which would define a euclidean geometry (the geometry that accurately
describes our reality). These are known as “Euclid’s postulates” and are
defined as follows [5, 14].

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight
line.

3. Given any straight line segment, a circle can be drawn having the seg-
ment as radius and one endpoint as center.

4. All right angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the sum
of the inner angles on one side is less than two right angles, then the two
lines inevitably must intersect each other on that side if extended far
enough. This postulate is equivalent to what is known as the parallel
postulate.

The first four postulates were proven by Euclid through logical deduction
but he was unable to prove the fifth one. It was later proven by Italian
mathematician Eugenio Beltrami in 1868 that the fifth postulate was not
provable by the first four [2]. In 1846 Scottish mathematician John Playfair
reduced Euclid’s fifth postulate to a simpler form that instead said “In a
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plane, given a line and a point not on it, at most one line parallel to the
given line can be drawn through the point.”[1].

Any geometry that does not adhere to Euclid’s fifth postulate (also known
as the “Parallel postulate”) or any other of his postulates is considered to be
a non-euclidean geometry. The most well known non-euclidean geometries
are “Elliptic geometry” and “Hyperbolic geometry”. In three dimensions
there exist a total of eight known non-euclidean geometries. The first two
are Elliptic geometry and Hyperbolic geometry. Five of them are mixed
geometries (part elliptic, part hyperbolic) and the last one is completely
anisotropic (changes properties based on the direction/angle it being viewed
from) [3]. This thesis will mainly focus on three-dimensional non-euclidean
geometries.

The aim of the thesis is to see whether or not it is possible to e�ciently visu-
alise and replicate physical interaction of non-euclidean geometry and spaces
(in 3D-space) in a modern, large-scale (euclidean) game engine, without mod-
ifying the game engine’s source code. If it is possible, di↵erent methods of
achieving it will be investigated. One of these methods will be picked and
implemented as a dynamic game system in the game engine. The e↵ective-
ness of this method will be measured and its strength and weaknesses will be
identified. The logic and algorithms used for the method should be able to
(in theory) be transferred and implemented into any other game engine (that
supports it). The resulting game system should aim to be e�cient enough
to use in (current) modern games at a reasonable framerate. It should also
be as general as possible, being able to be applied to as many use-cases as
possible (excluding virtual reality and ray tracing applications).

Methods utilizing “Real-time ray tracing” technology (such as NVIDIA’s
“RTX” technology) [7] will not be used due to performance ine�ciency and
because the hardware resources required for them are expensive. Only rasteri-
zation techniques will be used. Only existing, publicly available game engines
will be used. This means that writing a game engine from the ground up will
not be part of this thesis. Only existing, unmodified tools and frameworks
will be used. The method used must strictly only use the scripting API pro-
vided by the game engine/game framework. No custom code allowed. The
final resulting game system will be more akin to a prototype than a fully
polished product. Minor issues are to be expected. The method used is
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primarily only meant to work for non-VR (virtual reality) applications (but
virtual reality may be a discussed topic in the thesis). The resulting game
system should not break any game logic (if possible).

The restriction of not being able to modify any source code and having to
use an existing, publicly available game engine is intentional. The reasons
are:

• Allowing unrestricted source code modification allows one to change a
euclidean game engine into a non-euclidean one since the amount of
source code one can edit is theoretically limitless. This compromises
the goal and intention of the thesis.

• The implementation of the (potential) method should be as simple as
possible and should be possible to implement into as many games as
possible (in theory), regardless of the game framework/engine. Poten-
tial game developers that read this thesis should not have to dive into,
or modify any of the source code in their game engine of choice. Some
publicly available game engines do not even allow users access to the
source code (such as “Unity”). The e↵ort game developers should need
to put into implementing the resulting game system should be minimal.

Since the game engine used is euclidean, its toolset assumes that the game
world is euclidean and since the editing of source code is not allowed, the
method used will not need to actually create real non-euclidean spaces that
adhere to the rules of non-euclidean geometry. It is enough that the method
creates spaces/geometry that appears non-euclidean from the players per-
spective (including physical interaction with these spaces). In other words,
it is enough for the method used to create an illusion of non-euclidean space.

The game engine of choice for this thesis will be “Unreal Engine 4” [22]
(specifically, version 4.22.3), as it is a widely available, free to use and easily
accessible modern (euclidean) game engine.
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Related work

1.1 Literature

The research and literature on this specific topic seems to be scarce. Some
research papers that do however exist regarding this topic are “Immersive
Visualization of the Classical Non-Euclidean Spaces using Real-Time Ray
Tracing in VR” by Luiz Velho, Vinicius da Silva, and Tiago Novello [10] and
“Ray Tracing in Non-Euclidean Spaces” by Joao Rodrigo, André Silva and
Alves Silva [8].

The work of Velho (et al.) focuses on creating a framework which has the
ability to visualize non-euclidean spaces for virtual reality applications using
NVIDIA’s “RTX” real-time ray tracing technology. The intention is for their
framework to be able to be used for art, games and virtual tours and even
for multiplayer scenarios (the multiplayer application use is, however, never
discussed further in the thesis). Their visualization framework is built upon
NVIDIA’s existing “Falcor” real-time rendering framework [6]. Falcor utilizes
real-time ray tracing and Microsoft’s DirectX 12 API [4]. Falcor is mainly
used for research prototyping. A performance analysis is conducted and it
concludes that the performance impact is small enough to not cause motion
sickness in real-time virtual reality applications but is not optimal (the total
frames per second are below the recommended refresh rate of the “HTC
Vive” virtual reality headset that they are using for their research). The
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conclusion of the paper is that they have successfully reached their goal of
creating a framework that can visualize various non-euclidean spaces and
that the framework could be used to visualize these mathematical concepts
in real-time. They also add that their research opens up the possibility of
being used for video games and art.

The work of Rodrigo (et al.) focuses on creating a feasible general-use so-
lution for visualizing generic three dimensional non-euclidean spaces, using
real-time ray tracing. Some rasterization (non ray-tracing) rendering tech-
niques are also discussed, but it is concluded that these techniques are only
applicable for some types of non-euclidean spaces (hyperbolic non-euclidean
spaces and spaces that are “mostly euclidean”) and that there exists no
general-use solution for using rasterization. The end result is them creating
a ray-tracer and “tetrahedral modeler” that can visualize any non-euclidean
space (flat and curved) where the ray tracer shoots out geodesic rays from
the camera view point instead of “normal” rays, thus achieving their end goal
of creating a general-use solution for visualizing non-euclidean spaces (using
real-time ray tracing). It is also concluded that no general-use rasterization
solution for visualizing non-euclidean spaces exists and thus, this is why they
must rely on ray-tracing.

Both Velho’s (et al.) and Rodrigo’s (et al.) work focuses on rendering non-
euclidean spaces using real-time ray tracing. This thesis forbids any method
using ray tracing as it is very GPU (graphics card) intensive and instead
looks for a more practical rasterization method that is less GPU intensive
and can run games using it at a reasonable frame rate.

However, Rodrigo’s (et al.) work mentions some rasterization techniques for
rendering non-euclidean spaces but ultimately concludes that the existing
rasterization techniques are scarce and each of them only apply for specific
non-euclidean spaces. In other words, no general purpose technique was
found. Thus, this thesis will focus instead on either finding a rasterization
solution that works for some specific non-euclidean spaces or a solution that
creates an illusion of non-euclidean space in a euclidean game world.
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1.2 Games

Although the literature in the previous section (section 1.1) has a gloomy
outlook on the possibilities of visualising non-euclidean spaces using normal
rasterization rendering techniques, there do already exist a few games which
explore some non-euclidean concepts that might be worth studying for some
ideas or possible insight.

1.2.1 Antichamber

“Antichamber” (released in 2013) [11] is a mind-bending puzzle game set in
an Escher-like non-euclidean world where the sole purpose of the game is
to confuse the player and present them with puzzles that are solved in very
unconventional ways. It demonstrates several non-euclidean concepts such as
stretching/compressing spaces, infinite hallways, impossible shapes etc (see
Figure 1.1).

The game was built using a modified version of Unreal Engine 3. In an
interview with Epic Games, Antichamber’s sole developer Alexander Bruce
said “It may not look like it’s utilizing the UDK to its full extent, but there’s
more going on behind the scenes than people realize. Everything from how
the world constantly changes and wraps around upon itself seamlessly, to
the subtractive aesthetic and linework rendering has involved picking apart
the engine and bending it in ways that weren’t intended. Unreal wasn’t
specifically built for this kind of game, but no engine was.” (UDK is an
abbreviation of “Unreal Development Kit” which is, a free standalone version
of Unreal Engine 3) [12].
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Figure 1.1: An image from Antichamber. Notice how di↵erent spaces (and ob-
jects) exist in the same spot simultaneously in the hollow glass box. Each face of
the cube shows a di↵erent space.

1.2.2 Portal

“Portal” [20] is a puzzle game released in 2007 by the game developer Valve.
The game’s main mechanic revolves around solving puzzles using a “portal
gun”; a device which allows the player to place portals on any white surface
in the game (almost every surface in the game is marked by either a black or
white color). The surfaces of these portals render what’s on the other side
in real-time (Portal A renders what Portal B “sees” and vice versa). Any
object in the game (including the player) can seamlessly pass through any
portal. Material objects are not the only things that can seamlessly pass
from one portal to another, particles can too, for example, lasers (see Figure
1.2). The player (and any other object) can also stand in the middle of a
portal opening and thus the object/player can exist in two places at the same
time (see Figure 1.4). Every object that passes through a portal maintains
its velocity magnitude but the object’s velocity direction might be di↵erent
when the object comes out of the exit portal depending on how the exit
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portal is oriented. The portals can also recursively render each others views
if one portal is seen through the view of another portal (see Figure 1.3).

Portal is built by Valve’s own in-house game engine, the “Source” engine.
The engine is not publicly available but you can contact Valve and strike a
licensing deal with them to make a game using their engine (for an expensive
upfront fee). Valve only allows using their engine for free if you use it to
modify their own games and only if the content you make with it is non-
commercial. The engine that is o↵ered for free is however a heavily stripped
down version of their full game engine, called the “Source SDK” [13, 32]. For
these reasons, this thesis will not consider “Source” to be a publicly available
game engine.

Figure 1.2: An image from “Portal 2” (the sequel to Portal) demonstrating the
portal laser mechanics. The same laser that goes into the blue portal comes out at
an appropriate angle from the orange portal.
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Figure 1.3: An image from Portal demonstrating recursive portal rendering. The
player character is looking at her own back (there is a blue portal placed behind
the player, on another wall) as the portals recursively render each others views
(because both of the portal’s surfaces are facing each other).
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Figure 1.4: An image from Portal demonstrating the non-euclidean nature of the
portals. Half of the cube went into the blue portal, which caused that half to pop
out of the orange portal. It looks as if the cube exists in two places at the same
time.

The portal system does, however, have some limitations. You cannot place
more than two portals and the portals cannot be placed on moving surfaces
(due to velocity ambiguity).

1.3 Analysis of the literature and game study

Velho’s (et. al) research deals strictly with virtual reality applications and
thus their solution might not be applicable to non-VR applications as virtual
reality applications need to do the rendering once for each eye (total of two
times). On top of that, depth is perceived di↵erently on a curved virtual
reality headset eye lens compared to a flat computer monitor. The thesis
claims that the solution is also applicable for games, but the performance
analysis of the thesis does not take any more complex 3D scenes into account
(scenes that might represent the graphics workload of an average modern
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game). The performance was done in a fairly simple scene with a repeating
mesh (“Mesh” is a technical term for a 3D model or a piece of geometry) in
a black void. In other words, a 3D scene that is not particularly heavy on
the graphics card (NVIDIA RTX 2080Ti), and despite running the perfor-
mance analysis on a low complexity scene and having a top-of-line expensive
graphics card, their solution still had trouble reaching optimal performance
numbers (frames per second). Thus, the claim that their solution is usable
for games should maybe be taken with a little bit of skepticism. Maybe it
works on some very lightweight games.

Rodrigo’s thesis does not really take any games into account since that the-
sis is more focused on providing a visualization method for scientists and
researchers (mathematicians and physicists). The thesis also strictly uses
“OpenGL” [16] for their visualization and custom ray tracer which is an out-
dated rendering API for modern games and thus highly impractical to use
for modern games. Most games use “DirectX” or “Vulkan” [17] (successor
of OpenGL) API’s. The thesis overall leans heavily on theory rather than
practice. There is thus no guarantee that the given solution in the thesis
would be implementable into a modern game engine framework.

