
Linked Open Data Qualification
for the Premier League

A study of DBpedia’s football data capabilities

Kalle Wåhlin

Bachelor’s Thesis in Computer Science

at Stockholm University, Sweden, 2021

Linked Open Data Qualification
for the Premier League

A study of DBpedia’s football data capabilities

Kalle Wåhlin

Bachelor’s Thesis in Computer Science (15 ECTS credits)

Single Subject Course

Stockholm University year 2021

Supervisor at the Department of Mathematics was Max Zeuner

Examiner was Lars Arvestad

Department of Mathematics

Stockholm University

SE-106 91 Stockholm, Sweden

Abstract

For the Web to reach its full potential as an information source its content needs
to be structured for machines to interpret. This need for has pushed for a growth
of Linked Open Data (LOD) and we can find today a large variation of domains
represented in LOD. As for the domain of football, however, comprehensive
datasets are di�cult to find.

This study examines the football data capabilities of DBpedia – the largest
cross-domain dataset in LOD – with the objective to gain insight about the
usefulness of existing football data in LOD as well as challenges for the domain
to grow. For this purpose we compare a sample dataset with corresponding data
in DBpedia. This dataset describes six basic properties each for 619 players of
the English Premier League. We analyze the ability of the DBpedia ontology
to describe the properties before we extract DBpedia player data and measure
its quality. Various SPARQL query techniques are used throughout the study
and we implement an ad-hoc designed algorithm for identifying players in the
DBpedia dataset.

While some properties (e.g. birth date) have well-defined ontology terms,
others (e.g. club) are more vaguely defined, thus the DBpedia ontology fails to
describe football players in a simple and consistent way. This lack of well-formed
definitions makes it di�cult to carry out proper data quality measurements.
Despite the di�culty, the results still show that the DBpedia football data
is of good quality in terms of population completeness, i.e. most players are
represented in the dataset. On the downside, the property completeness is
significantly low, meaning that proper descriptions are missing for many players,
and thus DBpedia can not be considered a relevant source for football data.

Despite not providing useful football data itself, the DBpedia dataset, as a
central hub in LOD, has the potential to be used as a stepping stone for dis-
covering other football datasets. However, the lack of a well-developed football
ontology limits the domain’s expansion in LOD. A proper ontology would likely
be a catalyst for the football domain to grow, both in DBpedia and in LOD in
general.

Kvalificera Länkad öppen data för Premier League

En studie om DBpedias funktionalitet för fotbollsdata

Sammanfattning

För att webben ska kunna uppn̊a sin fulla potential som informationskälla
behöver dess inneh̊all struktureras s̊a att det kan tolkas av maskiner. Detta
behov har gett upphov till en ökning av Länkad öppen data (LOD) och idag
finns många olika domäner representerade i LOD. För domänen fotboll är det
dock sv̊art att hitta omfattande dataset.

I den här studien undersöks DBpedia – det största icke domänspecifika
datasetet i LOD – i egenskap av källa för fotbollsdata. Syftet är att utreda
nyttan av den fotbollsdata som finns i LOD idag samt vad som krävs för att
domänen ska kunna växa. För detta ändamål jämförs ett testdataset med
motsvarande data i DBpedia. Datasetet beskriver sex vanliga egenskaper vardera
för 619 spelare i engelska Premier League. Vi analyserar hur väl DBpedia-
ontologin beskriver egenskaperna och därefter extraherar vi spelardata fr̊an
DBpedia som vi sedan mäter kvaliteten p̊a. Olika typer av SPARQL-fr̊agor
används genom studien och vi implementerar en algoritm skapad specifikt för
ändamålet att identifiera spelare i DBpedias dataset.

För en del egenskaper, som födelsedatum, finns väldefinierade ontologiter-
mer. Andra (t.ex. klubb) däremot är desto vagare definierade och därför miss-
lyckas DBpedia-ontologin med att beskriva fotbollsspelare p̊a ett enkelt och kon-
sekvent sätt. Bristen p̊a välformade definitioner försv̊arar datakvalitetsmätningar.
Trots detta visar resultaten att DBpedias fotbollsdata h̊aller god kvalitet vad
gäller populationsfullständighet, dvs. de flesta spelarna finns representerade
i datasetet. Desto sämre resultat p̊avisas för egenskapsfullständighet; många
spelare saknar beskrivna egenskaper. DBpedia kan därför inte anses vara en
relevant källa för fotbollsdata.

DBpedia är en central hubb i LOD s̊a även om det självt saknar användbar
fotbollsdata har det potential att användas som spr̊angbräda för att upptäcka
nya fotbollsdataset. Avsaknaden av en välutvecklad fotbollsontologi begränsar
dock domänens utbredning i LOD. En ordentlig ontologi skulle antagligen fungera
som katalysator för fotbolldomänens tillväxt, s̊aväl hos DBpedia som LOD
överlag.

Contents

1 Introduction 1

2 Theory 4

2.1 Linked Data . 4
2.1.1 URI, namespace and prefix 4
2.1.2 The RDF data model . 5
2.1.3 Ontologies . 5
2.1.4 SPARQL . 6

2.2 DBpedia . 7
2.3 Linked data quality aspects . 8

3 Querying football data in DBpedia 10

3.1 The reference data . 10
3.2 Exploring the DBpedia ontology 10

3.2.1 Finding football player classes 11
3.2.2 Finding property representations 11

3.3 Implementing an algorithm
for identifying DBpedia resources 15
3.3.1 Finding possible matches in DBpedia Live 16
3.3.2 Complementing with data from non-live DBpedia 18
3.3.3 Comparing possible matches with reference data 18
3.3.4 Choosing the best match 20

3.4 Measuring data quality . 22

4 Results 24

4.1 Analyzing the results . 24
4.2 Discussion . 27

4.2.1 DBpedia as a source for football data 27
4.2.2 The importance of ontologies 28

5 Conclusions 29

References 30

1 Introduction

The World Wide Web (or simply the Web) constitutes mainly of web pages.
A web page is a document that can be accessed in a web browser, either by
providing a web address or – more commonly – by following a hyperlink on
another web page. A hyperlink points from one web page to another and helps
us find interrelated information spread across di↵erent web pages.

The Web is a gigantic source of information of any kind. However, for
humans, finding and connecting all relevant pieces of information becomes a
very time-consuming task. Machines on the other hand are able to quickly
process large amounts of web page content. The problem is that machines lack
the ability to identify and validate relevant content.

As an illustrating example, imagine we need to know all the buildings in
Sweden taller than 100 meters and their architects. Unless we are lucky to find
a page that has already compiled this information, we would have to find a
method to browse relevant web pages, read them and store the relevant data. If
we instead instruct a computer to carry out the task, the problem will not be to
browse and read, but rather to identify and validate the data. This is because
web pages are generally meant for humans to read and interpret.

The World Wide Web Consortium1 (W3C) has envisioned a web where data
is structured to be e�ciently interpreted by machines. This web, the Semantic
Web, can be thought of as an unlimited database that can be queried the same
way we query traditional databases. (W3C 2009a)

In the Semantic Web, one single query would be enough to retrieve all the
Swedish buildings taller than 100 meters and the names of their architects. It
would even be possible to extract facts that are not explicitly stated, thanks
to logical implications that a machine can interpret. For example, the names
“Hammarbytornet” and “Hammarby radiolänktorn” both refer to the same
building. Knowing that they are interchangeable, by referring to one we can
access the other.

Whereas the Semantic Web is more of a vision, Linked Data is what em-
braces the vision. Linked Data is about sharing and connecting web resources2,
following a few basic principles stated by W3C. Linked Open Data, shortened
LOD, refers to data that is shared on the web under open license and conforms
to these principles. (Bizer et al. 2009)

The amount of Linked Open Data has grown rapidly in recent years and
all the interlinked datasets form together a graph that is referred to as the
LOD cloud. According to lod-cloud.net the cloud contained 1,239 datasets with
16,147 links in March 2019. Figure 1 shows a visual representation of the LOD
cloud with the datasets categorized by domain.

1
The inventor of the WWW, Tim Berners-Lee, founded W3C with “the mission to lead

the World Wide Web to its full potential by developing protocols and guidelines that ensure

the long-term growth of the Web.”(W3C 2012)
2
Web resource is a wider term than web page and refers to anything that can be retrieved

from the web.(Heckmann 2006, p. 28)

1

Figure 1: A visual representation of the LOD cloud provided by lod-cloud.net (McCrae

2019).

In the very middle of the cloud one can find DBpedia, a large cross-domain
dataset with data extracted from Wikipedia pages. As can be seen from the
image, DBpedia is linked to many other datasets, making it a central hub in
the LOD cloud.

While DBpedia enables the knowledge-thirsty person to ask complex queries
that span over multiple Wikipedia pages, it can also be used in software applica-
tions, like a quiz game with DBpedia-generated questions (Vega-Gorgojo 2019),
or combined with Augmented Reality to display information about deceased
people in cemeteries (Matuszka and Kiss 2014).

