
Kandidatuppsats i datalogi
Bachelor Thesis in Computer Science

Making GenFamClust user friendly in Python
Göra GenFamClust användarvänligt i Python
Jesper Holm

Supervisor: Lars Arvestad
Examinator: Marc Hellmuth
Date: May 26, 2022



Abstract

Genes evolve by duplication and mutation of already existing genes. Genes
that share a common ancestor are therefore often very similar to each other
in both structure and function. This is one reason why most of the ho-
mology inference algorithms mainly use sequence similarity. Unfortunately,
determining homology is not that simple; divergent families, convergent
evolution, and multidomain proteins are all reasons why sequence similarity
does not tell the whole story. A method called GenFamClust, consisting of
several modules, has been shown to perform better than other homology
inferring methods. However the GenFamClust program is not very user
friendly. The aim of this project is to make a new GenFamClust program
in Python that solves the usability issues from the predecessor. The re-
sulting Python program consists of the same module structure but reduces
the amount of commands required to run the program.

Sammanfattning

Gener utvecklas genom duplicering och mutation av en existerande gen.
Detta betyder att gener med en gemensam förfader ofta liknar varandra i
både genstrukturen och funktionaliteten. Detta är en anledning till att de
flesta algoritmer som bestämmer huruvida två gener är homologa använ-
der sig främst av geners sekvenslikhet. Olyckligtvis är det inte så enkelt
att bestämma om två gener är homologa; divergerande genfamiljer, kon-
vergent evolution och multidomän-proteiner är anledningar till detta. En
metod som kallas GenFamClust, som är uppbyggd av olika moduler, har
visat bra resultat jämfört andra metoder för att bestämma homologi av
gener. Men GenFamClust-programmet är uppbyggt på ett sätt som kräver
att användaren manuellt startar delberäkningar. Målet för detta projekt är
att utveckla ett nytt program i Python som löser sin företrädares problem.
Resultatet blev ett program med liknande modulstruktur men som kräver
färre kommandon för att köra programmet.



1 Introduction

In this project we use the terms homology and homologs often. In our
context, genes/proteins that are homologous to each other, simply means
they share a common ancestor. So by saying "determine homology be-
tween genes/proteins" as an example, we mean to determine if those
genes/proteins are homologous to each other, ie sharing a common an-
cestor. Homologs are interesting to determine, since there are many uses
for them, a few examples are: inferring phylogeny, predict protein struc-
ture and function prediction [2]. Another important term in this project
is synteny and this is essentially the conservation of order for genes on a
chromosome. In this project we also use the term protein domain, which
are what gives proteins their physical structure, but also more importantly,
gives the proteins their function(s) [5]. Protein domains are important to
us since they carry out protein functions which we either want to identify
or infer homology on. We also use the term sequence similarity and this
refers to sequences of genes/proteins can be aligned to some extent and
have similar sequences from that alignment. One way of calculating the
similarity score is by doing sequence alignments to find regions of similarity
and scoring these and this is what the method BLAST does. BLAST or
Basic Local Alignment Search Tool is an algorithm that finds sequence
similarities between genes/proteins against a database [10]. On NCBI’s
website [10], BLAST calculates several important measurements such as,
E-value, score and percent identity. However, in this project we are only
interested in the score, which is the highest alignment score, bit score, be-
tween a query sequence and a database match. The bit score is a measure
of sequence similarity that is log2 scaled and normalized. It also is indepen-
dent of the database size which makes it suitable for comparing matches
between searches. A similarity measure gives us a good idea whether two

3



genes/proteins are homologs, however due to problems such as divergent
gene families, convergent evolution and multidomain proteins [2] makes
determining homology limited purely based on sequence similarity. A se-
quence similarity network is a weighted network consisting of vertices that
represent gene/protein sequences and two sequences that share a signifi-
cant similarity, shares an edge weighted proportionate to their similarity.
The neighborhood of a sequence in the network is a set of other sequences
who shares an edge over a certain threshold. Multidomain proteins are sim-
ply proteins consisting of multiple domains. Unfortunately it is common
for multidomain proteins to share domains [2], which can lead to strong
local similarity for two otherwise unrelated proteins. This is why GFC not
only uses sequence similarity but also synteny to help determine homologs.