Both “Portal” and “Antichamber” play with non-euclidean ideas and both
have seemingly slightly di↵erent approaches for doing so. Unfortunately,
both developers of “Antichamber” and “Portal” have not released any sort
of o�cial documentation or technical paper for how they have achieved the
mechanics and non-euclidean e↵ects in their respective games. This is most
likely due to them wanting to protect their intellectual property (including
technology).

However, by observation, the game system in “Portal” seems like a more
robust system for visualizing non-euclidean spaces as it allows for a wider
range of physical interaction (most non-euclidean e↵ects in “Antichamber”
are simply visual and allow for minimal physical interaction, if any). The
game itself is also mentioned as an example in Rodrigo’s (et. al) thesis [8].
The most important aspect of the portal system, for non-euclidean space
visualization, is that two (or more) portals allow two (or more) non-adjacent
spaces to appear adjacent to each other in the game world. This allows,
whomever uses or implements the portal system, to create an illusion of
non-euclidean space in a euclidean space.
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In any case, the observation of both of these games seems like a more promis-
ing lead than any of the literature mentioned above since the literature does
not use game engines to achieve their goals, and instead use heavily mod-
ifiable rendering engines or outdated rendering API’s. This does not take
physical interaction or game logic into consideration.

On top of that, both of the literature pieces use ray-tracing to achieve their
goals which is strictly forbidden by the restriction applied on this thesis.
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2

Methods

In this chapter, di↵erent (possibly viable) methods of creating or faking (cre-
ating an illusion) non-euclidean geometry and spaces will be discussed. Each
method has advantages and disadvantages. In the end of the chapter the
most suitable method will be chosen for implementation.

2.1 Ray-tracing

While ray-tracing is explicitly not an allowed method to use in this thesis. It
is still important to mention as it might be interesting for future readers. A
future where the hardware might have gotten powerful enough to fully utilize
(non-hybrid) ray-tracing in real-time applications.

2.1.1 What is ray-tracing?

Ray-tracing is a 3D-graphics rendering method that is used for rendering
3D-scenes by projecting the scene unto a 2D screen (as with many other
rendering methods). Specifically, ray-tracing works by “shooting” a ray (3D
vector), with a distance (could be close to infinite), from your “eye” (the
scene camera) unto a 2D grid (in practice, this is your view-port/screen and
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the grid cells are the pixels of that screen). This ray extends into the 3D-scene
until it intersects with an object. At the point of the intersection another
ray is shot towards a light source in the scene. From this and the physical
properties of the object hit, the light is estimated at the point of intersection
which, in the end, estimates the color and luminosity of the pixel (grid cell)
that was being shot through. If the ray that is shot towards the light source
(from the point of intersection) hits something on its way to the light source
(is occluded by something in its path), it is concluded that the hit piece of
geometry is covered by a shadow (this is called a “Shadow ray”). A ray can
also reflect o↵ unto other objects (if the object hit is su�ciently reflective)
or pass through transparent or semi-transparent objects, before traversing
towards a light source. This process is repeated for each pixel on the screen.

While ray-tracing produces very accurate rendering results it is however,
extremely expensive (performance-wise) even for the best modern hardware.
It is not suitable for real-time applications, like video games, and is most
often processed o✏ine (non-real-time). Its most common use is for animated
movies, CGI and high-quality model renders as these kinds of applications
are not time critical, but often require a high level of fidelity.

The graphics card manufacturer NVIDIA has however, in 2018, released
graphics cards, using their new “RTX” technology, that are partially capa-
ble of real-time ray-tracing. Unfortunately, these cards use something that
NVIDIA calls “Hybrid rendering”, which is a combination of rasterization
and ray-tracing based rendering. In other words, these cards cannot render
fully ray-traced scenes in real-time (at least at interactive rates) [9].

2.1.2 Ray manipulation

One can use ray-tracing to visualize non-euclidean spaces by manipulat-
ing the rays that are being shot into the scene, that enter a determined
“non-euclidean space” in the scene, in various ways (compressing, stretch-
ing, changing the rays position etc.) . This will visually distort the geometry
that that ray hits, potentially resulting in non-euclidean results [10, 8].
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2.2 Stencil masking

Since full ray-tracing is too demanding for real-time video games. One has
to rely on rasterization render techniques in order for it to be practical in a
real game scenario. One possible technique that can be used to render non-
euclidean spaces is the use of stencil masking, which makes use of the game
engine’s “stencil bu↵er”. The stencil bu↵er is a part of the “depth bu↵er”.
The depth bu↵er is a render bu↵er (a bu↵er is just a temporary storage
container of data) which stores data that helps the renderer determine the
depth of each part of each object in the scene that is projected unto the
screen. Parts of objects that have a greater depth than the parts of another
object with lesser depth get occluded by the parts of the objects with lesser
depth (see Figure 2.1). Specifically, this bu↵er is made up of a 2D array of
integers, where each entry in the 2D array represents a screen pixel. If a
pixel is “covered” by an object that is far away the pixel (2D array entry)
gets assigned a high “depth value”. If a pixel is “covered” by a object that is
close to the screen (camera), that pixel is assigned a low depth value. This
“depth value” is commonly referred to as a “z-index”. A certain part of the
depth bu↵er is referred to as the “stencil bu↵er”. The stencil bu↵er is used
to render parts of certain objects while discarding others. This is similar
to the depth bu↵er expect with the stencil bu↵er you decide which objects
should be rendered and which should be discarded by manually assigning a
index (compared to the depth bu↵er where the z-index is determined by the
“depth” of a pixel) to a chosen subset of objects in the game world.
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Figure 2.1: Illustration of how the depth bu↵er in Unreal Engine 4 looks like when
visualized. Notice how all parts of objects with a darker tone (parts of objects which
are closer to the camera/screen) occlude parts of other objects which have a lighter
tone (parts of objects that are further away from the camera/screen).

You can use the stencil bu↵er to mask out a group (or multiple groups) of
objects in a scene. Each object in a scene, that makes use of the stencil
bu↵er, has a index or “stencil mask value” attached to it. This value tells a
shader what group (a group is a subset of objects in the game world) that
specific object belongs to.

A “shader” is a piece of code that determines how the graphics card should
draw an object and what the the object should look like. A single shader
can be reused and applied to multiple objects. In layman’s terms, think
of a shader as a layer of paint that coats an object and each paint bucket
can be used to paint multiple objects. The paint is not restricted to a solid
color, but can have multiple visual patterns and properties (glossy paint,
metallic paint, matte paint, iridescent paint etc.). This only describes the
very basic functionalities of a shader. More advanced shader code can do
more complex things such as, determining how shadows and light interacts
with an object, o↵setting the position of individual vertices on an object,
apply pre-computed shadows to objects (see Figure 2.2), faking 3D volume
on a 2D object, cutting holes in geometry (see Figure 2.5) etc. Shaders can
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even change the look of an object dynamically based on outside influence.
For example, the cut hole in a shaded object can expand/shrink based on the
current distance between the shaded object and another object in the game
world.

(a) “Bent Normal” disabled (b) “Bent Normal” enabled

Figure 2.2: Example of how shadows can be pre-computed for certain areas of an
object using a “Bent Normal” map (Unreal Engine 4 shader feature)

Source: https:
//docs.unrealengine.com/en-US/RenderingAndGraphics/Materials/BentNormalMaps/index.html

Using this knowledge, a shader programmer can decide what to do with a
specific group of objects based on the stencil value this group of objects
have, essentially making this group of objects unique, separating them from
the rest of the scene [19]. Stencil masking means that you choose what should
be drawn within the outline of the objects which have a stencil value/index
assigned to them. Each value can represent a di↵erent “look” (see Figure 2.3
where each objects stencil value is represented by a di↵erent color).
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Figure 2.3: Illustration of the stencil bu↵er. All three objects are using the
stencil bu↵er. Each have their own separate stencil value (represented by the three
di↵erent solid colors).

Source: https://docs.unrealengine.com/en-US/RenderingAndGraphics/PostProcessEffects/
PostProcessMaterials/index.html

Using this tool, you can apply some shader tricks to your scene. One simple
example would be to desaturate your scene completely (black and white) but
keep a few objects in your scene saturated (see Figure 2.4).
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Figure 2.4: Illustration of a black and white scene using the stencil bu↵er. Notice
how the phone is still in color (saturated). It is because the phone is using the
stencil bu↵er and has a separate stencil value from every other object.

Source: https://www.youtube.com/watch?v=PiQ_JLJKi0M

Another, more e↵ective, way to use this is to toggle the visibility of objects
based on how they are being viewed. Using a transparent mesh, or a set of
meshes, we can decide which stencil bu↵er objects can and cannot be seen
when looking through these meshes using a stencil mask (regardless of other
non-stencil objects that potentially obscure the view), creating this sort-of
“looking glass” e↵ect (see Figures 2.5 and 2.6).
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(a) A pink circle mesh with a yellow cone
mesh hiding behind a wall with the stencil
bu↵er disabled.

(b) The yellow cone can be viewed through
the wall when looking through the pink circle
mesh if the stencil bu↵er is enabled, the pink
circle mesh has a stencil value and a shader
checking for stencil values is applied to the
wall mesh.

Figure 2.5: Example of how stencil masking be used to see occluded geometry.

A trick like this could be used to create the e↵ect previously seen in Figure
1.1 (see Figure 2.6).
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(a) A hollow cube mesh with “looking glass”
meshes (red and yellow faces) attached to
each side. Each color (red and yellow) rep-
resent a separate stencil value.

(b) When the “looking glass” meshes in Fig-
ure 2.6a are made transparent, each face of
the hollow cube can display a di↵erent mesh
(yellow cube and red sphere) in the same
world position within the cube. The stencil
value of each mesh within the cube matches
the stencil value of the cube face which they
can be seen through (the red sphere has same
stencil value as the red face and the yellow
cube has same stencil value as the yellow
face in Figure 2.6a).

Figure 2.6: Illustration of how the “Antichamber” cubes in Figure 1.1 could be
created.

The problem with this method is that it can only be used to subtract, add
or replace existing geometry. It can only alter the visual appearance of the
current space that the player is inhabiting. It cannot be used to change the
topology of a space or connect non-adjacent spaces. On top of that it cannot
be used to break any physical laws of euclidean geometry (for example, “a
straight line is the shortest path between two points”).

21



2.3 Portal system

If there existed a method which could seamlessly connect non-adjacent spaces
with (potentially) di↵ering topologies, it could be used to create an illusion of
non-euclidean space, which from the players perspective is no di↵erent than
creating actual non-euclidean spaces (in a non-euclidean game engine). This
is exactly what the portal system from Valve’s Portal game (mentioned in
section 1.2.2) is capable of, as long as the physical interactions between the
two portals is replicated.

The three main challenges of creating a portal system that can create an
illusion of non-euclidean space are

• Seamless rendering: The rendered image that is projected unto a por-
tal’s surface should be indistinguishable from the image rendered by
the player’s camera (the players view). In other words, if a player is
staring at a portal surface, he/she should not be aware of the fact that
they are staring at a portal, unless explicitly told so by the game.

• Seamless teleportation: If a player (that is unaware of the existence of
portals in the game) steps through a portal and exits out the other side,
they should not be aware of the fact that they just teleported (moved
in space) or be made aware of the existence of the portals.

• Seamless physical interaction: If an object physically interacts with a
portal (for example, a ball gets thrown through one) it should seam-
lessly go through to the other side while retaining all of its current
physical attributes and values. Any physical interaction that interacts
with an entrance portal with the intention of interacting with some-
thing “on the other side” should be replicated on the side of the exit
portal.

In other words, the portals should be completely seamless and “pixel-perfect”.
Unless the portals have a visual indicator indicating their existence (visuals
around the border, indicator on a mini-map etc.), the player should not be
aware of their existence unless explicitly told so by the game. If any rules
set by the above listed challenges are broken, the illusion (of a non-euclidean
space) breaks. Maintaining this illusion is the highest priority.
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A fully fledged portal system like this is the most versatile method for creating
(or faking) non-euclidean spaces as the end result entirely depends on how
the two connected (euclidean) spaces are built (topology etc.). This method
will therefore be chosen for implementation in this thesis.

(a) A normal doorway from VALVE’s
game “Portal 2”.

(b) Player standing on the other side of
the doorway looking into the room they
were standing in in the previous image.

(c) Tricked you! The doorway was a
portal all along! This is what the door-
way looks like with the portal rendering
turned o↵.

Figure 2.7: Demonstration of the level of seamlessness a proper portal system
should have.