Whatever the area of use is, each application that exploits LOD requires a
certain data quality level corresponding to its purpose, as is illustrated by the
following example given by Zaveri et al. (2016, p. 2):

Even datasets with quality problems might be useful for certain ap-
plications, as long as the quality is in the required range. For ex-
ample, in the case of DBpedia the data quality is perfectly su�cient
for enriching Web search with facts or suggestions about common

2

sense information, such as entertainment topics. In such a scenario,
DBpedia can be used to show related movies and personal informa-
tion, when a user searches for an actor. In this case, it is rather
neglectable, when in relatively few cases, a related movie or some
personal fact is missing. For developing a medical application, on
the other hand, the quality of DBpedia is probably insu�cient.

As the LOD cloud steadily grows, problems such as inconsistency, inaccuracy,
out-of-dateness and incompleteness, which considerably limit the potential of
LOD, needs to be addressed. According to Rula et al. (2016, pp. 99–110), so far
these issues have not been paid enough attention by the Linked Data community.
To facilitate assessment of data quality in LOD, Rula et al. (2016) provide a list
of various quality dimensions.

When exploring the LOD cloud at lod-cloud.net, a football enthusiast might
quickly notice the domain’s absence. The football domain is not mentioned
much in literature on Linked Data either. Whereas other domains such as geog-
raphy and music appear to have good coverage in the LOD cloud, the football
domain seems under-represented and according to Bergmann et al. (2013) this
applies to the sport domain in general.

Having access to football data of linked nature should be of great interest
for many applications. However, with no obvious football dataset, it seems that
one has to turn to cross-domain datasets for finding published linked football
data.

DBpedia undoubtedly provides today linked football data, the question is
whether the data is useful for applications. References that describe DBpedia’s
coverage of the football domain are di�cult to find. Bergmann et al. (2013)
describe football data in DBpedia as incomplete and unreliable, although with-
out elaborating. Given that DBpedia has developed a lot in recent years, it is
relevant to revisit the question of whether DBpedia can be used by applications
as a source of linked data in the football domain.

If DBpedia data is to be used by an application, it should be assessed first.
The quality of the data needs to be satisfying for the task at hand. Whether it’s
about generating football quiz questions, enhancing the experience at a football
stadium with augmented information about the teams and players, or answering
sophisticated, complex questions.

This study aims to assess the maturity of the football domain in Linked Open
Data. For this purpose, we will look into DBpedia’s football data capabilities.
We will analyze the DBpedia ontology and evaluate fundamental and well-known
quality aspects of a given sample dataset.

From the findings of the study conclusions will be drawn about the maturity
of the domain in DBpedia; how well-developed it is in terms of completeness and
correctness, and its relevance as a source of information for other applications.

The conclusions will hopefully provide guidance for further development of
the football domain in Linked Open Data.

3

2 Theory

This section presents the theoretic background for concepts occurring in the
study. First, Linked Data and its building blocks are explained. Subsequently
follows a description of DBpedia and finally di↵erent aspects of linked data
quality are explained.

2.1 Linked Data

As mentioned in the introduction, Linked Data is an implementation of the
ideas of a Semantic Web. The four Linked Data principles, as stated by W3C
founder Berners-Lee (2006), are:

Use URIs as names for things.

Use HTTP URIs so that people can look up those names.

When someone looks up a URI, provide useful information,
using the standards (RDF, SPARQL).

Include links to other URIs so that they can discover more
things.

We will explain these four points in sections 2.1.1–2.1.4.

2.1.1 URI, namespace and prefix

A URI, short for Uniform Resource Identifier, refers to a resource of any kind.
The resource can be something physical such as a building or digital such as a
document or an image. It can even be an abstract concept such as “king” or
“red”.

Usually, URIs coincide with URLs. A URL (Unique Resource Locator) is
used for locating a web page, i.e. it is the web address of that page. For exam-
ple, https://www.example.com/Lionel_Messi could be the URL for finding a
document about the football player Lionel Messi on the web. However, the very
same string could also be a URI referring to the real world football player that
is Lionel Messi.

By using a HTTP URI, the resource gets a web representation, and it
becomes accessible for anyone. This is what the second principle is about.
Many di↵erent resources are often represented within the same namespace.
Namespaces allows for reuse of words in URIs by putting them in di↵erent
contexts. For example, the word “king” might be used within the namespace
https://titles.com/ to form the URI https://www.titles.com/king which
refers to the resource that is the title of a male monarch. Used in another
namespace, e.g. https://www.companies.com/king it might refer to the com-
pany named King.

In Linked Data, prefixes are often used in order to avoid writing long HTTP
URIs. A prefix can replace a namespace so that a URI can more easily be
referenced. If the prefix ex is defined to represent the namespace https://

www.example.com/, then the URI https://www.example.com/Lionel_Messi

can be referenced by just writing ex:Lionel_Messi.

4

OpenLink Software (2020) provide a list of prefixes and the full namespaces
that they represent. The list can be used by the reader as a dictionary to look
up the prefixes appearing in this study.

2.1.2 The RDF data model

The Resource Description Framework (RDF) data model is fundamental to
Linked Data. It allows for resources to be described and linked together in
a simple and uniform structure.

An RDF-statement is a subject-predicate-object triple that describes a prop-
erty of the subject. The subject of a triple is always a URI, e.g. ex:Lionel_

Messi. The predicate is also a URI and has the role of expressing in what way
the object is related to the subject, i.e. what property is described. The object
is the property value and can be either another URI or a plain literal. For exam-
ple, if the predicate says that the object is the nationality of the subject, then
the object is probably a URI referencing that country. However, if the height
of the subject is expressed, the object is more likely a literal such as “1.70”.

While there are several valid formats for storing RDF-data, the subject-
predicate-object triple model always applies. RDF-triples form a directed la-
beled graph. Each triple is a pair of vertices with an edge between them. The
edge is labeled with the predicate and points from the subject to the object.

Figure 2 shows an example graph formed by a few triples. The URI ex:

Lionel_Messi has been made up, however the other exist. The predicates as
well as the class dbo:SoccerPlayer are acknowledged ontology terms. In the
example, namespaces have been replaced by prefixes.

Figure 2: Example RDF-graph. Ovals and arrows are URIs and rectangles are literals.

2.1.3 Ontologies

Ontologies provide the terms for describing resources in a linked dataset in a
uniform and accurate way. Meta-descriptions in ontologies define the meaning
of the terms that are used in RDF-statements, i.e. properties of the properties.

Di↵erent ontologies can be developed for di↵erent domains of discourse, how-
ever the core of any ontology conforms to standards provided by W3C. These
standards are RDF Schema (RDFS) and Web Ontology Language (OWL). They
are themselves sets of RDF-statements and provide means of generically describ-
ing properties, relations and classes in a concise and logical manner.

Looking at the example graph in Figure 2 we have for example the predicate
rdfs:label from RDFS. This term is the universal standard for expressing the

5

name of a resource. The meta-description of rdfs:label states that it has the
rdf:range of rdfs:Literal, meaning that the object of a triple with rdfs:

label as predicate is expected to be a literal and not a URI. Both rdf:range

and rdfs:Literal in turn are also terms of RDFS and have their own meta-
descriptions. For further explanation of RDFS see Brickley and Guha (2014).

Another term from RDFS that we find in the example is rdf:type. This
predicate states that the subject is a member of a class (the object). The class
in the example, dbo:SoccerPlayer is from the DBpedia ontology. We say that
the resource in the subject is of type or is a dbo:SoccerPlayer.

The predicate dbo:height is also from the DBpedia ontology. It has a typed
literal range, namely xsd:double. As opposed to when the range is rdfs:

Literal, a typed literal is expected to be of a certain datatype. In this case a
double, i.e. the property dbo:height is expressed in meters. The datatypes are
identified by URIs in the XML schema namespace (xsd:) and other examples
are xsd:date, xsd:int and xsd:string.

The owl:sameAs term is used for saying that two resources are identical, i.e.
the URIs reference the same entity. This is useful for linking together resources
from di↵erent namespaces having the same meaning. For a full description of
OWL see Dean and Schreiber (2004).

Other examples of well-known ontologies that are not domain-specific are
Dublin Core and Simple Knowledge Organization System (SKOS). They are
described in DCMI Usage Board (2020) and Miles and Bechhofer (2009) respec-
tively.

A term often used interchangeably with ontology is vocabulary (W3C 2009b),
although the former tends include more complex structures (DuCharme 2011,
p. 39). For the sake of simplicity, in this paper ontology refers to both.

2.1.4 SPARQL

SPARQL is a declarative language for querying RDF-data. Collections of RDF-
data can be loaded into SPARQL endpoints, which are web services that allow
the data to be queried (DuCharme 2011, p. 14). The key when constructing
SPARQL queries is to specify triple patterns. Triples conforming to those pat-
terns are retrieved and the SELECT keyword lets one choose which components
of the triples to return.