The GenFamClust method builds upon Neighborhood Correlation [11], or
NC for short, and the purpose of NC is to identify homologs in complex
multidomain families with varying domain architectures. The reason NC
is used as its similarity score is because of its great accuracy for inferring
homology on multidomain proteins compared to other methods such as
BLAST [11]. NC achieves this by creating a sequence similarity network
and determine homologs by looking at local topology in the network [11].
NC requires an input file containing all-versus-all BLAST scores for pair-
wise genes/proteins to run. BLAST can be either run through the website
or downloaded as a program on your computer. To run BLAST requires
two things, firstly it requires some query data, a sequence or sequences in
FASTA format [10]. FASTA is a text format that represents gene/protein
sequences. Secondly, BLAST needs to know what reference data you want
to use, this takes form of a database. All-Versus-All BLAST uses the query
data as a reference database.

GenFamClust, or GFC, is a program suggested by Ali et al. [2] whose
purpose is to determine homology between genes or proteins. GFC is based
on another homology inference method called Neighborhood Correlation,
and the GFC program is structured into different modules; Raw Similarity



Evaluator, NC, SyS, SyC, Homology Inference and Gene Family Clustering.
GFC utilizes a sequence similarity score together with a synteny correlation
score to infer homology [2]. The original code for GFC is publicly available
on BitBucket [3], but unfortunately the modules’ implementations are
structured in such a way that they are not user friendly. They require
the user to manually run one module and afterward use that output to
manually set it as input for the next module. This process makes the
program tedious to use and not very user friendly. The program does
state in which order the modules should be executed, but there are no clear
instructions on how to execute them. This project aims to investigate the
GFC code and then make it user friendly with Python and investigate the
following questions:

• How to best simplify the use of GenFamClust?

• To what extent can the GFC code be reused and how to best structure
the program in Python?

• How can we integrate the usage of Neighborhood Correlation into
this Python program?



2 Methods

GenFamClust and the original source code for GFC are publicly available
on Bitbucket [3]. Figure 2.1 shows the structure and workflow of GFC.

Figure 2.1: Diagram showing all modules and workflow of GFC and comes from Ali et al.,
2016 [2], licenced under CC-BY 4.0.

It was decided in this project to not include the first, Raw Similarity Eval-
uator, and last module, Gene Family Clustering, in the GFC program. The
main reasons to exclude the first and last module is because of time con-
straints, but also because those modules are commonly used and exist in
other programs and libraries. So the GFC Python program in this project
will consist of the four main modules: NC, SyS, SyC and Homology-
Inference module. The NC module calculates a robust sequence similarity
score for genes/proteins by looking at the neighborhoods of sequences in
a similarity network. The SyS module uses NC-values to calculate a score
for how similar the neighborhoods of two genes are. The SyC module
utilizes the SyS-scores in a similarity network to calculate a more refined

6



measure for synteny. The Homology-Inference module determines if a
pair of genes have significant similarity by looking at both NC-score and
SyC-score. As an input the GFC program will take a tabular output file
from BLAST together with synteny files that represents the genes in order
on a certain chromosome/contig and the program will output a file that
contain gene pairs that the program has determined to have significant
similarity, together with the gene pairs NC-score and SyC-score.

Two data sets have been used in this project and although both data sets
are from the same source, the intended use for this data are not to validate
the GFC method results but to investigate time usage for the modules in
the GFC Python program. The large data set consist of 19000 genes
from the human genome and 15000 genes from the mouse genome. The
small data set consist of roughly 7000 genes from each human and mouse
genome. The data used in this project is from [9] (human and mouse
BLAST scores) and [1]. All code and test data used for this project can
be found and downloaded from this GitHub repository [8].

2.1 NC Module

NC is the first module in our Python program and is what GFC is based on.
The method, Neighborhood Correlation, or NC, was suggested by Song et
al. [11]. NC identifies homologs by looking at a sequence similarity net-
work which shows patterns of gene duplication and domain shuffling in the
neighborhoods of sequences in the network. For example, two sequences
that have large amounts of similarity will have very similar neighborhoods
with strong edges between them and this will increase the NC score for the
two sequences. Whereas if one sequence has a large unique neighborhood,
this will in turn reduce the NC score between two sequences. The unique
neighborhood consists of neighbors from one sequence that does not exist
in the other’s neighborhood. Base code for this module can be found and
downloaded on the Neighborhood Correlation website [9]. The major part
of the NC source code is written in Python with Numpy, but the inner