Source: Portal 2, Valve

The images in Figure 2.7 are a demonstration of the level of seamlessness the
implementation of this method strives for in this thesis.
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3

Implementation

This chapter will cover the implementation of the portal system. The the-
sis will be restricted to implementing only two portals (that are linked to
each other). The game logic will be scripted using Unreal Engine 4’s visual
scripting solution called “Blueprints”. The logic itself however, should be
applicable to any sort of game engine.

3.1 Portal rendering

This section will focus on setting up the portals and figuring out a way
to properly render the views of each portal so that each portal seamlessly
displays what is on front of the other portal.

3.1.1 Initial portal setup

Before starting to implement the portals, one must first decide and under-
stand how these portals are supposed to be represented in a game engine,
as an object in physical form. Logically, one would assume that a portal in
physical form is represented by some sort of surface, with an image projected
unto that surface. How this surface is represented and shaped is mostly up
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to interpretation (flat, spherical, curved, one-sided, two-sided etc.). In this
thesis, a portal surface will be represented by a flat plane mesh that is one-
sided, meaning it is only rendered on one side and the other side is culled.
“Culled” is a technical term in game development that refers to geometry
not being drawn on screen (i.e not rendered).

At the initial stages of the implementation the portal only consists of a single
flat plane mesh with no textures and nothing projected unto the plane mesh
surface. So, at this stage the portal is, functionally no di↵erent than a static
wall. In order to add some functionality, the portal must project some sort of
rendered image unto its surface (the flat plane mesh). This projected image
will represent the portal view (the view that the player sees when looking
at a portal’s surface). A portal’s view is (logically) supposed to show what
the other portal “sees” and is therefore showing a di↵erent perspective (the
other portal’s perspective). In order to render a second perspective in a game
(in other words, a perspective that is not the player’s perspective), one must
add a second (non-player) camera.

Therefore, the next step is to add a camera component [25] to the portal
class. This camera component should be a child component of the flat plane
mesh which in itself is the portal object’s root (see Figure 3.2). The root of
an object in Unreal Engine 4 is the component which all other components
are inherently attached to, as each object is composed from a hierarchy of
components (just like the root hierarchy in a tree data structure). The cam-
era component will allow the portal object to capture a new render target
that is separate from the player camera’s render target (render target in this
context refers to the final render target output generated by the di↵erent
render passes, that are captured by a camera component, in the rendering
pipeline of Unreal Engine 4 [30]). This new render target data needs to be
stored somewhere (each frame), otherwise it will be captured and discarded.
In order to store a newly captured render target from a camera component,
one must create a new render target asset (an “asset” refers to a local file
in the Unreal Engine 4 project folder that stores data and these assets can
be imported or created from scratch using Unreal Engine 4’s built-in asset
presets). The specific type of camera component used to store render target
data into a render target asset (sometimes referred to as a “Render Tex-
ture” in other game engines, such as “Unity”) is called a “SceneCapture2D”
component [31] in Unreal Engine 4 [29].
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A render target asset, in Unreal Engine 4, is actually a texture that stores
and updates data on itself during run-time. How and what data is stored
unto the texture is controlled by the game logic. The texture data can be
completely arbitrary and does need need to be render target data captured
by an in-game camera component. This texture is then (usually) projected
unto a surface in the scene so that the player can interact with it and watch it
visually update in real-time (this is the most common use-case but there are
others). Render target assets are most commonly used to draw visualizations
of game mechanics that need be updated in real-time, such as, drawing with
a pen on a whiteboard, tracking the path a player is taking on an in-game
map, drawing transparent bullet holes on walls or displaying footprints in
snow and deforming that snow by updating the texture tessellation in real-
time.

Therefore, a render target asset can be used to update the projection on the
surface of the portal, by storing (and overwriting) a captured frame (render
target) from a portal object’s camera component (“SceneCapture2D” com-
ponent) in the render target asset (texture), every frame update. Since we
have two portals (two portal object instances) in total, let’s call them “Por-
tal A” and “Portal B”, the image projected unto Portal A’s surface (flat
plane mesh) has to be captured by Portal B’s camera component (SceneCap-
ture2D component) and vice versa. This is logical because Portal A has to
display what Portal B “sees” from Portal B’s perspective (and vice versa).
In addition to that, the shader that is applied to the portal surface must
have its UV’s mapped to the screen. This is to avoid the UV’s wrapping
around a mesh, as this can cause the projected texture to be stretched or
compressed depending on the size of the mesh that it is applied to. “UV”
is a 2D coordinate system with positions (u, v) where u, v 2 R, 0  u  1
and 0  v  1. It is used to denote coordinates on a 2D texture (image).
“UV-mapping” is the process of properly mapping each (u, v) coordinate to
a 3D (x, y, z) coordinate of a 3D object. Essentially, correctly “wrapping”
the texture (image) around the 3D object (see Figure 3.1). It is important
that the UV mapping of the render target projected unto the portal’s surface
remains the same regardless of the scale of the portal surface. The shader
itself must also be unlit as light should not reflect of o↵ the surface of the
portal (as the portal should behave as a hole instead of an actual physical
surface, such as a wall).
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Figure 3.1: Illustration of how a texture is UV-mapped unto a 3D object.
Source: https://commons.wikimedia.org/wiki/File:UVMapping.png

Attribution: Tschmits, CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0), via Wikimedia
Commons

(a) Illustration of what the visuals of the
portal looks like when viewed from the side
after the initial setup stages.

(b) Illustration of what the visuals of the
portal looks like when viewed from the back
after the initial setup stages. Notice how the
backside of the portal’s surface (plane mesh)
does not get rendered.

Figure 3.2: Illustration of what the basic structure portal class and visuals of the
portal look like (right after the basic setup described in section 3.1.1).
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3.1.2 Dynamic portal view rendering

The portal views, as we have defined them, are completely static. The per-
spective of the portal view does not change depending on where the players
“eyes” (camera) are relative to the portal (they currently work similarly to
a static security camera monitor). A portal should work similarly to a door-
way or a hole in a wall. When a person looks at a doorway, the perspective
of what they see on the other side of the doorway changes depending on
where they are standing relative to the doorway and the rotation of their
head (or more specifically, where their eyes are in relation to the doorway).
This sort of e↵ect does not occur with the current portals. To fix this, some
logic needs to be added to the portal system that dictates how both portal
cameras should move and rotate relative to the player camera (the players
perspective).

But before implementing a solution for that, one must understand the con-
cept of “world space” and “local space”. These two terms are commonly used
in 3D graphics and game development. They refer to two di↵erent types of
coordinate systems. “World space” refers to a coordinate system where the
center of the 3D scene/game world is the origin of the coordinate system.
“Local space” refers to a coordinate system where the center of an object in
the scene, usually the pivot point of the object (in Unreal Engine 4 the origin
point of an object is determined by the placement of its root component),
is the origin point of the coordinate system. This includes the axes of the
object [33].
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Figure 3.3: Illustration of the di↵erences between world space and local space, in
Unreal Engine 4. The lines on the floor represent the coordinate system in of the
game world (world space), while the three checkered vectors in the middle of the
rotated cube represent the coordinate system of the cube in local space.

This thesis will introduce a new term called “Portal space”. “Portal space” is
not a coordinate system, but a “conversion system” relating a local transform
of an entrance portal to a local transform of an exit portal (a transform is
just a struct that holds the location, rotation and scale of an object). Also,
keep in mind, from this point on, that the axes in Unreal Engine 4 do not
represent the same “directions” as in most other tools and game engines
(or in math). The X-axis in Unreal Engine 4 represents forward/backward
direction, the Y-axis represents left/right direction and the Z-axis represents
the up/down direction (in most other game engines, the Y-axis represents
the up/down direction). Any mathematical expressions or code from this
point on will assume the axes are defined as in Unreal Engine 4.
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Figure 3.4: This is an illustration of the location of an object in world space being
converted to a new location in portal space. The purple dot is the world location
of the object that needs to be converted. The orange dot is the world location of
the portal that the object is in front of. The green vector going from portal A’s
world location to the object world location signifies the location of the object in
the local space of portal A. The golden dot is the resulting (converted) portal space
position of the object (world space). The red vector signifies the local space position
of the resulting portal space location in the local space of portal B. The two small
cyan and light green vectors are the local axes of each portal. If you “glued” the
backside of portal B to the backside of portal A, the object world location and the
converted portal space location should be in the exact same location (because two
portals should act as a doorway between two spaces).

The idea behind the object location to portal space conversion seen in Figure
3.4 is to use the dot product along with the local axes of both Portal A and
Portal B and the location of the object, in the local space of Portal A. The
object location in local space (of Portal A) is calculated by subtracting Portal
A’s world location AP with the world location of the object OP . This gives a
vector, from Portal A to the object, that represents the local space location
of the object in relation to Portal A (long green vector in Figure 3.4). Let’s
call this vector D. This vector now needs to be converted to the local space
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of Portal B. This can be done by utilizing the local axes of each portal.
The local axes of the portals will be represented as a direction (unit vector).
Let’s call them AF (local forward direction vector of portal A), AR (local
right direction vector of portal A), AU (local up direction vector of portal
A), BF (local forward direction vector of portal B), BR (local right direction
vector of portal B) and BU (local up direction vector of portal B). AF , AR,
BF and BR are represented by the small light blue and green vectors of each
portal in Figure 3.4. Let’s call the world location of portal B BP . In order to
calculate a location that is behind portal B (such as in Figure 3.4), a vector
must be added to BP . This vector can be represented by the addition of
portal B’s “axis vectors” BF , BR and BU . If the axis vectors of portal B get
added up, the calculation produces a world location that is situated in front
of portal B. This is wrong and is more akin to how a mirror would work.
The portals need to behave as a doorway where each world location that is
in front of portal A gets translated to a world location behind portal B and
each world location that is to the right of portal A gets translated to a world
location that is to the left of portal B (and vice versa). Thus, BF (X-axis)
and BR (Y-axis) need to be inverted when performing the addition, like so
BD = BP + ((�BF ) + (�BR) + BU). Now the calculated world location
is situated behind portal B. However, at this point in the implementation,
the calculated world location behind portal B has no relation to the local
space of portal A or the object world location. This is where vector D and
dot products become useful. Using D and the dot product, each component
of vector BD can be scaled based on D and the local axes of portal A by
calculating the dot product of D and every local axis of portal A. The size
of the dot product will thus depend on the distance from portal A’s plane
to the object world location and the angle between D and portal A’s plane
(because AF , AR and AU are unit vectors with a magnitude of one). Each dot
product of each local axis of portal A can be multiplied by each component
of BD to extend BD to the proper length and angle of D but in the local
space of portal B. The final mathematical expression is as follows

D = OP � AP (3.1)

CP = BP + (((D · AF ) ⇤ (�BF )) + ((D · AR) ⇤ (�BR)) + ((D · AU) ⇤BU))
(3.2)
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where CP is the final converted location (portal space).

Converting a direction (unit vector) in the local space of portal A to a di-
rection in portal space (in the local space of portal B) follows roughly the
same logic as the conversion of a object location to portal space. The only
di↵erence is that since a direction is being calculated (as opposed to a lo-
cation), a unit vector is being calculated that does not need to have a start
point or end point in world space (in other words, no locations or points in
space are a factor in this calculation). Thus, the math expression for con-
verting locations to portal space is modified to not include BP (no origin
point needed) and D is equal to the given direction (the direction that needs
to be converted) since we no longer require the length of D = OP � AP nor
any of the locations (points in space) OP and AP (see Figure 3.5). Thus, the
mathematical expression for converting a direction to portal space is

CD = ((ID · AF ) ⇤ (�BF )) + ((ID · AR) ⇤ (�BR)) + ((ID · AU) ⇤BU) (3.3)

where ID is the given direction (vector) that needs to be converted to portal
space and CD is the converted direction (portal space).
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Figure 3.5: This is an illustration of a direction (unit vector) being converted
into a new direction in portal space. The green unit vector represents the direction
needs to be converted (before conversion) and the red unit vector represents the
converted direction in portal space.

Converting the world rotation of an object into portal space can be done by
utilizing the previous direction portal space conversion. An object’s rotation
can be represented by its three local axes (local X-axis, local Y-axis and
local Z-axis) and these axes can be represented by a unit vector/direction
(see Figure 3.6). Thus, to convert an object’s rotation into portal space,
one must take the three local axes of the object and convert each individual
axis (direction) into portal space and then take those three converted axes
to construct a new rotation (see Figure 3.9 for blueprint code).
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Figure 3.6: This is an illustration of a rotation being converted into a new rota-
tion in portal space. The green and blue vectors represent are the local axes of the
pink box and represent its rotation. The location of where the pink box is placed
in the figure does not matter for the conversion in any way (in other words, the
boxes are placed near the portals in the figure just for demonstration purposes).