Two example queries are shown in Figure 3. In 3a, we simply state that
we want the subject component of triples having rdfs:label as predicate and
“Lionel Messi” as object. The triple patterns are always enclosed in braces.
The query in 3b is constituted by several triple patterns. The first line states
that we want URIs of type dbo:SoccerPlayer. Those resources are bound to
the variable ?Uri. The “a” in this first pattern is syntactic sugar for rdf:type.
Furthermore, we require that the resources bound to ?Uri are also the subject of
triples with dbo:nationality as predicate, i.e. that they are linked to a country.
The third line states that a name must also be associated with resources bound
to ?Uri. These names are bound to the variable ?Name. The last line declares
that the country associated with the URIs must have the name Argentina.
Finally, with SELECT the query is instructed to return pairs of URIs and literals
bound to ?Uri and ?Name respectively, i.e. Argentinian football players and
their names.

6

SELECT ?Uri
{?Uri rdfs:label "Lionel Messi"}

(a) A simple query that returns resources
named “Lionel Messi”.

SELECT ?Uri ?Name
{

?Uri a dbo:SoccerPlayer ;
dbo:nationality ?Country ;
rdfs:label ?Name .

?Country rdfs:label "Argentina"
}

(b) A query returning Argentinian football
players and their names.

Figure 3: SPARQL query examples.

A useful function in SPARQL is VALUES. This keyword makes it possible
to decide beforehand which values should be bound to a variable. An example
query with VALUES is shown in Figure 4. We bind here “Lionel Messi”, “Kylian
Mbappé” and “Mohamed Salah” to the variable ?Name, thus saying that we
want URIs having either of those names.

SELECT ?Uri
{

VALUES ?Name {"Lionel Messi" "Kylian Mbappé" "Mohamed Salah"}
?Uri rdfs:label ?Name

}

Figure 4: Example query using VALUES.

Other SPARQL functions frequently used throughout this study are e.g.
COUNT, FILTER, UNION and OPTIONAL. Explanations of those and many other
SPARQL functions can be found in Seaborne and Harris (2013). DuCharme
(2011) is also a recommended reading for learning more about SPARQL and
RDF-data in general.

SPARQLWrapper is a SPARQL endpoint interface to Python. It allows for
custom queries to be constructed at run-time and processing of the returned
result sets. More about SPARQLWrapper can be found in SPARQLWrapper
Documentation (2020).

2.2 DBpedia

DBpedia is an open community project started in 2007. The main contributors
are the University of Leipzig, Mannheim University and some privately owned
companies like OpenLink Software and Semantic Web Company. There are
other actors that also contribute to the project via the DBpedia association.
(DBpedia 2009)

DBpedia’s objective is to extract information from Wikipedia pages and
convert it to RDF-triples. EachWikipedia page is mapped to a URI in the http:
//dbpedia.org/resource/ (dbr:) namespace, e.g. https://en.wikipedia.

org/wiki/Lionel_Messi is mapped to the resource with URI dbr:Lionel_

Messi. These URIs constitute the subjects of RDF-triples while appropriate
predicates and objects correspond to information in the Wikipedia page, mostly
from the infoboxes. DBpedia is multilingual and has its own ontology based on

7

https://en.wikipedia.org/wiki/Lionel_Messi
https://en.wikipedia.org/wiki/Lionel_Messi

OWL. Information extracted from Wikipedia pages is mapped to terms in this
ontology.

New DBpedia datasets are released continually and can be downloaded.
They are also loaded into the public endpoint at http://dbpedia.org/sparql
and can be queried directly from there. However, the dataset currently loaded
into the public endpoint is from 2016 and thus not up-to-date (DBpedia 2018).

DBpedia Live is an extension of DBpedia that better reflects the current
state of Wikipedia by updating the dataset accordingly whenever a Wikipedia
article is edited. This dataset can be queried from the live endpoint at http:
//live.dbpedia.org/sparql. Resources in DBpedia Live are also contained
in the http://dbpedia.org/resource/ namespace, meaning that URIs are the
same in both DBpedia and DBpedia Live. As opposed to DBpedia, DBpedia
Live supports English language only (i.e. it contains only data from the English
Wikipedia).

When querying a DBpedia endpoint it is possible to specify the default graph.
Di↵erent graphs are di↵erent subsets of the dataset loaded into the endpoint.
Specifying the relevant graph can speed up the queries as it narrows down the
search space. For example, the DBpedia ontology can be queried from the
graph dbr:classes#. If using the DBpedia Live endpoint it can be a good
idea to set the default graph to http://live.dbpedia.org/ instead of http:
//dbpedia.org/ as the latter contains a lot of extra data from other datasets.

DBpedia endpoints are powered by Virtuoso from OpenLink Software. A
special feature with Virtuoso-powered endpoints is the bif:contains keyword
which allows for free-text searching in SPARQL queries. Similar generic SPARQL
functions exist (REGEX, CONTAINS), however bif:contains is more e�cient.
(DuCharme 2011, p. 225)

2.3 Linked data quality aspects

Unlike relational database schemas, ontologies do not have the power to prevent
incorrect or inconsistent data from being added to an RDF dataset. As a conse-
quence, a posteriori qualification of the data is needed. To this end, Rula et al.
(2016) have compiled a list of the most common linked data quality aspects
along with metrics for quantitatively evaluating them. The aspects evaluated
in this study are:

Population completeness

Property completeness

Syntactic accuracy

Semantic accuracy

Population completeness refers to the extent to which real-world entities of a
particular type is present in the dataset. The suggested metric is the ratio
between the amount of resources in the dataset and the amount of real-world
entities. This requires a complete reference dataset for comparison and implic-
itly also identification of the corresponding resources.

Property completeness is measured for properties associated with resources
of a certain type. The suggested metric is, for a given property, the ratio between

8

http://dbpedia.org/sparql
http://live.dbpedia.org/sparql
http://live.dbpedia.org/sparql

the amount of resources having this property represented and the total amount
of resources. To enable property completeness measurements, the resources of
interest, as well as predicates accurately expressing their properties, needs to
be identified.

Syntactic accuracy refers to the extent to which literals conform to given
syntactical rules. In Linked Data, this usually means whether or not literals are
compatible with predicates having a typed literal range. One suggested metric
is the ratio between the amount of values associated with a given predicate
having correct data type and the total amount of values associated with that
predicate.

Semantic accuracy refers to the extent to which RDF-triples reflect real-
world facts. A reliable reference dataset is needed for validation and the pred-
icate most accurately expressing a given property needs to be identified. Rula
et al. (2016) do not provide a preferred metric for semantic accuracy. In this
study we measure this aspect as the ratio between the amount of semantically
correct values and the total amount of values for a given property.

9

3 Querying football data in DBpedia

There are several prerequisites for conducting rigid data quality measurements.
Not least, a substantial set of queries had to be constructed and run against
DBpedia. The list below briefly sketches the process in chronological order.

1. A reliable reference dataset with football player data was collected to be
used for comparison with corresponding DBpedia data.

2. DBpedia Live was explored for ontology terms that describe the sample
of football players.

3. Using the data retrieved in step 1, and the knowledge gained in step 2, an
algorithm for identifying football players as DBpedia resources was imple-
mented. The algorithm yields a measure for population completeness.

4. Properties of the resources identified in step 3 were assessed with respect
to syntactic and semantic accuracy and completeness.

Each step is described in more detail in section 3.1–3.4.

3.1 The reference data

A dataset consisting of 622 players of the English Premier League (EPL) was
collected from the league’s o�cial website premierleague.com. The website pro-
vides information pages for each player from where data could be extracted. A
Python script was written to perform this task. Six properties of such type that
are typically found in short summaries/infoboxes were collected for each player.3

The Python library Beautiful Soup was used for identifying the property values
in the HTML-code of each player page. A sample of the retrieved player data
is shown in Table 1.

Table 1: Each row represent a player and each column a property.

Club Number Name Birthdate Position Nationality

Arsenal 1 Bernd Leno 04/03/1992 Goalkeeper Germany
Liverpool 4 Virgil van Dijk 08/07/1991 Defender Netherlands
Manchester City 17 Kevin De Bruyne 28/06/1991 Midfielder Belgium
Manchester United 10 Marcus Rashford 31/10/1997 Forward England

3.2 Exploring the DBpedia ontology

To be able to identify the collected set of EPL players in DBpedia it was first
necessary to investigate how their properties would typically be represented, i.e.
how the resources are linked to their properties and what predicates express
these links. This was done querying the DBpedia Live graph (DBpL) first for
relevant classes, then for commonly used predicates that express properties of
members of those classes. Meta-descriptions of the ontology terms were queried

3
A few players did not have their number or birth date represented at EPL’s website. In

those cases, the data was retrieved manually from transfermarkt.com.