loop of the program is written in C, which requires the user being able
to compile a C-file. This is not a problem for most Unix-based systems,
however macOS-systems will have to find their own commands from the
given Unix-based install instructions NC comes with. Windows users can
solve this by using Windows Subsystem for Linux, WSL, and following
the install instructions normally. The source code for NC is unfortunately
from 2008 which means that it was developed using Python 2.5 which is
not compatible with any Python 3.x version. So the first thing we did
was to port the NC Python code to the current version of Python, version
3.10. This was done by using a Python program called 2to3 [7] (found in
the Python documentation) and then verifying that the code was changed
appropriately to work with Python 3.7. An important note about the NC
C-part is that the program does have a backup Python implementation in
case it fails or is not found, however the Python implementation is greatly
slower than the C counterpart and can take over 10 hours to complete
when the C implementation will complete in about 5 minutes. So while
the C part is not technically necessary for the program to run, it is strongly
recommended that the NC module is being run with the C implementa-
tion. Other than the 2to3 change and some minor import fixes in the
Python code, nothing else needed to be changed in the NC module. NC-
score for two genes g1 and g2 is defined as:

NC(g1, g2) =

∑
i∈N(S(g1, i)− S(g1))(S(g2, i)− S(g2))√∑

i∈N(S(g1, i)− S(g1))2
∑

i∈N(S(g2, i)− S(g2))2

(2.1)
S(g1, i) is a normalized bit score from a query sequence g1 and i is a
database sequence, N is sequences in the database and S(g1) is the mean
S(g1, i) over all sequences i. Gene pairs with a NC-score over 0.5 can
be considered homologs [11], however in the GFC method a threshold
of NC > 0.3 is used to include some of the unclear gene pairs to infer
homology on [2]. Since the NC module is implemented with a Python



library called NumPy, a scientific computing package [6], NumPy is also
utilized in the GFC program to speed up some calculations. This of course
requires the user to have NumPy installed on their system, but should not
be a problem since NumPy is a very commonly used library and the NC
script also requires it.

The NC module will be installed as a script on your computer after fol-
lowing the install instructions included with the NC files and since the NC
module is a standalone script it will be run separate from the GFC pro-
gram. The input for this module is All against All BLAST-scores, which
is on the same format as the output below, except instead of NC-scores
the last column consist of a BLAST bit-score and the module outputs a
file that follows the format in figure 2.2:

Figure 2.2: Figure showing the output format for the NC module.

Columns in figure 2.2 are separated by one tab and NC-score ranges from
[0-1].

2.2 SyS Module

The Direct Synteny Score, or SyS, calculates a local synteny score by
looking at the gene order conservation in a pair of genes’ neighborhoods
and how similar they are.

SyS-score for two genes g1 and g2 is defined as:

SyS(g1, g2) = max{NC(a, b) : a ∈ n(g1), b ∈ n(g2)} (2.2)



where a, b are genes in the neighborhood, n(g), of g1 and g2 on a chro-
mosome or contig at most distance k from g1 and g2. By distance we
mean the number of genes up or down the order of sequences of genes on
a certain chromosome/contig. In the article written by Ali et al. [2] they
mention a previous study [4] by them, where they determined k = 5 to be
sufficient for estimating local synteny on genes from Metazoa. NC(a, b)
is simply the NC calculated value for genes a and b.

The GFC code for this module is written in Java, which meant that we
did not re-use any code in this module for our Python program. Instead
we used the definition in the GFC article to build this module in Python.

This module requires a synteny input file together with the NC-file from
the previous module. The synteny input file has a three column format
where the first column says what chromosome/contig a gene exist on.
The second column consist of the exact placement of the gene on a chro-
mosome/contig, although this metric is not currently being used in the
program. The Third column consist of the gene identifier. This order of
genes is very important when we want to find the neighborhood of genes.
Finally this module outputs a file containing the format shown in figure 2.3:

Figure 2.3: Figure showing the output format for the SyS module.

Columns in figure 2.3 are separated by one tab and SyS-value ranges from
[0-1].