Figures 3.7, 3.8, 3.9 and 3.10 show the logic (blueprint code) behind the
implementation of the conversion system.

34



Figure 3.7: This illustrates the logic for converting a world location to portal
space (a visual illustration of this is shown in Figure 3.4). The yellow lines are
vectors and the green lines are scalars.

Figure 3.8: This illustrates the logic for converting a direction to portal space (a
visual illustration of this is shown in Figure 3.5). The yellow lines are vectors and
the green lines are scalars.
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Figure 3.9: This illustrates the logic for converting a rotation to portal space (a
visual illustration of this is shown in Figure 3.6). The yellow lines are vectors, the
green lines are scalars and the purple lines are rotations.

Figure 3.10: This illustrates the logic for converting transforms to portal space.
This is done by simply combining the defined functions in Figures 3.7, 3.8 and 3.9
to create a new transform.

This conversion system of functions can now be used to construct a solution
for making the portal views dynamic. This is done by making both portal
cameras move and rotate relative to the player camera, using the conversion
functions that are now defined.
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Figure 3.11: This illustrates the logic for making the portal cameras move relative
to the player’s camera. This code/logic is contained within the portal class. “Self”
refers to the portal object executing the logic (much like the keyword “this” in many
other programming languages). “Target” refers to the portal that “this” portal is
linked to. “PortalSCC” is a reference to “this” portal’s camera component (its
own camera).

Now the portal views are not static anymore and its perspectives change
based on the player’s camera transform, much like how the perspective in a
doorway changes when a person looking at it moves.

Figure 3.12: This image illustrates how the player camera and the portal cameras
are now in sync with each other. The “entrance portal” is the portal that the player
character is looking at and intends to enter. The “exit portal” is the portal that
the character will come out from upon entering the entrance portal.
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3.1.3 Remedying portal view distortion

After the implementation of the dynamic portal view rendering, the portal
views can appear a bit distorted. This is because the portal camera and
the player camera can have di↵erent field of views (FoV) during run-time.
This statement can appear strange considering that both the player cam-
era component and the portal camera component both have their respective
“Field of View” setting set to Unreal Engine 4’s default value of 90°, but
it is important to keep in mind that the “field of view” setting in camera
components only a↵ect the horizontal field-of-view as Unreal Engine 4 uses
a “Vert-” (vertical minus) field-of-view scaling method. In other words, the
horizontal field-of-view is fixed, but the vertical field of view is not [23].

The vertical field-of-view changes depending on the aspect ratio of the game
window screen (in-game screen resolution) and can therefore make the portal
view appear squished or stretched (as the UV-mapping of our portal view
is mapped to the screen instead of the portal mesh via the portal surface
shader). This causes a distortion that ruins the illusion of connecting two
non-adjacent spaces with these portals. The portal view can also appear
blurry if the resolution of the render target is lowered su�ciently.

(a) The view from the player cameras per-
spective.

(b) This image illustrates what the player
sees when looking at a portal view that has
the exit portal placed in the exact some po-
sition as in Figure 3.13a.

Figure 3.13: Illustration of the distortion in the portal view. Notice how the
sphere appears slightly squished and farther away in the right image compared to
the left image, despite both views being seen from the same angle and distance.
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In order to fix this issue, one restricts the portal camera’s render target
resolution to the resolution set by the game (in-game screen resolution).
Now the field-of-view of both the player and portal camera match, and the
visual parity between both views is much closer.

3.1.4 Two-frame portal view delay

At this point of the implementation the portal views look as expected if the
player camera is not moving while looking at a portal view, but as soon as
the camera moves, the player will notice that the portal view has a slight
delay and is out of sync with the view of the player camera. The delay is a
“two-frame” delay to be exact [18]. To fix this, one needs to make sure that
the game logic that controls the movement of the portal cameras (see Figure
3.11) is executed after the portal cameras have been updated. This can be
done by changing the tick group of the portal class to “PostUpdateWork”
(see Figure 3.14). A “tick group” in Unreal Engine 4 is an enumerator that
exists in every Unreal Engine 4 game object class (every class that can be
instantiated into the game world as a “game object”) that tells the engine
when, during a frame, the game logic (code) of that class should be executed
(for example, after the game physics have been calculated, before the game
physics have been calculated, after the visuals have been rendered, before
the visuals have been rendered etc.). The “PostUpdateWork” option tells
the engine to execute the class’s game logic after all other tasks/logic in the
current frame have already been executed.
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Figure 3.14: This is what the tick group settings of the portal object should look
like. These settings can be found in the “Details” panel of the portal blueprint
under the “Actor Tick” category.

This ensures that all game logic (code) in the portal class gets executed
after everything else gets executed (physics, animations, rendering etc.). The
Unreal Engine 4 documentation itself recommends that all e↵ects that rely
on knowing where a camera is positioned or pointed should be placed in the
“PostUpdateWork” tick group [24].

3.1.5 Near-clip plane adjustment

Any geometry that is placed between the portal camera and the portal surface
(flat mesh plane) will be rendered in the portal view (keep in mind that the
portal camera is always located behind the portal surface of an exit portal
when a player looks at the surface of an entrance portal). This is problematic
because the portal view should not view anything that exists behind the
surface of an exit portal (see Figure 3.16a).

This occurs because the near-clip plane (see Figure 3.15) of the portal camera
is disabled. To solve the problem, the near-clip global plane needs to be
enabled (player camera’s near-clip plane) in the project settings of Unreal
Engine 4. Doing this will not solve the problem, but it will enable us to
solve it, because once this option is enabled, it will not only allow the player
cameras clip plane to be edited, but the near-clip plane for every camera in
the project can now be enabled and have its position and direction modified.
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Figure 3.15: Illustration of how a camera view frustum works in (most) 3D
rendered applications. The number “1” represents the near-clip plane. The number
“2” represents the camera frustum (dotted lines). The number “3” represents
the far-clip plane. Everything that is within the camera frustum (pyramid-shaped
space) gets shown and rendered in the camera view. Everything outside of the
camera frustum does not. The near-clip plane, combined with the far-clip plane
determine the size and distance of the camera frustum. If the near-clip plane is
disabled, then it is equal to the near-clip plane distance to the camera being zero.

Source:
https://docs.unrealengine.com/en-US/RenderingAndGraphics/VisibilityCulling/index.html

Once this is done, the near-clip planes for the portal cameras can be enabled
(see Figure 3.15). Once the near-clip plane for the portal cameras is enabled,
it will have a default local base position of (0, 0, 0) (same position as the portal
camera itself) and its normal surface vector set to (0, 0, 1) (pointing in the
direction of the portal camera’s Z-axis). This is incorrect. The base position
needs to match the position of the portal surface (flat plane mesh) and it
should face the direction of the portal surface’s normal. Since the portal
position might be able to change during run-time, the clip plane position
and direction needs to be updated continuously via in-game logic (see Figure
A.5).
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(a) The sphere is seen in the view of the
right portal despite the sphere being placed
behind the left portal, creating a confusing
and illogical perspective.

(b) This is what the portal view should look
like when the near-clip plane fix is applied.
The portal camera is now correctly culling
the sphere as it is no longer visible in the
portal view.

Figure 3.16: A before/after comparison of the near-clip plane adjustment fix.

3.2 Seamless portal teleportation transition

This section of the thesis will focus on the implementation of the teleportation
logic for the portals and how to make the portal teleportation transition
seamless (the player should not be able to notice that they’ve been teleported
to a new space).

3.2.1 The “PortalManager” class

In order to properly implement the teleportation logic for the portals, a new
class has to be introduced called “PortalManager”. The purpose of this new
class is to be able to manage each portal separately. The class should have
member variables that store the reference to two portal object instances (this
essentially links the two portals to each other). This allows for greater control
over the execution of code, by now being able to identify which portal instance
an object or player character is interacting with. For example, sometimes you
might want to execute a function or set of logic on only one of the portals but
not the other (based on some set of conditions). This would not be possible
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if you wrote the same set of logic within the portal class itself as it would
execute that set of code logic on every instance of the portal class.

3.2.2 Collision filtering

The portal class needs to have its collision filtering properties set up before
having its teleportation logic implemented. Collision filtering determines
how each physical object type in a game should interact with every other
physical object type in the game when they collide with each other (collision
behaviour). Object types in Unreal Engine 4 are called “collision channels”.
Some examples of collision channels are

• WorldStatic: Objects that do not move (such as walls, pillars etc.).

• WorldDynamic: Kinematic objects that can move, either through code
or animation (such as doors, elevators etc.).

• Pawn: Any player or AI controlled entity.

• PhysicsBody: Any object that moves due to physics simulations (bul-
lets, soccer balls, ropes, vehicle suspension etc.)

• Vehicle: Vehicles.

• Destructable: Any destructable mesh.

and each every object can have three di↵erent collision responses to each
collision channel. These three are [26]

• Ignore: This object ignores objects that belong to that collision channel
(phases through them upon overlap as if they did not exist).

• Overlap: This object overlaps objects that belong to that collision
channel (same as “Ignore” but the overlap fires o↵ a “Overlap Event”
which can, in turn, execute a set of custom code).

• Block: Any object from that specific collision channel that touches
this object and has a “Block” response setup for this object’s collision
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channel, will collide with it (this fires o↵ a “Hit Event” which can
execute custom code, just like the “Overlap” response).

Table 3.1: This is a table of the resulting collision responses that can occur based
on the di↵erent combinations of collision response settings between two objects
(“Object A” and “Object B”).

B

A
Ignore Overlap Block

Ignore Ignore Ignore Ignore

Overlap Ignore Overlap Overlap

Block Ignore Overlap Block
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Figure 3.17: This is what the collision settings look like for an object in Unreal
Engine 4.

Source: https://www.unrealengine.com/en-US/blog/collision-filtering

The collision settings in Figure 3.17 say that the portal surface is seen as
a static world object and that it only responds when objects from of the
collision channel (object type) “WorldDynamic” and “Pawn” overlap with
it and ignores the rest. The reason a “Block” response is chosen instead of
“Overlap” is because you might want some objects in your game to not be
able to go through a portal (these reasons are strictly for gameplay and have
nothing to do with the portal system itself).

3.2.3 Teleportation logic

The teleportation logic consists of two parts. The first part is to track and
check when an object/player should be teleported and the second part is to
properly teleport the object/player to the other portal. The logic will be
di↵erent depending on if the object to be teleported is the player character
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or not. It also needs to be made sure that one portal cannot teleport another
portal.

3.2.3.1 Player teleportation

In order to set up the logic to teleport the player, it must first be decided when
the player should be teleported (what the conditions should be) and what
position (point in world space) on the player character should be tracked. The
player should be teleported to Portal B when the center of the player’s camera
crosses the flat plane mesh (portal surface) of Portal A. This is logical because
the player camera represents the player’s point of view and is therefore a good
point of reference. This seems fairly simple as all it would require would be
to add a collision shape to the center of the camera and then check if the
collision shape overlaps the collision shape of the portal surface. The problem
with this approach is that every collision shape has a size (and shape) and
therefore does not accurately represent the center point of the player camera.
This will cause the point of collision (position) on the portal surface to never
be equal to the center point of the player camera. It will always have a slight
o↵set as the collision shape cannot be infinitely small. Even a slight error
like this breaks the seamlessness of the portal transition (teleporation) as it
will feel like the player “skips” a step upon teleportation. The length of this
“skip” will be equal to the o↵set.
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Figure 3.18: This illustrates the issue of using a collision sphere to determine
when the player’s camera has crossed the portal’s surface.

Instead, the solution for checking if the player camera has crossed the portal
surface must be done purely mathematically.

D1 = ((CPos + CV el ⇤�F )� PPos) · PNorm (3.4)

D2 = CV elDir · PNorm (3.5)

CPos is the position (in world space) of the player camera (center-point). CV el

is the velocity of the player character. �F is the frame delta-time. PPos is
the position (in world space) of the portal surface. PNorm is the normal vector
of the portal surface. CV elDir is the unit vector of CV el (velocity direction).
CPos + CV el ⇤�F is the player camera’s position in the next frame.

Using the dot products D1 and D2, the conditions can be set up to know
when to teleport the player. The player gets teleported to the other portal
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if (and only if) D1 and D2 both are negative. D1 is negative only when the
point CPos + CV el ⇤ �F is positioned behind the entrance portal’s surface.
In other words, if it is known that the value was positive in the previous
frame (the point CPos + CV el ⇤ �F is positioned in front of the entrance
portal’s surface) and it is negative in the current frame, it can be ensured
that the player has crossed and intersected the portal’s plane. D2 being
negative ensures that the player is not crossing the portal back-to-front, but
instead front-to-back. These calculations assume, however, that the portal
plane’s (surface) extent is infinite. Therefore, these conditions should only
be checked while the player character is overlapping the portal’s surface (this
can be done via collision detection in the game engine).