10

from the DBpedia ontology graph. The queries were run directly in the web
interface at http://live.dbpedia.org/sparql.

Understanding how the players are represented in DBpedia required much
work constructing relevant queries. A variety of query techniques were used
for finding, comparing and verifying the usage of di↵erent ontology terms. A
selection of the queries along with partial or full results are presented in Figures
5–8. Since DBpL is a dynamic dataset, all query results are temporary, thus
we refer to them as something that was rather than is.

3.2.1 Finding football player classes

The first task was to identify resources being football players. We define L as
the set of all resources in DBpL and we let Sc denote the subset of resources S
being of type c. Querying for the most common resource types overall in DBpL

revealed the class dbo:Person with ca 500000 members. Equivalent classes from
other ontologies also appeared in the query result, however with E representing
the set of resources belonging to any of those classes, |E \Ldbo:Person| was neg-
ligible. Thus only dbo:Person was used in the next query, which again ranked
the most common types, but this time only for Ldbo:Person. The generated query
result revealed the class dbo:SoccerPlayer with ca 33000 members. We refer
to this class as SP onwards.

(a) The query counts members of di↵erent
classes. (b) Partial query result.

Figure 5: Ranking of common classes associated with members of dbo: Person .

Ranking the most common types associated with LSP yielded no interesting
new classes. Querying the most common predicates among LSP on the other
hand showed that most of these resources were provided with the dct:subject
predicate, which linked them to various SKOS concepts (classes). The class dbc:
English_Football_League_players was discovered among the more common
classes and this in turn led to the detection of dbc:Premier_League_players,
another SKOS concept with 4721 members. We call this class PP .

3.2.2 Finding property representations

At this stage, having found one class of football players in general and another of
EPL players in particular, the next task was to find descriptions of members of
those classes. A query showed that LPP 6✓ LSP , meaning that conclusions about
one class would not necessarily apply to the other. Therefore, both classes had
to be investigated further in search of property descriptions for their members.

11

http://live.dbpedia.org/sparql

The properties were found by ranking the most used predicates among LPP

and LSP respectively. We call the set of players in either class H = LPP [LSP

and we let S
⇢ denote the subset of resources S having the property ⇢. The

majority of properties were directly linked to a player, while some were linked
via intermediate URIs.

(a) The query counts how many URIs
have each predicate. (b) Partial query result.

Figure 6: Ranking of common predicates for members of dbc: Premier_ League_
players .

The predicate dbo:birthDate links a dbo:Person (the domain) to its birth
date, which is expected to be a literal of data type xsd:date (the range). A
predicate with a similar URI, dbp:birthDate, appeared to be an alternative.
However the ontology contained no meta-description for this predicate. Further-
more, the amount of resources |Hdbp:birthDate \Hdbo:birthDate| was insignificant.
Thus dbp:birthDate was considered superfluous for describing birth dates of
the players.

Position was also linked directly to player resources, either via dbo:position
or dct:subject. Neither predicate had a defined domain/range, however URIs
representing football positions could be found in the object position of triples
with these two. We let ⇢(S) denote the value(s) associated with property ⇢

for a resource, or a set of resources, S. A player resource h 2 H could for
example have dbo:position(h) = dbr:Forward_(association_football) or
dct:subject(h) = dbc:Association_football_midfielders. Many players
being linked to its position via dbo:position were not linked via dct:subject

and vice versa, so both predicates were in this case considered useful.
The two most common ways of linking a player to its name was with rdfs:

label or foaf:name. However the former predicate had better representation
among player resources and should be the preferred.

The predicate dbo:number links a dbo:Athlete (superclass of dbo:Soccer
Player) to its number, which is expected to be a literal of data type xsd:string.

12

(a) Query for every predicate-object pair associated with dbo: number .

(b) Partial query result.

Figure 7: Information about the ontology term dbo: number .

A predicate for explicitly expressing nationality could not be found among
the most used for player resources. Instead, the predicate dbp:nationalteam

was considered. Although not being defined in the DBpedia ontology (i.e. it
lacked meta-descriptions), it was found to link players to di↵erent national
football teams. Thus it could be useful to find the nationality of players that
have represented their national team at some point. Most of the values dbp:

nationalteam(H) were URIs with country names contained in their labels, e.g.
”France national football team”.

The predicate dbo:birthPlace was considered the best alternative, should
the player not be associated with a national team. It is used for linking a
dbo:Person to a dbo:Place, the place where the person was born. Among
dbo:birthPlace(H) some were URIs representing countries, others were URIs
representing places within a country such as cities. In the latter case, the
place was usually linked to the country where it is located with the predicate
dbo:country. A player’s birth country was thus either directly linked to the
player resource or via an intermediate URI. Birth country should in many cases
correspond to nationality, so dbo:birthPlace was reckoned a somewhat accu-
rate way of accessing the nationality of a player.

There were several alternatives for representing the club of a player. Two
predicates, dbo:clubs and dbo:team, were dismissed because they seemed to
link to any club the player has represented and not just the current (both
linked a player to ⇠6 di↵erent clubs on average). These links were direct and
thus not revealing any additional information about the relation between the
player and club, such as time span, that can be used for deciding which club
is the current. Despite not being defined in the ontology, the self-explanatory
dbp:currentclub was reckoned more accurate. This predicate linked player
resources to only ⇠1.1 di↵erent clubs on average.

Another predicate that was considered useful for finding the current club of a
player was dbo:careerStation. It links a dbo:Person to a dbo:CareerStation,
which holds information about a step in the player’s career. The ontology did
not reveal how that information is expected to be provided, however the most
common predicates associated with career stations were found to be dbo:team

and dbo:year. By comparing the team and year of a player resource’s career

13

stations with information displayed in the player’s Wikipedia page, it was con-
cluded that it corresponds to the year when the player first represented the
team. Hence, a player’s current club could be retrieved by querying for the club
of the career station having the most recent year associated with it. For career
stations CS = dbo:careerStation(H) the associated teams dbo:team(CS)
turned out to be a mix of clubs and national teams, meaning that in some cases
also nationality could be found via dbo:careerStation.

(a) Query every team-year pair of career
stations associated with resources named
Leroy Sané.

(b) The career of Leroy Sané as displayed
in Wikipedia.

(c) The query result. Each row is associated with a dbo: CareerStation of dbr:Leroy Sané.

Figure 8: The career stations in DBpedia correspond well to the information in

Wikipedia’s infobox.

A significantly smaller proportion of LPP had appropriate predicates to de-
scribe their attributes than LSP . However, dbo:abstract was well represented
among LPP . This predicate links a resource to a rdfs:langString that is an
abstract about the resource in question. A pattern was recognized in abstracts
of LPP : birth date and current club were contained in the opening sentences.
The dbo:abstract predicate was therefore considered useful in the cases where
other predicates to describe those properties are missing.

To sum up the findings presented in this subsection, Figure 9 shows an
extensive graph of how a player of the reference dataset could typically be
represented with RDF-triples in DBpedia. The graph implements the syntax
suggested by Addlesee (2018).

14

Figure 9: A visual RDF-graph of a hypothetical EPL player in DBpedia. Circles are

resources, rectangles are literals and arrows are predicates. The range of a predicate,

if defined, is shown in small font under a predicate URI. The dashed lines from the

Abstract literal indicate that it contains birth date and club, however there is no RDF-

link to those literals.

3.3 Implementing an algorithm

for identifying DBpedia resources

From the findings presented in section 3.2, relevant queries could be constructed
and used as the core component of an algorithm that matches players with their
DBpedia resources. The idea was to, for each reference player, first query for
DBpedia resources that match one of the six properties and then see which of
those resources best matches the remaining five.

Name was reckoned the best property to start matching resources by. Firstly,
it has the advantage of narrowing down the set of possible candidates to a rea-
sonable amount. Secondly, rdfs:label was well-represented among player re-
sources compared to other relevant predicates. Matching on e.g. Birthdate in
the first place would risk filtering out the best candidate, since resources lacking
dbo:birthDate would not be found.

As new football players emerge continually, the candidates were queried from
DBpL. However, complementing data about the candidates was queried from
the non-live endpoint (we refer to this static dataset as DBp), since during
the implementation it was discovered that player resource descriptions are often
richer in DBp than in DBpL.

The algorithm was written in Python and make use of SPARQLWrapper for
embedded SPARQL querying. A module was implemented to enable automatic
reading and modification of template query files before running them against
DBpedia. This module also include functions for handling di↵erent types of
query result sets. Several other modules were also implemented for further
processing of the queried data.