Next step is to determine the logic for the teleportation itself. When tele-
porting the player, the player character’s transform needs to be converted
to the portal space of the target portal (the portal the player is teleporting
to), then this new transform will become the new transform of the player
character. After that, the player’s velocity direction needs to be converted
to the portal space of the target portal. Lastly, the player’s control rotation
needs to be converted to the portal space of the target portal.

“Control rotation” is a term unique to Unreal Engine. It is the rotation
of the “player controller”. The player controller component of an object is
essentially the interface between the human player and the player charac-
ter. The player controller handles all of the input from the players controls
(mouse, keyboard, controller etc.) and then tells the player character how to
move/what to do based on that input (essentially sending commands to the
player character based on input). One could say that the player controller
represents the “will” of the human player. Think of the player character as a
puppet and the player controller being the puppeteer. For example, when a
puppeteer raises one of his/her fingers (input), it causes the puppet to raise
their arm (command). Using this analogy, the “control rotation” is essen-
tially the direction of where the puppeteer (player controller) is looking (the
rotation of their head) while the “actor/object rotation” is the rotation of
the puppet (the player character) itself. The player controller is not tied to
a single player character, but can detach and “posses” any other character,
allowing the player to switch player characters during run-time (think of this
as the puppeteer untying the strings of a puppet and then tying those strings
unto another puppet). The “control rotation” in first person shooter games
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is often the same thing as the camera rotation since the player character
follows the direction of where the camera is looking (technically, the cam-
era is following the control rotation and the player character is following the
direction of the camera).

3.2.3.2 Non-player teleportation

The teleportation logic for the player character has been implemented but a
similar logic now needs to be applied for every other arbitrary (non-player)
object to enable any object to teleport through portals.

First step (as before, in the player teleportation implementation) is to apply
some logic for checking when the object should teleport. This logic is not
much di↵erent from the previous player teleportation logic. One simply needs
to replace the player camera position CPos, in equation 3.4, with the position
of the arbitrary object in question and also replace the player velocity CV el

with the velocity of the tracked object.

The teleportation logic (second step) itself is a bit di↵erent. It starts o↵ the
same as the previous player teleportation logic by transforming the object
transform to the target portal’s portal space, but then, instead of converting
the player velocity direction and the player controller rotation to portal space,
something di↵erent occurs. After the object transform gets converted to the
portal space of the target portal, every component of the tracked object,
that is simulating physics, will have its linear and angular velocity direction
converted to portal space of the target portal and then have its current linear
and angular velocity directions overwritten by the new converted velocity
directions.

3.2.3.3 Cloning portal overlapping meshes

The teleportation of objects has been implemented, but the teleportation is
still not seamless. This is because the parts of the object’s mesh that are
overlapping the entrance portal are not seen in the view of the exit portal
(see Figure 3.19). This will look strange as half of the object’s mesh will not
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be rendered in the other space (the space the exit portal resides in), as if it
does not exist in this other space. This is because, just like in the real world,
an object cannot have two positions (exist in two spaces) at the same time.
It is not only physically impossible, but also impossible for a game engine to
visualize and represent an object with two positions in world space.

Figure 3.19: This is a demonstration of the “mesh overlapping portal problem”
described in section 3.2.3.3. Notice that the overlapping part of the mesh does not
“poke out” of the left portal but instead gets cut o↵ in the view of the left portal.

(a) This is the top down graph view of the
problem visualized in Figure 3.19. This is
what currently happens when a mesh over-
laps a portal before being teleported.

(b) This is what it should look like.

Figure 3.20: Top down graph view of the overlapping mesh problem described in
section 3.2.3.3.

50



Perhaps the most obvious solution is to somehow cut the overlapping mesh
at the intersecting line of the portal’s surface, split the mesh into two meshes,
move that second piece of the once unified mesh to the corresponding position
(in portal space) of the exit portal and then finally combine the two meshes
into a unified mesh again once the object stops overlapping the portal. This
is a good starting point but it creates a big problem. It is very performance
heavy. Cutting up and modifying meshes during run-time is a costly process
and on top of that, this cutting process would have to be repeated every
frame update (or at least every time the object moves). That is simply not
feasible for an application that needs to run in real-time.

Instead, a clone of the current overlapping object can be instantiated into
the game world and placed at a position and rotation relative to the rela-
tive position and rotation of the base object to the overlapped portal (portal
space). After the clone object has been placed, the clone simply has to up-
date its position and rotation to match the relative position and rotation of
the base object (kind of like a server-client relationship, where the base ob-
ject represents the server and the clone represents the client, if familiar with
networking). While instantiating is relatively expensive compared to other
game related functions, it is still far cheaper than real-time mesh manipula-
tion. On top of that, the instantiation (“heavy” operation) only has to occur
once (when the object begins overlapping the portal), while the other mesh
manipulation solution has to cut the mesh each frame update. This solution
only has to update the position and rotation of an object every frame, which
is infinitely cheaper in comparison.

The actual implementation of this goes as follows: A map (dictionary) vari-
able is created within the portal class, called “CloneMap”. This map is re-
sponsible for linking each base object instance that is overlapping the portal
to their corresponding clone. No base object instance can have more than
one clone each (one-to-one relationship). This map is crucial for knowing
which clones belong to which base object instance when (later) updating the
transform of, or destroying the clones. Both the key and value type of the
map should be an object instance reference.

Next, a function for initializing the clones is created. This function is called
when an object overlaps the portal’s surface. The function takes the over-
lapping object instance, gets the class of that overlapping object instance
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and using that class ID spawns another object instance of that class with
the same scale as the base object instance. When the clone instance is first
spawned (initialized) it should not interact with the environment or be able
to be seen. Therefore, the location of the clone instance should be a value
in world space where the clone instance cannot be seen as interacted with.
It will be moved and handled properly after initialization. The initialization
is just used to load it into memory and configure the proper properties for
the instance. The initial rotation value is not important and can be set to
anything. After the clone instance has been spawned it is made temporarily
invisible (to avoid the player from initially seeing it spawn into the world)
and its collision is disabled (the clone instance should not physically inter-
act with the environment and should act like a phantom version of the base
object as it is purely a visual instance of the base object instance). After
that, the simulation of physics is disabled for every component of the clone
instance (to avoid “outside forces” a↵ecting its movement as its movement
should only be a↵ected by code, in other words, the movement of the base
object instance) and the ability for the clone instance to generate overlap
events is disabled (to avoid it interacting with the environment and to avoid
it recursively creating clones of itself as it will later, inevitably, overlap the
exit portal). The final step in the function is to add a reference to the base
object instance and a reference to the clone instance as a new entry in the
map variable (the base object instance is the key and the newly spawned
clone instance is the value) and then finally make the clone instance visible
again.

Next, a function responsible for continuously updating the transform of the
clone instance is created. This function works by iterating through every
key (base object instance reference) in the map and in each iteration, the
base object transform is acquired (through the key’s object reference). The
transform of the base object is then used to convert the transform to the
portal space of the target portal (the portal which the clone instance will
overlap). At the end of the current iteration, the transform of the clone
instance is set to the newly converted transform. This function is called
every frame update.

The final function that needs to be implemented is a function responsible for
properly destroying the clone instances once the base object instance stops
overlapping the entrance portal. It is called when a base object instance stops
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overlapping a portal’s surface (and takes the reference of that base object
instance as an input parameter). Using the acquired base object instance
reference as a map key, it finds the corresponding map value (clone instance
reference) in the clone map. Once the reference from the value is acquired,
the reference is used to destroy the corresponding clone instance and remove
it from the clone map.

After all three functions have been implemented and called, object’s that
overlap a portal will appear to exist in two places at the same time, fixing
the initial problem (see Figure 3.21). The same property that exists in the
game Portal, shown in Figure 1.4.

Figure 3.21: This is what portal overlapping meshes look like when the final fix
for the problem described in section 3.2.3.3 is applied.

3.2.3.4 Resolving portal surface clipping issues

At this point in the implementation, when the player character attempts to
cross from one portal to another, they will notice a slight visual “glitch”
appear. For a split second, a white blank screen will flash on the screen
once the player character is about half-way through the portal transition
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(see Figure 3.22). This is a problem that completely ruins the illusion. This
is happening is because the player’s camera is clipping the portal’s surface
mesh when walking through a portal (remember that the portal surface is
just a flat plane mesh). Lowering the near-clip plane distance of the player
camera to zero unfortunately does not resolve the issue and an alternative
solution needs to be applied.

Figure 3.22: Illustration of the camera clipping issue. The blue sky in the middle
is the view of the portal. The player is standing half-way in the portal (walking
in sideways) when the camera clips the portal surface mesh, allowing the player to
see the white cube behind the portal, ruining the illusion.

The solution to this problem is quite unorthodox and is not a quick and
simple solution. The first part of the solution to this is to create three
separate meshes in a modeling software (Blender [15] is used for this thesis).
These meshes are

• Portal Depth Box Exterior: A open, hollow, 5-faced box with the open-
ing being the size of the portal’s surface. This box mesh should have
backface culling enabled (in other words, only one side of each face
should be rendered). This will cause the insides of the box to not be
rendered (see Figure 3.23a).
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• Portal Depth Box Interior: The “Portal Depth Box Exterior” mesh
but with its normals inverted, placed in the exact same position as
the “Outside Portal Depth Box” in world space. This mesh should
also have backside culling enabled. Combining both meshes should
create a “complete” open, hollow, 5-faced box with both the interior
and exterior being rendered (see Figure 3.23b).

• Portal Plane: A flat rectangular plane (can be square too) that rep-
resents the portal’s surface. It should be placed in the opening of the
depth box, closing it (see Figure 3.23a).

(a) The complete depth box with all three
separate meshes combined (the interior mesh
cannot be seen due to the portal plane mesh
blocking the view). The green mesh is the
exterior mesh and the lime green mesh is the
portal plane mesh.

(b) Same combined mesh as in Figure 3.23a
but with the portal plane mesh removed al-
lowing a view of the interior mesh (pink
color). The yellow mesh here is the same
as the green one in Figure 3.23a (exterior
mesh).

Figure 3.23: Illustration of what the depth box looks like when all three depth box
meshes (each mesh is marked with a separate color to tell them apart) are combined
to create a single box.

The second step of this process is to create a flat square plane that will be
“glued” to the player’s camera (become a child object of it). The plane mesh
should be one-sided (have backface culling enabled) and have a local position
in the forward direction of the local X-axis (normal vector of the camera) of
N + 1 where N is the near-clip plane distance of the player’s camera (if the
local X position is equal or less than N , the player camera’s near clip plane
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will cull the mesh). This might seem completely illogical as it will make the
player blind, but the logical reasoning behind it will be explained later in
this section (section 3.2.3.4).

Figure 3.24: Illustration of the flat plane (square) mesh being attached to the
camera.

The idea behind all of this is to make the front panel mesh (portal surface)
temporarily invisible once the player character overlaps it (if it is invisible, the
player’s camera cannot clip the portal surface’s mesh), allowing the player
to see the inside of the box. Once the player character stops overlapping
the portal surface, the portal surface becomes visible again. The player
should only be able to see the interior of the box through the opening of
the box (and only while overlapping the portal’s surface). The box should be
completely invisible (both exterior and interior) when viewed from an outside
perspective, from any other angle, other than the opening itself.
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Figure 3.25: The box interior when viewed from the front (while standing outside
of it). Front panel (portal surface) is removed for demonstration purposes.
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Figure 3.26: The box when viewed from the side/any other angle. The black color
means that it is not going to be rendered in-game (the red lines and white sphere
are from the UE4 editor’s gizmo tool and will not be visible in-game either).

The interior mesh of the portal depth box will act as a mask for the “Portal
viewer” (the flat plane that is attached to the player’s camera). The portal
viewer is made fully transparent so that the player can see through it. The
exterior mesh is simply a shell that encapsulates the interior mesh (mask) and
isolates it, ensuring that the interior of the mesh cannot be seen from outside
the box (unless you look straight through the opening as shown in Figure
3.25). That is the exterior mesh’s only purpose. No projection of textures or
render targets is applied to the interior mesh. Instead, the projection of the
render target is applied unto the portal viewer. Utilizing the stencil bu↵er,
the interior box mesh gets masked out (a concept explained in section 2.2).
This way, only a part of the render target is displayed on the portal viewer
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mesh (the part of the screen that the interior mesh occupies). Every other
part of the projected render target is transparent. This makes it possible to
render the interior of the box while not rendering the exterior. The purpose
of the portal plane mesh (the separate front panel mesh of the box) is to
create a visual representation of the portal surface when the player character
is not overlapping the portal’s surface. The interior mesh should only be
visible when the player character overlaps the portal. Since the exterior and
interior box meshes are not rendered in the main pass and only rendered
in the stencil pass, they will not be occluded by any meshes rendered in
the main pass (but can be occluded by other meshes rendered in the stencil
pass). In other words, once the interior mesh is visible it will be rendered
in front of every other object or mesh in the scene, regardless if that mesh
or object blocks the view of the portal (see Figure 3.27). This is undesirable
and therefore it is optimal if the interior and exterior meshes only are visible
when the player character is really close to the portal (overlapping it). This
creates a problem since that means that the portal would not be visible at all
if the player is not overlapping it. That is where the portal plane mesh comes
into play. The portal plane mesh will now act as a visual representation of
the mesh when the portal is within the player camera’s view frustum but the
player character is not close enough to the portal’s surface to overlap it.
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(a) In this figure, both the interior and exte-
rior box mesh is being rendered in the stencil
pass (but not in the main pass). The yellow
rectangle seen is the interior box mesh being
rendered. The portal plane mesh is not being
rendered at all. Notice how the geometry in
front of the portal does not properly occlude
it (all the geometry seen, except for the por-
tal, is not being rendered in the stencil pass,
but instead in the main pass).

(b) Same situation as in Figure 3.27a but
this time the yellow rectangle is the portal
plane mesh (it is being rendered) and not the
interior box mesh (the box has been sealed).
This time the interior and exterior meshes
are not being rendered in the stencil pass or
the main pass (in fact, they are not rendered
at all, they are invisible). The portal plane is
not being rendered in the stencil pass either.
Notice how the portal now gets properly oc-
cluded by the geometry in front of it.

Figure 3.27: Illustration of what happens when the portal plane mesh is invis-
ible/visible. When it is invisible, the interior mesh is shown and does not get
occluded by other geometry, creating a problem.

While the property of the interior mesh rendering over all other meshes in
the scene can be seen as a problem, it is however critical to the overall
implementation of the portal system, as it has an unintended side e↵ect which
actually solves another unrelated problem. It allows the portal to be placed
on other surfaces (walls, floors etc.) because when a portal is overlapped,
while placed on a surface, the surface will not occlude the interior box mesh.
This is desirable because if the surface did occlude the interior box mesh, the
portal would no longer be rendered when overlapping it, breaking the e↵ect.

In practice, this all is implemented by, first of all, going into the project
settings and setting the “Custom Depth-Stencil Pass” option (in the “Post
processing” category) to “Enabled with Stencil”. This will allow access and
modification of the depth and stencil passes in Unreal Engine 4. Then, inside
the player character class, a one-sided (backface culled) flat plane mesh is
created and made a child component of the player’s camera. This will act
as the “Portal viewer”. It is be positioned in front of the camera with the
rendered side of the plane mesh facing the camera view. The portal viewer
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is o↵set by N + 1 units from the forward direction of the camera, where N

is the near-clip plane distance of the camera. This is to avoid the culling of
the portal viewer mesh.

Next, the three meshes get imported and replace the old flat plane mesh in
the portal class seen in Figure 3.2.

Figure 3.28: This is how the portal class (visually) now looks like with the new
portal depth box meshes (compare with Figure 3.2).

Then, one new material (shader) is created. It will be called “M PortalDepth”
(name does not actually matter). It is a translucent material. The old mate-
rial (seen in Figure A.1), “M PortalPlane”, is applied to the portal’s surface
mesh (front panel mesh), while the new “M PortalDepth” material is ap-
plied to the portal viewer mesh in the player character class. The materials
of the interior and exterior box meshes remain untouched. The shader code
of the new “M PortalDepth” material is very similar to the shader code of
the “M PortalPlane” material, except in this material the opacity of the ma-
terial is controlled by the stencil values of the “CustomStencil” render target.
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The material properties of the “M PortalDepth” material are identical to the
material properties of the “M PortalPlane” material (Figure A.2).

The shader is useless (and malfunctioning) without any stencil values being
applied to meshes and currently the portal meshes have no stencil values.
Next step is therefore, to give the interior box mesh a stencil value of “1”
(since that is the mesh that needs to be masked out in the stencil pass) while
the rest of the meshes in the portal class (and the scene) are given a stencil
value of “0” (which equates to a “M PortalDepth” material opacity of zero,
in other words, all meshes with a stencil value of zero will not be rendered
in the stencil pass in the view of the portal viewer). It will also need to be
made sure that the interior and exterior box meshes are not rendered in the
main pass (there is a mesh setting for every mesh in Unreal Engine 4 called
“Render in Main Pass” that does exactly this) because other camera’s in
the scene should not be able to see or render the exterior and interior box
meshes.

As demonstrated in Figure 3.27, due to occlusion problems that the stencil
bu↵er creates, the interior box mesh of the portal cannot constantly be ren-
dered. Therefore, for practical reasons (mentioned earlier), the interior box
mesh should only be rendered when the player character overlaps the portal’s
surface. In practice, this is done by disabling the visibility of the portal sur-
face (front panel mesh) and enabling the interior/exterior box meshes to be
rendered in the depth/stencil pass (should be disabled by default) when the
player character overlaps a “trigger box” (this might be named di↵erently
in other game engines) placed near the portal surface. These two properties
should be reverted as soon as the player character stops overlapping the trig-
ger box (a trigger box does not necessarily need to be used as the collision
detection of the portal’s surface mesh works fine too). It is important to note
that any mesh that can overlap the trigger box while the player character is
overlapping it needs to have its stencil value set to “0”, otherwise the interior
box mesh will be rendered in front of every mesh that is inside the box (as
shown by the occlusion problem demonstrated in Figure 3.27).

At this point in the implementation, the portals do not look like portals as
there are no portal camera render targets applied to the texture parame-
ters of the “M PortalPlane” and “M PortalDepth” materials. These should

62



be applied and dynamically swapped during run-time. Two functions were
created to solve this.

Figure 3.29: This code is responsible for setting up the portal’s scene capture
component (portal’s camera component). This is an updated version of the code
shown in Figure A.3.

Figure 3.30: This event code is executed whenever a player character overlaps
a portal’s surface. It is responsible for swapping the current texture parameter
of the “M PortalDepth” material to the projected render target of the currently
overlapped portal.

The first script (Figure 3.29) first creates a render target with an appropriate
resolution (same as the in-game resolution), then gives the render target a
new LOD (level-of-detail) group (this is to make the portal view as clear as
possible, removing distortion, compression or any filters), then tells the newly
created render target to be fed data from the feed of the target portal’s scene
capture component (portal camera), then the “M PortalPlane” material gets
applied to the portal’s front panel mesh (portal surface) and finally, the
texture parameter of the applied material gets set to be the newly created
render target.
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The second script (Figure 3.30) simply swaps the current texture parameter
of the “M PortalDepth” material to the render target of the portal that the
player character is currently overlapping. This is so that the portal viewer
knows which portal’s interior mesh it should currently use as a mask.

3.3 Seamless portal interaction

This section will discuss how to create seamless physical interaction between
two portals and solve some of the ambiguities that may occur when an object
is placed between two portal spaces.

3.3.1 Carving holes in surfaces

Any object that attempts to pass through a portal that is placed on a surface
will not be able to do that. This is due to the surface, which the portal is
placed upon, being a solid, collidable piece of geometry. The object may
pass through the portal itself but the surface behind the portal will stop the
object from going all the way through the portal. In other words, portals
that are placed upon surfaces do not (currently) physically behave as holes
in a surface that objects may pass or fall through.

There are many ways to solve this problem, all with their own advantages and
disadvantages. However, the best overall solution for general use cases, is to
disable the collision strictly between the surface that the portal is placed upon
and whichever object is currently overlapping the portal’s surface (referring
to the surface of the portal mesh, not the surface that it is placed upon).
Keep in mind that while the collision between these two objects is disabled,
it is only disabled for these two objects. In other words, any other object in
the world should still be able to collide with these two objects while they are
in this “disabled phase”.

Unfortunately, Unreal Engine 4 does not explicitly support the disabling of
collision between two specific objects in their collision filtering system, but
there are ways to get around that by re-purposing another one of Unreal En-
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gine 4’s native systems (without having to modify any engine source code).
Unreal Engine 4 has a built-in system for enabling physics constraints be-
tween two objects (built on NVIDIA’s “PhysX” physics engine) [28]. This is
usually used for things like vehicle suspension, swinging chandeliers, water
wheels etc. It basically works like an invisible joint that connects two objects
and physically constrains them based on a collection of user-set properties
(see Figures 3.31 and 3.32).

Figure 3.31: Physics constraint example, showing two objects being constrained
by a “physics constraint component” (joint).

Source: https:
//docs.unrealengine.com/en-US/Engine/Physics/Constraints/ConstraintsUserGuide/index.html
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Figure 3.32: Physics constraint example, showing a static mesh and a skeletal
mesh being constrained by a “physics constraint component” (joint).

Source: https:
//docs.unrealengine.com/en-US/Engine/Physics/Constraints/ConstraintsUserGuide/index.html

However, through some component property tweaking it is possible to nullify
the physics constraints between the two objects, making them not physically
a↵ect each other whatsoever, while still being connected to each other. The
properties of the physics constraint component also has a option to disable
the collision between the two connected objects. These two facts coupled with
the “physics constraint component”, can now make it possible to disable the
collision strictly between two objects while the two object are completely un-
constrained, bypassing the limitations of Unreal Engine 4’s collision filtering
system.

In practice, this is done by creating a new class called “CollisionDisabler”
that has a “physics constraint component” as a member variable and adding
a map variable called “CollsionDisablerMap” to the portal class (similar to
the clone map in described in section 3.2.3.3) and then making the portal
class spawn an instance of this new class and adding the reference to the
overlapping object as a key and the reference to the newly spawned “Coll-
sionDisabler” instance as a value in the map every time a non-player object
overlaps the portal’s surface. Then when the “CollisionDisabler” instance
is spawned, it executes a set of its own code which tells its “physics con-
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straint component” to connect the overlapped object and the surface which
the portal is placed upon to itself. The properties of this “physics constraint
component” member variable are modified to nullify the physical constraints
and disable the collision between its two connected objects (see Figure A.17).

The main purpose of the map variable is for the portal to know which “Colli-
sionDisabler” instance needs to be destroyed when the object stops overlap-
ping the portal. A new instance of the “CollisionDisabler” class is spawned
for each object currently overlapping the portal’s surface. This creates a
many-to-one relationship between the surface that the portal is placed upon
and each object currently overlapping the portal’s surface.

The above method does not work for the player character itself. Another
method is therefore needed to disable the collision between the surface that
the portal is placed upon and the player character whenever the player char-
acter overlaps the portal’s surface. This alternative method is relatively sim-
ple as Unreal Engine 4 does most of the work. Unreal Engine 4 has a built-in
function in its API called “IgnoreActorWhenMoving”. This function dis-
ables the collision between a specific object and a specific object component.
This function takes three inputs; “Target” (Object component reference),
“Actor” (Object reference) and “ShouldIgnore” (Boolean). “Target” is the
object wants to pass through (not collide with) “Actor” and “ShouldIgnore”
is a boolean that determines whether or not these two object should col-
lide or not (“False” if they should collide, “True” otherwise). This function
is called when a player character overlaps the portal’s surface. The player
character (overlapping object) is fed to the “Target” input and the surface
which the portal is placed upon is fed to the “Actor” input. The value of
“ShouldIgnore” switches depending on if the player character begins over-
lapping the portal’s surface or if the player character stops overlapping the
portal’s surface. The value of “ShouldIgnore” is “True” when overlap begins
and “False” when the overlap ends (see Figure A.21 and Figure A.22).

3.3.2 Adding edge collision to the portals

In order for the “carving of holes in portal surfaces” to work properly, some
form of collision meshes need to be added to the edges of the portal surface
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(the surface of the portal object, not the surface the portal is placed on). This
is because, according to the “collision disabler” solution above, an object that
collides with the edge of a portal will still be able to go through the surface
that the portal is placed upon, which is illogical. As an example, if you, in
real life, touch the edge of a hole in wall with your hand, you should not
be able to walk through the wall to the side of the hole itself just because
your hand is touching the edge of the hole. That makes no sense. If collision
meshes are placed around the edges of a portal, objects will now be able to
collide with the edges of portals, preventing them from going straight through
walls/floor when they are just touching the edge of a portal.