15

We define R as the set of EPL players in the reference dataset and we refer
to a player r 2 R by its name. For each reference player r 2 R, the algorithm
does the following:

1. Queries DBpL for resources that match r.

2. Queries DBp for complementing data about the matched resources.

3. Merges queried data from DBpL and DBp.

4. Compares descriptions of each matched resource with the description of r
in R.

5. Chooses the best match among the candidate resources.

3.3.1 Finding possible matches in DBpedia Live

In the first step of the algorithm, the player r is inserted to a template query
that retrieves all resources matching r by name. Instead of doing exact string
matching, the query uses bif:contains in order to include labels containing
more than just the name, e.g. “John Smith (footballer, born 1971)”. The label
has to contain both first and last name as searching for labels containing either
would be too wide. However, if there are several last names only one of them
needs to be contained. The query was designed so that “John Adams Smith”
matches both “John Smith” and “John Adams” but not “George Smith” or
“John Phillips”. In this way di↵erent variations of a name could be matched,
while the search space was being kept reasonably restricted.

We let C represent the set of candidates (URIs) for being the DBpedia
resource representing r. For each c 2 C, the query continues to search for
remaining properties. As described in section 3.2 and illustrated in Figure 9,
the properties can be retrieved in various ways. The query was designed to
examine any possible route to a property and include all values that it finds in
the result set. Thus, several values can be associated with one property. Even
properties retrievable only in one way can have several associated values, e.g. if
there is one triple where dbo:number(c) = “9” and another where dbo:number(c)
= “10”. Values associated with the same property are grouped together in the
result set. Along with values found for each property, the query result includes
dbo:abstract(c) and indicators if c is a dbo:SoccerPlayer or dbc:Premier_
League_players (with “Yes” or empty string). The query in its entirety can
be viewed in Figure 10.

16

SELECT DISTINCT ?Uri ?Label ?premPlayer ?soccerPlayer
GROUP_CONCAT(DISTINCT xsd:date(?date);separator=’|’) AS ?Birthdate
GROUP_CONCAT(DISTINCT ?no;separator=’|’) AS ?Number
GROUP_CONCAT(DISTINCT REPLACE(?countryLabel,

" national.*", "", "i");separator=’|’) AS ?Nationality
GROUP_CONCAT(DISTINCT ?posLabel;separator=’|’) AS ?Position
GROUP_CONCAT(DISTINCT ?clubLabel;separator=’|’) AS ?Club
GROUP_CONCAT(DISTINCT ?abs;separator=’|’) AS ?Abstract
{

?Uri rdfs:label ?Label .
?Label bif:contains "1"
BIND(IF(EXISTS{?Uri dct:subject dbc:Premier_League_players},

"Yes", "") AS ?premPlayer)

BIND(IF(EXISTS{?Uri a dbo:SoccerPlayer}, "Yes", "") AS ?soccerPlayer)

OPTIONAL{?Uri dbo:birthDate ?date}
OPTIONAL{?Uri dbo:number ?no}
OPTIONAL
{

{
?Uri dbo:birthPlace ?country .
?country rdfs:label ?countryLabel

}
UNION
{

?Uri dbo:birthPlace ?place .
?place dbo:country ?country .
?country rdfs:label ?countryLabel

}
UNION
{

?Uri dbp:nationalteam ?nteam .
?nteam rdfs:label ?countryLabel

}
UNION
{

?Uri dbo:careerStation ?cs .
?cs dbo:team ?team .
?team rdfs:label ?countryLabel .
?countryLabel bif:contains "national"

}
}
OPTIONAL
{

{
?Uri dbo:position ?pos .
?pos rdfs:label ?posLabel

}
UNION
{

?Uri dct:subject ?pos .
?pos skos:broader dbc:Association_football_players_by_position ;

rdfs:label ?posLabel
}

}
OPTIONAL
{

{
SELECT ?Uri ?clubLabel
{

?Uri dbo:careerStation ?cs1 ;
dbo:careerStation ?cs2 .

?cs1 dbo:team ?club ;
dbo:years ?year .

?club rdfs:label ?clubLabel .
FILTER(!REGEX(?clubLabel, "national", "i"))
?cs2 dbo:team ?team ;

dbo:years ?year2 .
?team rdfs:label ?teamLabel
FILTER(!REGEX(?teamLabel, "national", "i"))

}
GROUP BY ?Uri ?clubLabel ?year
HAVING (?year = MAX(?year2))

}
UNION
{

?Uri dbp:currentclub ?club .
?club rdfs:label ?clubLabel .

}
}
OPTIONAL{?Uri dbo:abstract ?abs}

}

Figure 10: The query first finds URIs that match the inserted name. Then it looks for

various properties of those URIs. 1 is the placeholder for where the player name is

inserted.

3.3.2 Complementing with data from non-live DBpedia

Descriptions of player resources varied depending on whether DBpL or DBp

was queried. A resource missing relevant predicates in DBpL often had them
present in DBp instead. We define D the set of resources in DBpL. For
example, 100% of DPP are provided with dbo:birthDate as compared to ca
11% of LPP .

Accordingly, DBp is queried for complementing data about the candidates
C found in DBpL. Due to DBp being outdated, only the over time more
consistent properties are queried for. These include Birthdate, Nationality,
Position and being a football player (i.e. a dbo:SoccerPlayer). The triple
patterns are the same as in the first query (Fig. 10), however with the URIs
now being known, no name matching is needed. The candidates are inserted
together with the VALUES keyword and the query looks up their properties.

In some cases |C| was too large to be handled by one query (e.g. the player
name “Fred” matches ca 6000 resources). Therefore, a maximum of 1000 URIs
are queried at a time. Since DBp contains di↵erent languages, filters were
also applied on string literals (with the FILTER keyword) to retrieve only those
that are in English. Table 2 shows di↵erent descriptions of the same URI.
This clearly demonstrates how DBp can be useful for complementing a DBpL

resource description.

3.3.3 Comparing possible matches with reference data

When both DBp and DBpL have been queried, the data collected for each can-
didate c 2 C is compiled by a separate Python module. First, regexes are used
for extracting Birthdate and Club from each dbo:abstract(c). The extracted
values are added to the other retrieved values Birthdate(c) and Club(c). Then,
if additional data for c has been found in DBp, this is added to the descrip-
tion from DBpL. Table 2c demonstrates a compiled resource description of
dbr:Virgil_van_Dijk, where the result from DBpL has been complemented
with values retrieved from DBp and the value ”Liverpool” has been extracted
from the abstract and added to Club(dbr:Virgil_van_Dijk).

After descriptions have been compiled, the candidates are compared with
the reference player r, property by property. Another Python module was im-
plemented for this task. This module includes various functions for comparing
di↵erent properties. What was considered a match varied depending on the
property’s string representation in the reference dataset in relation to that re-
trieved from DBpedia.

We use the ⇢ notation also for properties of the reference players, i.e. ⇢(r) is
the value of the property ⇢ of the reference player r. Position(r) is represented
in the reference dataset as either of the strings “Goalkeeper”, “Defender”, “Mid-
fielder” or “Forward”. Position(c) of a candidate c 2 C can be strings such as
”Association football midfielders” or ”Forward (association football)”. So in
this context, it was considered a match when Position(r) is a substring of any
Position(c) (There can be several values retrieved, only one needs to match).

Both Number(r) and the numbers Number(c) are numeric strings such as
”9”, ”10” or ”27”, thus it was considered a match only if they are identical.

Nationality(r) is represented as a country name string (e.g. ”Germany”).
The birth countries we find in DBpedia are also labeled with such strings,

18

Table 2: Descriptions of the player Virgil van Dijk queried from DBpedia. The ”|”
symbol separates di↵erent values associated with the same attribute. The abstracts

have been shortened to fit the table.

(a) Description queried from DBpL.

URI http://dbpedia.org/resource/Virgil van Dijk
Label Virgil van Dijk
premPlayer Yes
soccerPlayer
Birthdate
Number
Nationality
Position Association football defenders
Club

Abstract
Virgil van Dijk (born 8 July 1991) is a Dutch professional footballer
who plays as a centre-back for Premier League club Liverpool and...

(b) Additional data queried from DBp.

URI http://dbpedia.org/resource/Virgil van Dijk
soccerPlayer Yes
Birthdate 1991-07-08
Nationality Breda|Netherlands
Position Centre-back

(c) Description after merging data from both DBpL and DBp and extract-
ing data from abstract.

URI http://dbpedia.org/resource/Virgil van Dijk
Label Virgil van Dijk
premPlayer Yes
soccerPlayer Yes
Birthdate 1991-07-08
Number
Nationality Breda|Netherlands
Position Centre-back|Association football defenders
Club Liverpool

(d) Description after comparison with reference data.

URI http://dbpedia.org/resource/Virgil van Dijk
Label Virgil van Dijk
premPlayer Yes
soccerPlayer Yes
Birthdate 1991-07-08
Number
Nationality Netherlands
Position Defender
Club Liverpool

19

whereas the national team labels take the form of ”Germany national football
team”, ”France national under-20 football team”, ”Portugal Olympic football
team” etc., with the country name in the beginning of the string. However, our
queries implement the SPARQL built-in function REPLACE to remove trailing
characters after the country name, thus any Nationality(c) is returned as a
plain country name string. Accordingly, when comparing Nationality(r) with
a country name Nationality(c) in Python, only identical strings count as a
match.