The addition of edge collision also allows for the player character and other
objects to stand half-way through portals that are placed high up on walls.
The bottom edge collision mesh prevents the objects from falling down. Sim-
ilarly, this also prevents objects that are touching the edge of portals that
are placed on a floor from falling through the floor.
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Figure 3.33: Illustration of a portal (hole) being placed on a wall (grey) with a
green cube placed on the edge of the portal. The blue collision mesh on the bottom
edge prevents it from falling down, through the face of the wall.

Adding collision meshes to the edges of a mesh can be done through a model-
ing software or in Unreal Engine 4 itself (using a “Box Collision” component
in the object class or by adding collision via the static mesh editor).

3.3.3 Synchronizing physical interaction of base and clone objects

Looking back at the overlap clones in section 3.2.3.3, it is clear that the clones
of the overlapping base object do not have any sort of ability to collide or
physically interact with any other object in the world. They are purely
visual clones of the base object. This will cause a problem if there exists any
collidable objects in front of the exit portal (the local space of the clone). If
the clone object attempts to collide with any object close to the front the of
the exit portal, it will phase straight through it (ignore the collision). One
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might think that enabling the collision for the clone object simply solves the
problem. It does not. If this is done, it will create another problem.

If you enable the collision for the clone object, the clone object will now
correctly collide with the objects close to the front of the exit portal, but this
will cause a desynchronization of the relative movement between the base and
clone object. For example, if the clone object collides with a pillar placed
close to the front of the exit portal and stops moving, the base object will
not know that its clone has collided with the pillar nor that it has stopped
moving and the base object will keep moving forward as there is nothing
obstructing its path in its local space (the space around the entrance portal)
while the clone is standing still, which causes a desynchronization of their
movements, breaking the portal illusion.

The first idea is perhaps to tell the base object to imitate the movement
of the clone object, but the clone object is already (through code) told to
imitate the movement of the base object. This creates a logical paradox
which makes no sense to the game engine. The base and clone objects are
supposed to have a parent-child relationship and this is suggesting that the
child object should dictate the movement of the parent object (while the
parent object is told to dictate the movement of the child object), which is
against all common sense as a programmer. An alternative solution needs to
be found.

The alternative solution is to replicate and clone the local collision environ-
ments of each portal. In other words, whenever an object overlaps the surface
of the entrance portal, the game collects references to a set of collidable ob-
jects placed near the front of the exit portal (within a reasonable range as
large ranges would cause a performance hit). Using this set of references, an
invisible clone of each collidable object in this set gets spawned and placed
behind the entrance portal in portal space. Each collidable clone in this
set objects will have custom collision properties which allow them to only
collide with object that are currently overlapping the entrance portal. They
ignore collision with any other object in the game world. This should be done
for both static (objects that cannot move) and dynamic (objects that can
move) objects. The cloned collision environment for the static set of objects
only needs to be updated when whenever the portal’s position changes, but
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the cloned collision environment for the dynamic set of objects needs to be
updated each frame (because this set of objects could constantly move).

Figure 3.34: Illustration of a cloned collision environment. The collection of
shapes with dotted lines is the cloned collision environment of the set of objects
that are in front of the exit portal.

Now that the local collision environments are the same for each portal, the
collision events of both the base and clone object will be identical, which
means that a desynchronization of movement between them can no longer
occur.
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4

Results

The result of this experimental method is a portal system that is able to
connect two non-adjacent spaces in a game world and make them appear
adjacent. Instead of manipulating and morphing geometry in the game world
in real-time to create a “real” non-euclidean space, this system is used to
create an illusion of a singular non-euclidean space by connecting two non-
adjacent euclidean spaces. Since the rendering and transition between these
portals is seamless and the physics between the portal spaces (when an object
is placed between two portals) behave accordingly, the player should not be
able to tell that these portals even exist in the game world, thus maintaining
the illusion of a non-euclidean space (the portals are, in practice, supposed
to act as doorways between two rooms).

Below, a performance analysis will be conducted and presented, showing the
performance implications of the method used.

4.1 Performance analysis

This performance analysis will be conducted using Unreal Engine 4’s built-in
performance profiling tool suite (such as the “GPU Profiler” and “GPU Vi-
sualizer” tools, among others) [27]. Below, the testbed and the specifications
of the computer used for the test will be presented.
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4.1.1 Testbed and specifications

The testbed used will be a simple Unreal Engine 4 scene with default scene
settings. The scene will contain nothing more than two portals and a couple
of static meshes with simple base color materials applied to each mesh (see
Figure 4.1). The scene was initially built upon the Unreal Engine 4’s “Blank”
game template.

Figure 4.1: The scene that will be used for the performance analysis. The two
green planes are the (currently disabled) portals.

Table 4.1 holds the specifications of the computer used for this performance
analysis, along with the Unreal Engine 4 version.
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Table 4.1: Specifications of PC used for performance analysis

Specifications

UE4 version 4.22.3

GPU NVIDIA GTX 1070

CPU Intel i7 6700K @ 4.2 GHz

RAM 16GB DDR4 @ 3000 MHz

OS Windows 10 Pro (version 2004, build 19041.508)

4.1.2 Identifying if CPU or GPU bound

Before doing any sort of performance profiling, one should check to see if
the “game” (portal system and scene) is CPU (processor) or GPU (graphics
card) bound. If a game is GPU bound, it means that the GPU completes its
task during a frame slower than the CPU, in other words, the GPU “works
harder” than the CPU and the CPU has to idle and wait for the GPU to
finish its task before continuing to the next frame update. The meaning of
“CPU bound” is the exact opposite. In an ideal situation, the game should
be neither GPU or CPU bound (GPU and CPU should be perfectly in sync
so none of them has to “wait” for the other).

Using the “stat unit” console command in Unreal Engine 4 we can get statis-
tics over how much time it takes (in milliseconds) for each thread to finish its
task during a frame. This can be used to identify whether the scene is GPU
or CPU bound. The test scenario consists of the player standing still in front
of two portals, which are both within the player camera’s view frustum. Two
tests are conducted. In the first test the portals are enabled (rendered) and
in the second test they are disabled (not rendered). Below are the results.
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Table 4.2: Frametimes of each UE4 CPU/GPU thread (with portals enabled),
including the framerate.

Thread statistics (with portals)

CPU game thread 0.81ms

CPU render thread 0.69ms

GPU thread 6.45ms

Frames per second 155

Table 4.3: Frametimes of each UE4 CPU/GPU thread (with portals disabled),
including the framerate.

Thread statistics (without portals)

CPU game thread 0.76ms

CPU render thread 2.53ms

GPU thread 2.53ms

Frames per second 399

The statistics in Table 4.2 show that the CPU threads finished their task
much faster than the GPU. This confirms that the “game” is GPU bound
when the portals are enabled. When the portals are then disabled in Table
4.3, the table shows that the frametime of the GPU thread has been sig-
nificantly lowered, from 6.45ms to 2.43ms, while the frametime of the CPU
render thread has increased from 0.69ms to 2.53ms, matching the frametime
of the GPU thread. The reason the frametime of the CPU render thread
increases is due to the drastic increase in framerate compared to the fram-
erate in Table 4.2 which causes the CPU render thread to do draw calls and
culling more frequently and thus running slower. However, the frametime of
the GPU and CPU in Table 4.3 are equal which means that the “game” is
neither GPU or CPU bound when the portals are disabled (which is optimal).
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This all implies that the scene becomes GPU bound only when the portals
are enabled, which means that the portal rendering must be GPU intensive.
The built in “GPU visualizer” tool in Unreal Engine 4 will be used to profile
the GPU and further analyze this.

4.1.3 GPU profiling

To profile the GPU, Unreal Engine 4’s built-in “GPU visualizer” tool will be
used. This tool allows a developer to analyze the GPU as it shows the time
it takes for each task in a frame to be completed. The tool is mostly used
for optimization as it allows for developers to find bottlenecks in the GPU
render pipeline.

The results for the frametimes of rendering each portal view (their SceneCap-
ture components) along with the frametime of the entire scene (final frame
output, excluding the two portal views) can be seen in Table 4.4.

Table 4.4: The GPU frametimes of both portal views and the entire scene (final
frame output, excluding the two portal views).

GPU frametimes

Portal A (SceneCapture) 2.18ms

Portal B (SceneCapture) 2.16ms

Portal frametime avg. 2.17ms

Scene 2.37ms

In Table 4.4 it can be seen that it takes almost as much time to render a
single portal view as it does to render the whole game scene (with frustum
culling). In other words, the rendering of the a single portal view is very
expensive. By doing some basic calculations we can get the cost of a single
portal and the cost of both portals in percentages.
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PA = 2.18ms (4.1)

PB = 2.16ms (4.2)

SC = 2.37ms (4.3)

S = PA + PB + SC = 6.71ms (4.4)

R = (PA + PB)/S = 4.34/6.71 ⇡ 0.65 (4.5)

PA is the time it takes to render portal A. PB is the time it takes to render
portal B. SC is the time it takes to render the scene (without the portals).
S is the combined time that it takes to render PA, PB and SC . R is the ratio
between the time it takes to render portals and the time it takes to render
everything in the scene (portals included).

Both portals take up 65% of the time it takes to render the final frame output
(6.71ms). This result is, however, logical because when you are rendering a
portal view you are capturing the entire scene (within the view frustum of
the SceneCapture component) again but from a di↵erent perspective and
applying the final result unto a render target (texture). In other words,
when you are rendering a scene with two portals in view, you are rendering
the scene three times instead of one.

Taking the framerate values from Table 4.2 and 4.3 and calculating the ratio
1 � (155/399) = 0.61, it is seen that the calculated ratio gets very close to
the calculated percentage above (65% compared to 61%) and further confirms
the calculated rendering cost of the portals.

Since the render time of a portal view and the entire game scene has a 1:1
ratio, we can conclude that

Tf ⇡ (n+ 1) ⇤ Sf

where n is the number of portals in the game scene, Sf is game scene frame-
time (time it takes to render the scene in a single frame) and Tf is the total
frame-time (time is takes to render the final frame output).
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5

Discussion

Although a method was found and implemented for creating non-euclidean
spaces, the method used is not perfectly optimal. First of all, the method
is not actually creating non-euclidean spaces but is faking them by creating
the illusion of a non-euclidean space. It is arguable whether this makes any
actual di↵erence since, these two possible approaches are indistinguishable
from the perspective of the player, which is what actually matters in the
end. It is also arguable whether is is practical or even possible to create
real non-euclidean geometry and spaces in a game engine that is inherently
euclidean (along with all of its game engine systems that are also euclidean as
they assume that they are being applied upon a non-euclidean game world),
without modifying any source code.

5.1 Drawbacks and limitations

The portal system has a fair amount of drawbacks and limitations, which
can limit the type of games that can use the portal system. The developer
implementing a system such as this needs to be mindful of these limitations
and design their game around the portal system rather than the other way
around. This is not a system that can simply be dropped into an existing
game and be expected to work seamlessly. These numerous limitations and
drawbacks are listed below:
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• The current implementation does not work with Temporal Anti-Aliasing
methods (TAA). It will cause minor visual artifacts in the portal view
upon player camera movement. It does however work with other anti
aliasing methods such as “Fast Approximate Anti-Aliasing” (FXAA)
and “Multisample Anti-Aliasing” (MSAA). Support for other anti-
aliasing such as “Morphological Anti-Aliasing” (MLAA) has not been
tested as Unreal Engine 4 only natively supports TAA, FXAA and
MSAA.

• With the current implementation, cloning of objects overlapping a
portal’s surface does not work with objects that have child compo-
nents (subobjects) attached to them that simulate physics, objects that
change their visual appearance over time and physics ragdolls.

• Portals cannot be placed on collidable surfaces that have another collid-
able surface directly behind the surface that the portal is being placed
on (as the “CollisionDisabler” class does not currently recursively dis-
able collision for multiple surfaces).

• Using render targets/render textures for the rendering of the portal
views will consume VRAM (video memory) for each view that is being
rendered as texture data is being stored on the GPU (graphics card).

• The portals do not transfer light from one portal to another. There-
fore, teleporting an object between two spaces with highly contrasting
lighting conditions can appear strange.

• Portal recursion does not work. You cannot recursively see the view of
a portal through the view of the portal the player is looking through.

• Planar reflections (mirrors, water reflections etc.) appear broken when
viewed through the view of a portal.

• If a mesh overlaps a portal surface, the part of the mesh that is sticking
out behind the portal’s surface gets rendered. In other words, that
part of the mesh does not turn invisible. This can sometimes cause the
portal illusion to break when a portal is placed out in the open (not
placed on a opaque surface).

• The portal system does not currently support virtual reality.
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Keep in mind that some of these limitations might have to do with the
fact that the system was implemented in Unreal Engine 4. If this system
was implemented in any other game engine, some of the limitations and
drawbacks might be di↵erent due to the engine render pipeline being di↵erent
or it having features and tools that Unreal Engine 4 does not. The opposite
also applies. Unreal Engine 4 might have tools and features that other game
engines are missing.

5.2 Error sources

Throughout this thesis there may have been some error sources that have
degraded the overall quality of the result.

One of these error sources is the limited experience with game development
and Unreal Engine 4, along with the lack of experience with shader program-
ming from the author.

Another error source is caused by the subject itself being very niche and
unusual, hence there being a great lack of documentation and proper refer-
ences for portal systems built in game engines, as this is something very few
people have seemingly attempted and documented online. Neither Valve or
any other game developer that has created a portal system, has provided any
o�cial documentation of its implementation.

5.3 Further use-cases

Beside using this portal system for making impressive e↵ects and creative
game mechanics, it can have other use-cases. One such use-case is to improve
player movement in virtual reality applications and games.

Most modern virtual reality headsets have support for some form of “room-
scale locomotion”. Room-scale locomotion means that the virtual reality
headset is (in some way) mapping the player’s real-life play-space and track-
ing their movement in the play-space (room), to then translate that move-
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ment to movement in the virtual space (game world etc.), allowing players
to move around in the virtual reality world by moving around in the real-life
play-space. The obvious limitation to this is that they cannot move an infi-
nite distance as they are bound to the physical size of their play-space (room)
and thus the virtual play-space in the virtual reality game/application has to
be made smaller to match the size of the physical play-space. VR-developers
that want to make larger-scale games usually combat this by allowing alter-
native locomotion options for the player, such as the ability to walk using
a button on the accompanied virtual reality touch-controllers or instantly
teleporting them using a non-seamless transition, but these methods usually
break player immersion to some degree.

A seamless portal system, such as the one in this thesis, would allow a virtual
reality player to visit various di↵erent virtual spaces in the game by moving
a much shorter distance in their physical play-space, as portals inherently
shorten the distance between virtual spaces and are thus able to compress
several virtual spaces into a single virtual space, if done correctly. The portal
system will not completely eliminate the problem of a limited physical space
constraining movement extents in a virtual reality space but will help alle-
viate it by allowing the player variation in their constrained virtual space,
making the virtual space seem larger and more open than it really is.

Although the portal system implementation in this thesis does not support
virtual reality, this could still be a potential use-case if anyone improves it
and adds support with future work.
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6

Conclusion

The aim of the thesis was to, if possible, figure out a practical way to repre-
sent non-euclidean spaces in an already existing euclidean game engine and
making these spaces physically interactable. Several viable methods are able
to be used to solve the problem, however, some restrictions were put into
place in this thesis that restricted the amount of viable methods to choose
from. The main restrictions are the inability to add or modify any engine
source code and the inability to utilize any ray-tracing based methods. The
first restriction was put into place for two reasons:

1. To ensure that the solution was practical for game developers to use
and implement, regardless of team size or available resources. Edit-
ing engine source code in order to implement a game system requires
extensive knowledge of the engine code-base in question and often re-
quires extra resources in the form of specialized engine programmers.
Moreover, if engine code is modified in an existing game project, these
modifications risk breaking existing game systems, adding extra com-
plexity to the implementation. The level of complexity can vary greatly
from project to project.

2. To ensure the integrity of the term “euclidean game engine”. If modi-
fication of source code is allowed, the game engine can theoretically be
gutted or morphed too much, to a point where it is no longer consid-
ered euclidean. Theoretically, anything is possible if unlimited source
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code modification is allowed, negating the entire point of the question
to be answered in this thesis.

The second restriction is due to real-time ray-tracing technology being ex-
pensive and being in its very early stages (both in development and adapta-
tion). Moreover, according to Steam’s hardware survey, only around 12% of
PC users currently own a graphics card capable of supporting real-time ray-
tracing [21]. Consoles only recently started supporting real-time ray-tracing
with the release of the Xbox Series X and Playstation 5.

The method that is ultimately chosen is a portal-based method which does
not explicitly create non-euclidean spaces but is able to trick the player into
believing that they are looking at, residing in or physically interacting with
a non-euclidean space by placing the portals in certain configurations. Es-
sentially creating an illusion of non-euclidean space (see Figure 6.1). This
allows the representation of non-euclidean spaces in euclidean game engines,
all while not breaking any of the game engine’s logic or scripting API as it
assumes that it is operating upon a euclidean game world.

83



Figure 6.1: Example of a possible portal configuration to create the illusion of
non-euclidean space. This green tunnel is shorter on the outside than the inside.
It takes a longer time for an object to travel through it than around it (at equal
velocity) and thus the shortest path between two points is no longer a straight line.
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While this method is found to be versatile and can be used to create many
di↵erent types of non-euclidean spaces, it is not without its flaws and limita-
tions. The most prominent flaw is its heavy performance impact. It is very
GPU heavy as it takes up just as much frame-time to render a single portal
view as it does to render the whole game scene. In other words, the rendering
time of the entire game scene and one portal view has a 1:1 scaling ratio.
For example, if it takes X milliseconds to render a game scene, it will take
X milliseconds to render the portal view, making the total frame-time 2X
milliseconds. The more complex the game scene is, the more time it takes to
render the portal view.

Some of the limitations of the system can be fixed or improved given enough
time, while some other limitations may be impossible to solve, either due to
game engine limitations or an inherent limitation of the method itself.

In the end, a method was found that could be used to represent non-euclidean
spaces and let players and the game environment interact with these spaces
in a believable way. Although the resulting system is not optimal and has
its flaws, it is still able to currently be used for certain games in a somewhat
limited capacity. If the limitations of the system are improved or fixed this
system has the potential to be used universally for games which need to
portray non-euclidean concepts.
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7

Future work

The final portal system has a clear list of limitations and missing features,
most of which can be improved upon. The severity of these limitations (and
missing features) vary greatly and thus it is best to make a prioritization list
of the limitations (and missing features) that are the most critical to solve
or improve.

1. Performance optimization

The performance impact of rendering a portal is immense. It takes
the same amount of time to render a portal view as it does to render
the whole scene. In other words, there is a 1:1 performance impact
ratio. If a game scene gets more complex to render, the portal view
will become equally complex to render (scales linearly). Essentially,
the time complexity of the portal rendering is currently linear. This
is not feasible for large and visually complex game environments, and
thus the system is currently only viable to use in simple, enclosed game
environments, or in games with low visual complexity. This greatly de-
creases the usage versatility of the system. Beyond basic optimization
(for example, not rendering the portals when the player is not looking
at them) it is unclear how much optimization can be done without af-
fecting visual clarity of the portals (which is essential for the system
to be e↵ective) or breaking the portal view projection (for example,
the projection of the portal view is dependent on the resolution of the
portal’s render target, so scaling down the resolution of the portal view
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would not work). It is even more unclear how much optimization can
be done without modifying any of the engine’s source code.

2. Portal view recursion

The portals cannot render each others views recursively. In other words,
a portal that can be seen within the view of another portal will not have
its view rendered in the view of that other portal (see Figure 1.3 for a
visual example of a proper portal recursion). This should work recur-
sively (Portal B should be rendered within the view of Portal A and
Portal C should be rendered within the view of Portal B and so on), up
to a certain upper limit (computers cannot recurse infinitely). Ideally,
this upper limit should be decided during run-time based on the current
hardware that the game is being run on. Without portal view recur-
sion, some non-euclidean spaces or concepts cannot be represented in a
game. For example, if you need to create an infinite staircase e↵ect, the
portal at the bottom of the staircase needs to render the portal at the
top of the staircase within its own view. Otherwise the e↵ect is impos-
sible to do seamlessly. Unfortunately, recursive portal rendering also
has a big performance impact (rendering multiple portal views within
a single portal view is not cheap on performance) and thus the above
(non-recursive rendering) performance optimization problem needs to
be solved before implementing a solution for recursive rendering.

3. Reduce VRAM consumption

The portal system is currently using a render-target for each portal
view that it needs to render. Since a render-target is essentially a nor-
mal game texture, the data for each render-target will be stored on
the GPU’s VRAM (VRAM stands for “Video Random Access Mem-
ory” and is essentially the memory/RAM of a graphics card). This is
currently not a big problem but may become one if portal recursion
is ever implemented since a separate render-target needs to be created
for each recursive portal view. If the portal views could instead be
rendered in a single render-pass (for example, with a stencil bu↵er), it
would only require a single, relatively smaller memory allocation, thus
saving a lot of VRAM. Unfortunately, it seems that this is not cur-
rently supported by Unreal Engine 4 (without modifying source code)
as the render-target capture taken by a “SceneCaptureComponent2D”
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component cannot be accessed within UE4’s shader editor. This limi-
tation is thus, of course, game engine dependant. This may not be a
limitation in other game engines.

4. Virtual reality support

The portal system does not currently work in virtual reality applica-
tions.

5. Portal light transfer

The portals are not currently able to transfer light from one portal
to another, resulting in strange visual artifacts in teleportation tran-
sitions when teleporting objects between two game environments with
very contrasting lighting conditions. Since the rendering of light is
baked into a game engine’s render pipeline and not able to be modified
through normal engine usage (in the case of most modern game en-
gines), it is unclear if this problem is even solvable without modifying
game engine source code.

The prioritization list may change slightly based on the use-case of whomever
intends to use the portal system, but these five limitation are the most general
ones. All other limitations and missing features mentioned in section 5.1, can
also be considered for future work, but are not currently as critical to solve
as the ones listed above.
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Appendix

A Project properties and Blueprint code

Figure A.1: This is what the shader of the portal surface looks like in Unreal
Engine 4’s blueprint editor (visual scripting system).
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Figure A.2: These are the property settings of the portal surface shader.
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Figure A.3: Script for setting up render target resolution in Unreal Engine 4.
This code runs only at the start of the game (program).

Figure A.4: This image shows which checkbox that needs be ticked in the Unreal
Engine 4 project settings in order to allow near-clip plans to be modified
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Figure A.5: The script code (blueprint) for fixing the position and direction of
the portal camera’s near-clip plane. This is an updated version of the script in
Figure 3.11. The function “UpdateSCCTranform” gets called and executes every
frame. The function is defined in the portal blueprint class.

Figure A.6: This image shows which tickbox needs to be ticked in order to enable
the portal camera’s near-clip plane. This setting is found in the “Scene Capture”
category of the portal cameras component properties (in the portal blueprint).
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Figure A.7: This is what the collision settings look like for the portal surface.

97



Figure A.8: This is the blueprint logic (script) used for the “TeleportActor”
function responsible for the teleportation of the player character. The function is
defined in the Portal class.

Figure A.9: The blueprint logic (in “TeleportActor” function) for teleporting
non-player (arbitrary) objects.

Figure A.10: The full blueprint logic of the “TeleportActor” function.
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Figure A.11: The script for the function responsible for initializing a clone in-
stance.

Figure A.12: The script for the function responsible for continuously updating a
clone instance transform.

Figure A.13: The script for the function responsible for removing a clone in-
stance.
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Figure A.14: This is the shader code of the “M PortalDepth” material. The
opacity value is controlled by the stencil values of the “CustomStencil” render
target.

100



Figure A.15: These are the properties of the interior box mesh of the portal.
Notice how the “Render CustomDepth Pass” property is false by default as it should
only be controlled by in-game logic (when the player character overlaps the portal’s
surface).

Figure A.16: This is what is executed whenever an object overlaps or stops
overlapping the trigger box.
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Figure A.17: These are the properties need to be modified in the “physics con-
straint component” of the “CollisionDisabler” class to disable the collision between
the overlapping and the overlapped object, and to free the overlapping object from
any physical constraints.

Figure A.18: The code within the portal class that executes when a object overlaps
the portal’s surface.

Figure A.19: The code that the “CollisionDisabler” instance executes when it
gets spawned.
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Figure A.20: The code within the portal class that executes when a object stops
overlapping the portal’s surface.

Figure A.21: This code shows how the “IgnoreActorWhenMoving” function is
utilized when the player overlaps the front of the portal.
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Figure A.22: This code shows how the “IgnoreActorWhenMoving” function is
utilized when the player stops overlapping the front of the portal.
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