Birthdates are also exactly matched, however the strings required some pre-
processing before they could be compared. Birthdate(r) is in dd/mm/yyyy for-
mat, dbo:birthDate(c) are in xsd:date format, while a date in dbo:abstract(c)
is in dd Month yyyy format. To enable exact matching, all Birthdates are con-
verted to xsd:date format. The strptime() method from the built-in Python
module datetime was used for this task.

Club names were considered a match when Club(r) is a substring of a string
Club(c). Exact matching would not work in this case because most club strings
in include prefixes/su�xes such as ”F.C.” or ”A.F.C.” (e.g. “Arsenal F.C.”),
whereas the reference club names either do not have a prefix/su�x at all (e.g.
“Arsenal”) or it does not include periods (e.g. “AFC Bournemouth”). Club(r)
is stripped o↵ any prefix/su�x before the string comparison. A special case was
when Club(r) = “Brighton and Hove Albion”. A regex then replaces Club(r)
so that both “Brighton & Hove Albion” and “Brighton and Hove Albion” can
be matched.

When a candidate c has been compared with the reference player r, only the
matched property values associated with the candidate are saved. The other
values retrieved from DBpedia have played out their role at this stage of the
algorithm. Table 2d shows the saved result after the property values in 2c have
been compared with those in Table 1. In this case, all properties that had
associated values matched. However, had e.g. “France” been retrieved instead
of “Netherlands” as Nationality, the entry for this property would be empty,
since neither “Breda” nor “France” match Nationality(Virgil van Dijk).

3.3.4 Choosing the best match

Finally, another module was implemented for systematically deciding which
candidate c best matches the reference player r. A best practice for identifying
LOD resources is not suggested in the literature, thus the system was created
ad hoc.

A score is calculated for each c. The higher score, the better the match.
Every matching property adds to the score a number 0 < � 1 that is decided
by the degree of uniqueness for a matched property. If � is the number of
resources sharing the property, then � = 1

� is added to the total score. Properties
shared by fewer resources entail a higher �, whereas more generic properties add
less to the score. For example, a matched birth date almost certainly adds more
to the score than a matched nationality, since birth dates are generally more
unique than nationalities. However, a very unusual country, linked to only a few
resources, could theoretically generate a higher � than a birth date if matched.

The number � of resources sharing a property is queried at run-time. Tem-
plate queries were constructed for this purpose. We let S⇢(t) denote the subset
of resources S having the value ⇢(t) associated with property ⇢. Then for a

20

matched property value ⇢(c) of a candidate c,

� =

(
|L⇢(c)|, for ⇢ 2 {Number, Club}
max(|L⇢(c)|, |D⇢(c)|), for ⇢ 2 {Birthdate, Position,Nationality}

A matched property value is inserted to the appropriate template and the query
returns the number of resources having that property. The triple patterns in
these queries correspond to those in the OPTIONAL clauses of the query that
retrieved the property values in the first place (see Figure 10). Albeit now the
searching is done in the opposite direction. Instead of starting from known URIs
and searching for their properties, the queries start from the property value and
search for URIs having this property. As an example, compare the two queries in
Figure 11. The query in 11a initially searches for URIs matching the specified
name Virgil van Dijk. It finds dbr:Virgil_van_Dijk and then searches for
birth dates in the object position of triples having dbr:Virgil_van_Dijk as
subject and dbo:birthDate as predicate. This is how the date “1991-07-08”
was retrieved for dbr:Virgil_van_Dijk in the early stages of the algorithm. As
the birth date later turned out to be a match, the number of resources having
this birth date is looked up by the query in 11b. Here the birth date is inserted
in the object position and the query searches for URIs in the subject position.
The number � is then returned using the COUNT function. In this case � = 28,
meaning that the matching birth date contributes with � = 1/28 ⇡ 0.0357 to
the score for dbr:Virgil_van_Dijk.

SELECT DISTINCT ?Uri

GROUP_CONCAT(DISTINCT xsd:date(?date);separator=’|’) AS ?Birthdate

{

?Uri rdfs:label ?Label .

?Label bif:contains "Virgil AND (’van’ OR ’Dijk’)"

OPTIONAL {?Uri dbo:birthDate ?date}

}

(a) Find birth dates of matching URIs matching by name.

SELECT COUNT(DISTINCT ?Uri) AS ?bdCount

{?Uri dbo:birthDate "1991-07-08"^^xsd:date}

(b) Find URIs with the birth date 1991-07-08.

Figure 11: Retrieve birth dates and decide uniqueness of a matched birth date.

In addition to matching properties, being member of dbc:Premier_League_
players or dbo:SoccerPlayer also contributes to the score. The � values in
these cases are constant for all candidates and reflect the number of members
in either class, e.g. being one of the 4721 members of dbc:Premier_League_
players contributes with � = 1/4721 ⇡ 0.0002. Being a dbo:SoccerPlayer

only adds to the score if the candidate is not a member of dbc:Premier_League_
players too, since the latter implies the former.

For those properties ⇢(c) that are complemented with values from DBp, the
queries that counts the corresponding � are run against both datasets. Then �

21

is set to the larger of the two results, as that should best reflect the degree of
uniqueness. Optimally, � would represent |L⇢(c) [D

⇢(c)|, however no e�cient
way of calculating such a � was found. Neither could resources with the property
values contained in the abstract be counted. As a consequence, the query in
11b returned 0 in some cases. This happened when a Birthdate(c) had been
extracted from dbo:abstract(c) and no resources exist having the birth date
represented with dbo:birthDate. In those cases, the birth date is counted as
unique, thus adding � = 1 to the total score.

When all � values have been added together, a total score is given to the
resource in question. The score is rounded to 4 decimals. The resource in
the example, dbr:Virgil_van_Dijk, got a score of 0.0705. Having Birthdate

= ”1991-07-08” and Club = ”Liverpool” contributed with ⇠99.5% of the score.
The remaining 0.5% came from being member of dbo:Premier_League_players,
having Nationality = ”Netherlands” ”and Position = ”Defender”.

Ultimately, the candidate c with the highest score is picked and saved as the
best match for the player r.

3.4 Measuring data quality

With a best matching resource identified for each player in R, data quality
measurements could be carried out for this set of resources. As a consequence
of discovering significant di↵erences in their contents, both DBpL and DBp

were assessed, despite the original intention being to only assess DBpL. The
findings in Section 3.2 also played a part in choosing relevant measurements;
syntactic correctness depends on predicate range and semantic correctness can
only be decided if a predicate accurately correspond to the real-world property.

Some predicates that were certainly useful in the matching algorithm were
considered too inaccurate or ill-defined to be included when measuring data
quality. For example, birth country or national team is not the same thing as
nationality. The natural way of expressing a person’s nationality would instead
be with dbo:nationality. This predicate is well-defined in the DBpedia ontol-
ogy and frequently used (|Ldbo:nationality| ⇡ 122000), however not for football
players. The predicates deemed most accurate for representing each property
were:

dbo:birthDate for Birthdate.

dbo:number for Number.

dbo:position for Position.

dbp:currentclub for Club.

dbo:nationality for Nationality.

Population completeness was determined by the result returned by the matching
algorithm. For a resource to be considered a valid match, a score of at least
0.001 was required. A score of 0.001 corresponds to having matched by name
plus at least one other property and that property being shared by at most 1000
resources. Manual look-ups of the resources with the lowest scores above 0.001
was conducted to ensure correctness. We define the set of valid matches as V .

22

The population completeness in DBpL could then be measured as the ratio |V |
|R| .

A corresponding metric for DBp was produced by checking how many of the
matching resources also existed in DBp, i.e. the ratio |V \D|

|R| .
Property completeness was measured for each property respectively. Prop-

erty values ⇢(v) of each v 2 V was queried using only the valid predicates,
with V inserted in the query as VALUES. The respective metrics could then be
extracted from the query result set. For each property ⇢, the completeness in
DBpL was calculated as the ratio |V ⇢|

|V | . For example, if there are 100 matched
resources and 33 of them have values associated with dbo:birthDate, the com-
pleteness of Birthdate in DBpL is 33%. Property completeness in DBp was
measured as |(V \D)⇢|

|V \D| .
Syntactic accuracy was measured only for Birhdate and Number, since

dbo:birthDate and dbo:number were the only two predicates having typed
literal ranges, xsd:date and xsd:string respectively. Literals for Position,
Club and Nationality are all provided in triples with rdfs:label. With the
range of rdfs:label being any literal type, relevant measurements for those
literals could not be accomplished. When querying properties of all v 2 V ,
datatypes of the property values in Birthdate(v) and Number(v) were selected
using the DATATYPE function in SPARQL. Syntactic accuracy could then be
calculated as the percentage of retrieved values having correct datatype.

Semantic correctness of property values ⇢(V) was determined by comparison
with the property values in R. A property value ⇢(v) of a v 2 V was considered
semantically correct if it matched the corresponding ⇢(r). The criterias for being
a match were the same as those described in section 3.3.3. Semantic accuracy
was then determined by the proportion of property values being semantically
correct.

23

4 Results

This section presents the results of the study. First, the data quality measure-
ments – presented as tables – are analyzed. The subsequent discussion is split
in two parts: the first discusses the utility of DBpedia’s football data and the
second emphasizes the role of ontologies.

4.1 Analyzing the results

As can be seen from Table 3, most EPL players are represented in DBpL. One
would expect this, since DBpedia resources correspond to Wikipedia pages, and
Wikipedia is well-known for covering a lot of topics. That DBp has less player
coverage is also natural, with many new players emerging in the league in recent
years.

The numbers for population completeness are based on the matching algo-
rithm result. In order to validate this result, 20 unmatched player names were
looked up in Wikipedia with free-text search. For 14 of the 20 players, Wikipedia
pages with corresponding DBpedia resources were found. This indicates that
the actual population completeness might be significantly higher than suggested
in Table 3.

Common to most player resources that the matching algorithm failed to
find is that their names contain diacritics that are not present in corresponding
reference names. E.g., it fails to find the resource with rdfs:label “Muhamed
Bešić” due to the reference name being spelled “Muhamed Besic”. One way
of working around this problem, and thus obtain a more accurate metric for
population completeness, would be to use several di↵erent sources for reference.
Another way would be to set up a local DBpedia mirror with Virtuoso and then
configure the bif:contains function to be “diacritic insensitive” (OpenLink
Software 2016). However, the latter option seems unavailable for DBpedia Live
at the time of writing (DBpedia 2019). Matching by another property than
name would also have been a feasible solution, should the property be well-
represented among player resources in DBpL. The more properties with a high
degree of completeness, the more options for identifiers, thus identification does
not stand or fall with a specific property being represented in a certain way.

However, the numbers in Table 4a clearly shows that all of the assessed
properties have poor representation in DBpL. Properties of a player resource
are much likelier to be found in DBp, as is demonstrated by Table 4b. It
can also be seen that any property can not be retrieved. None of the player
resources in either dataset have their nationality described. This is most likely
due to DBpedia extracting most data from Wikipedia page infoboxes and these
do not include nationality. Current club is not described for any player in DBp

Table 3: Population completeness.

Dataset
Matched

resources

Completeness

%

DBpL 550 88.5
DBp 400 64.3

24

Table 4: Property completeness.

(a) Property completeness in DBpL.

Property
Resources

with property

Completeness

%

Birthdate 32 5.8
Number 30 5.5
Position 30 5.5
Club 30 5.5
Nationality 0 0

(b) Property completeness in DBp.

Property
Resources

with property

Completeness

%

Birthdate 366 91.5
Number 360 90
Position 366 91.5
Club 0 0
Nationality 0 0

either, despite being something that is displayed in Wikipedia infoboxes. This
is however reasonable, since this property could quickly be outdated. The club
of the player at the time is more likely described by dbo:careerStation than
dbp:currentclub in DBp.

In terms of syntactic accuracy, it seems that DBpedia can trusted. Table 5
shows that all assessed values conform to the data type range of their associated
predicates.

Birth date stand out as the property with the highest semantic accuracy, as
can be seen from table 6. There are several explanations for this.

Firstly, RDF-statements expressing birth date can never be outdated, whereas
those expressing e.g. number become semantically incorrect if the real-world
player changes number. As demonstrated by 6b, numbers have low accuracy in
DBp, which is likely due to most being outdated.

Secondly, it goes without saying that a resource can only have one correct
birth date. E.g. positions on the other hand can have di↵erent correct values.
The real-world player might play as a defender in some games and as a midfielder
in others. For resources being associated with several distinct positions, only one
position was counted as correct even if the other are also semantically correct,
since the reference players are only associated with one position each. There
is also a possibility that semantically correct values for number or club were
erroneously counted as incorrect, due to the DBpedia ontology not defining
what is expected of values associated with dbo:number or dbo:currentclub. It
was assumed that dbo:number refers to the current number, however it could
be the case that it refers to a player’s number at any time, hence di↵erent values
could be correct. While dbp:currentclub probably speaks for itself, it can not
be ruled out that di↵erent associated values can be semantically correct, should
the predicate refer to any type of club and not just football clubs. Still, outdated
statements is a more feasible explanation for resources having incorrect clubs.

25

A third reason for birth dates having superior semantic accuracy is that
dbo:birthDate has a defined range of xsd:date literals, and since all DBpedia-
retrieved birth dates were syntactically correct, they could be properly compared
with the reference dates. Comparing positions was not as straight-forward.
Again due to lacking ontology definitions, some semantically correct values for
position were possibly not counted as such. The reference positions are limited
to either of goalkeeper, defender, midfielder and forward, whereas in DBpedia
many other positions such as right-back, winger or striker appeared in triples
with dbo:position. Even though e.g. right-back is a type of defender, the
former was not counted as semantically correct when compared with the latter.
This problem could have been avoided, had the range of dbo:position been
defined. Then ad hoc mappings from each position in the range to either of
the four reference positions could have been implemented. Even better would
be if the positions were classified already by the ontology, e.g. right-back being
subclass of the defender being subclass of football positions etc. Then positions
could be queried by class instead, which would facilitate a more rigid assessment
of semantic accuracy.

Table 5: Syntactic accuracy.

(a) Syntactic accuracy in DBpL.

Property
Property

values

Correct

datatype

Accuracy

%

Birthdate 34 34 100
Number 37 37 100

(b) Syntactic accuracy in DBp.

Property
Property

values

Correct

datatype

Accuracy

%

Birthdate 370 370 100
Number 360 360 100

26

Table 6: Semantic accuracy.

(a) Semantic accuracy in DBpL.

Property
Property

values

Correct

values

Accuracy

%

Birthdate 34 31 91.2
Number 37 25 67.6
Position 34 22 64.7
Club 35 27 77.1
Nationality 0 0 -

(b) Semantic accuracy in DBp.

Property
Property

values

Correct

values

Accuracy

%

Birthdate 370 362 97.8
Number 360 171 47.5
Position 404 310 76.7
Club 0 0 -
Nationality 0 0 -

4.2 Discussion

The discussion considers two parts; DBpedia as a source for football data, and
the importance of ontologies.

4.2.1 DBpedia as a source for football data

The data quality measurements showed deficiencies in DBpedia’s football data,
with the most obvious being the lack of properties associated with EPL players
inDBpL. One of the strengths with linked data is that conclusions can be drawn
about entities of a particular type. Poor property completeness undermines the
validity of such conclusions. It seems thus that DBpL should only be used for
querying information about the individual player, though using DBpedia this
way hardly has any advantage over traditional web browsing.

The non-live version of DBpedia should be better for querying information
that involve data from many resources, although the set of retrievable properties
seems to be limited to those present in Wikipedia infoboxes. The temporal
aspect also needs to be taken into account. Due to its outdatedness, DBp is not
guaranteed to include most entities of a queried type and mutable properties
are likelier to be incorrect.

As was proven when implementing the matching algorithm, a more complete
representation of the players could be obtained by combining data from the two
datasets. Filtering such as “find all players with number 9” should be reliable
thanks to good syntactic accuracy and the statements should in most cases
be semantically correct. However, even when combining the two datasets, a
signicantly large amount of player resources still have incomplete descriptions,
making it di�cult to extract credible information about the players as a group.

27

If EPL players are representative for football-related resources in DBpedia
in general, little suggest that DBpedia data is of use in the football domain.
However, it was possible to at least identify most players in DBpedia. Should
more comprehensive football data exist elsewhere in the LOD cloud, DBpedia
could be a possible starting-point for accessing it. Wikipedia is unparalleled in
covering di↵erent topics, and by identifying the topic of interest, one can query
the corresponding DBpedia resource for outgoing links to other datasets. Of the
550 players found in DBpL, 337 were provided with the owl:sameAs predicate,
thus there might be links to more information about them.

4.2.2 The importance of ontologies

Apart from DBpedia’s football data itself being of seemingly poor quality, DB-
pedia also turned out to be deficient as a football ontology. With many of the
ontology terms being ill-defined, several assumptions had to be made about
them. Assumptions about ontology terms were based on the data instances,
although it should be the other way around. Much e↵ort that was spent on
understanding the relations in DBpedia could have been avoided, had the on-
tology been clearer. Moreover, a better defined ontology would facilitate data
quality assessment.

According to Zimmermann (2010, p. 95) a lack of appropriate ontologies is
a problem for Linked Data publishers. He claims that there are too few well-
known ontologies, hence it can be a di�cult task finding appropriate terms to
describe data within a domain. Transformation of data in traditional databases
into Linked Data to a greater extent would be encouraged if domain-specific
ontologies were more developed. Thus, the apparent under-representation of
football data as LOD could be due to the absence of a football ontology.

A typical problem that Zimmermann (2010, p. 95) mentions is that on-
tologies “exist but are di�cult to find because developed by small groups for
experimentation, lacking advertisement”. This appears to apply to the work
of Bergmann et al. (2013) who have made an e↵ort to create what they claim
to be the first comprehensive football dataset published as Linked Data. Their
dataset consists of more than 9 million RDF-triples describing various foot-
ball concepts and is accompanied by Soccer Voc, a dedicated football ontology
created by themselves.

The work of Bergmann et al. (2013) could potentially pave way for more
football data being published as LOD. However, it seems to have disappeared
from the web. This could be due to restrictions from organizations owning
the rights to the data. Bergmann et al. (2013) describe sports databases as
proprietary and only published a fraction of their created dataset in the first
place, due owner rights.

28

5 Conclusions

The World Wide Web constitutes a seemingly endless source of information,
although fractured and dispersed. Machines can help processing large amounts
of data. Linked Open Data takes advantage of the opportunity that the Web
represents, while at the same time using a reasonable amount of computing
resources.

Linked open datasets grow steadily, but this growth is not even across all
domains. As an example, the football domain is well-represented in terms of
resources and applications in the “normal” Web, but lacks of dedicated dataset
and ontology in Linked Open Data.

With this study we wanted to assess the status of the linked open football
data and understand the reasons behind its lack of development. We selected
DBpedia as the largest cross-domain dataset available, and Premier League data
as reference sample. We began by exploring the DBpedia ontology for terms
describing football resources, and with these, we built an algorithm to identify
and extract a set of Premier League resources. Finally we analyzed this set with
the help of established quality criterias and discussed the results.

The study of the football data in DBpedia shows that without schemas
declaring the expected appearance of the data, its extraction requires more
specific domain knowledge, e.g. to design queries and validate the data. The
advantage of DBpedia is that the amount of resources grows continuously. This
is also shown in the football domain (population completeness). However those
resources often lack comprehensive descriptions (property completeness), limit-
ing the use of DBpedia’s football data in its current form.

Despite this limitation, the fact that DBpedia is connected to other data sets
opens up the opportunity to investigate its role as a stepping stone to extend
the descriptions with data from other sources.

The challenges occurring in this study have highlighted the importance of
well-designed ontologies. The football ontology, rather the lack thereof, limits to
a great extent the development of the domain. Thus, it would be of importance
to analyze the factors that would stimulate this development, like economic and
social value of making available a complete linked open football dataset.

29

References

Addlesee, Angus (Oct. 31, 2018). Creating Linked Data. url: https://medium.
com/wallscope/creating-linked-data-31c7dd479a9e. (accessed: 2020-
04-28).

Bergmann, Tanja et al. (2013). “Linked Soccer Data”. In: Proceedings of the
I-SEMANTICS 2013 Posters & Demonstrations Track, pp. 25–29.

Berners-Lee, Tim (July 27, 2006). Linked Data - Design Issues. url: https:
//www.w3.org/DesignIssues/LinkedData.html. (accessed: 2020-04-02).

Bizer, Christian, Tom Heath, and Tim Berners-Lee (2009). “Linked Data - The
Story So Far”. In: Int. J. Semantic Web Inf. Syst. 5, pp. 1–22.

Brickley, Dan and Ramanathan Guha (Feb. 2014). RDF Schema 1.1. W3C Rec-
ommendation. W3C. url: https://www.w3.org/TR/2014/REC- rdf-
schema-20140225/.

DBpedia (Dec. 15, 2009). DBpedia Community. url: https://wiki.dbpedia.
org/about/dbpedia-community. (accessed: 2020-08-28).

— (Jan. 26, 2018). Public SPARQL Endpoint. url: https://wiki.dbpedia.
org/public-sparql-endpoint. (accessed: 2020-05-25).

— (July 3, 2019). DBpedia Live. url: https://wiki.dbpedia.org/online-
access/DBpediaLive. (accessed: 2020-05-18).

DCMI Usage Board (Jan. 2020). DCMI Metadata Terms. DCMI Recommen-
dation. Dublin Core Metadata Initiative. url: https://www.dublincore.
org/specifications/dublin-core/dcmi-terms/.

Dean, Mike and Guus Schreiber (Feb. 2004). OWL Web Ontology Language
Reference. W3C Recommendation. W3C. url: https://www.w3.org/TR/
2004/REC-owl-ref-20040210/.

DuCharme, Bob (2011). Learning SPARQL. O’Reilly Media, Inc. isbn: 1449306594.
Heckmann, Dominikus (2006). “Ubiquitous User Modeling”. PhD thesis.
Matuszka, Tamás and Attila Kiss (2014). “Alive cemeteries with augmented re-

ality and semantic web technologies”. In: International Journal of Computer,
Information Science and Engineering 8.2, pp. 32–36.

McCrae, John P. (Mar. 29, 2019). The Linked Open Data Cloud. url: https:
//lod-cloud.net/. (accessed: 2020-04-02).

Miles, Alistair and Sean Bechhofer (Aug. 2009). SKOS Simple Knowledge Or-
ganization System Reference. W3C Recommendation. W3C. url: https:
//www.w3.org/TR/2009/REC-skos-reference-20090818/.

OpenLink Software (Sept. 9, 2016). How Can I Control the normalization of
UNICODE3 accented chars in free-text index? url: http://docs.openlinksw.
com/virtuoso/virtuosotipsandtrickscontrolunicode3/. (accessed: 2020-
05-18).

— (2020). Virtuoso SPARQL Query Editor — Namespace Prefixes. url: http:
//live.dbpedia.org/sparql?help=nsdecl. (accessed: 2020-08-22).

Rula, Anisa, Andrea Maurino, and Carlo Batini (Mar. 2016). “Data Quality
Issues in Linked Open Data”. In: pp. 87–112. isbn: 978-3-319-24104-3. doi:
10.1007/978-3-319-24106-7_4.

Seaborne, Andy and Steven Harris (Mar. 2013). SPARQL 1.1 Query Language.
W3C Recommendation. W3C. url: https://www.w3.org/TR/2013/REC-
sparql11-query-20130321/.

30

https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://wiki.dbpedia.org/about/dbpedia-community
https://wiki.dbpedia.org/about/dbpedia-community
https://wiki.dbpedia.org/public-sparql-endpoint
https://wiki.dbpedia.org/public-sparql-endpoint
https://wiki.dbpedia.org/online-access/DBpediaLive
https://wiki.dbpedia.org/online-access/DBpediaLive
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://lod-cloud.net/
https://lod-cloud.net/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://docs.openlinksw.com/virtuoso/virtuosotipsandtrickscontrolunicode3/
http://docs.openlinksw.com/virtuoso/virtuosotipsandtrickscontrolunicode3/
http://live.dbpedia.org/sparql?help=nsdecl
http://live.dbpedia.org/sparql?help=nsdecl
https://doi.org/10.1007/978-3-319-24106-7_4
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

SPARQLWrapper Documentation (May 6, 2020). url: https://readthedocs.
org/projects/sparqlwrapper/downloads/. (accessed: 2020-08-26).

Vega-Gorgojo, Guillermo (2019). “Clover Quiz: a trivia game powered by DB-
pedia”. In: Semantic Web 10.4, pp. 779–793.

W3C (Oct. 25, 2009a). Semantic Web. url: https://www.w3.org/standards/
semanticweb/. (accessed: 2020-04-02).

— (Dec. 11, 2009b). Vocabularies. url: https://www.w3.org/standards/
semanticweb/ontology. (accessed: 2020-04-26).

— (Aug. 29, 2012). W3C Mission. url: https://www.w3.org/Consortium/
mission. (accessed: 2020-04-22).

Zaveri, Amrapali et al. (2016). “Quality assessment for linked data: A survey”.
In: Semantic Web 7.1, pp. 63–93.

Zimmermann, Antoine (2010). “Ontology recommendation for the data pub-
lishers”. In: ORES-2010 Ontology Repositories and Editors for the Semantic
Web, pp. 95–99.

31

https://readthedocs.org/projects/sparqlwrapper/downloads/
https://readthedocs.org/projects/sparqlwrapper/downloads/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/Consortium/mission
https://www.w3.org/Consortium/mission

	Introduction
	Theory
	Linked Data
	URI, namespace and prefix
	The RDF data model
	Ontologies
	SPARQL

	DBpedia
	Linked data quality aspects

	Querying football data in DBpedia
	The reference data
	Exploring the DBpedia ontology
	Finding football player classes
	Finding property representations

	Implementing an algorithm for identifying DBpedia resources
	Finding possible matches in DBpedia Live
	Complementing with data from non-live DBpedia
	Comparing possible matches with reference data
	Choosing the best match

	Measuring data quality

	Results
	Analyzing the results
	Discussion
	DBpedia as a source for football data
	The importance of ontologies

	Conclusions
	References