2.3 SyC Module

Synteny Correlation Score, or SyC, is a score that incorporates more in-
formation than just the gene neighborhood of genes. SyC is based on SyS
scores and NC-scores over a certain threshold and SyC(g1, g2) is defined
as:

SyC(g1, g2) =

∑
i∈N (SyS(g1, i)− SyS(g1))(SyS(g2, i)− SyS(g2))√∑

i∈N (SyS(g1, i)− SyS(g1))2
∑

i∈N (SyS(g2, i)− SyS(g2))2
(2.3)

SyS(g) represent the mean of SyS(g, i), over all genes i such that
SyS(g, i) exist. N is a set of genes defined as:

N = ncHits(g1) ∩ ncHits(g2), where

ncHits(g) = {NC(g, j) ≥ β, j ∈ Q}. j is any gene from the input
data, which is denoted by Q. β is a threshold which can be set in the
program, but is by default β = 0.3.
NC and SyC are calculated similarly, however there are two major dif-
ferences. First is the similarity score used in the calculation, NC uses
a sequence similarity score whereas SyC uses a synteny score. The sec-
ond difference is the set used for the calculation. NC uses the the whole
database (of query genes), whereas SyC uses the set consisting of the in-
tersection of NC-hits for both genes that are being calculated. With this
gene set we perform the calculation on we measure the similarity of the
gene’s neighbourhoods instead of the direct sequence similarity of genes.

SyC is also written in Java which means that no code was re-used in the
Python program. More about this reasoning in the discussion chapter.

The SyC module takes as input 1) NC-scores and 2) SyS-scores from pre-
vious modules and will output a file containing the following format in
figure 2.4:



Figure 2.4: Figure showing the output format for the SyC module.

Columns in figure 2.4 are separated by one tab and the SyC scores ranges
from [0-1]

2.4 Homology-inference Module

The purpose of this module is to determine if a pair of genes are homologs
by using a heuristic decision boundary. A decision boundary is a way for
us to classify our data by applying our NC and SyC scores to a pre-defined
formula and depending on the result we can classify a pair of genes as
homologous. Ali et al. [2] defines the heuristic decision boundary h, for
genes g1 and g2 as:

h(g1, g2) = NC(g1, g2)
2 + 0.25 · SyC(g1, g2)

2 − 0.25 (2.4)

The heuristic decision boundary might not perform the best for every
dataset. This module takes as input NC scores and SyC scores generated
from previous modules and if a pair of genes are determined to be ho-
molog, ie h(g1, g2) > 0 , then it will output following format in figure 2.5:

Figure 2.5: Figure showing the output format for the Homology-Inference module.



3 Results

How to best simplify GenFamClust?

During the investigation of code and documentation the main usability
problem was found to be the large amount of manual commands required
to run all modules. It was decided that the best way to simplify GFC was
to make the Python program handle as many of the commands necessary
to run all the different modules. To furthermore simplify the program,
separate result files from the different modules is being created and put
in a specific folder in the program. This helps the program to not run
modules when a result file from it already exist. This also allows a user
to choose which module to start or continue with. The reason to put all
files in a specific folder is twofold, firstly for the program to automatically
find and use the output for previous modules, therefore lessen the amount
of manual commands required from the user. Secondly it is easier for the
user to locate and move result files in case the user wants them for other
reasons than just GFC. Due to time constraints in this project we did
not have time to fully integrate the NC module into the main program,
therefore the NC module needs to be run separately from the rest of GFC.
After the NC module has been successfully run and yielded a result file,
the rest of the program is executed with a single command.

Another important part of making GFC more easy to use is creating doc-
umentation, both documenting all code but also providing simple instruc-
tions on how to install and run the program. The install instructions are
especially important when it comes to how easy a program will be to run,
since it becomes much harder to run if there are unclear or missing instruc-

13



tions on how to operate the program. Which is why an installation/running
guide has been included together with the code to make it as easy as possi-
ble to start using the program. Together with good documented code and
the simple nature of Python the program is relatively easy to understand
and since the program does not use any data structures other than already
existing ones in Python such as lists and dictionaries. By only using stan-
dard Python methods of storing and iterating over genes, a user can very
quickly identify what the code does, and therefore quickly modify some
part of the code to, for example, read from a slightly different file with
some extra columns or add some extra information to the final output file.

What is the best way to structure GenFamClust and how
much code can be reused?

The best way to structure GFC Python was found to be keeping the over-
all module structure of its precedessor, but now use a main file to run all
modules from. This reduces the amount of manual commands required
from the user to run the whole program. However the NC module still is
required to be run by the user since it is a script separate from the main
program.

As for how much of the code could be reused, the simple answer is some,
but not as much as hoped. The reason for this is the majority of code
in the original GFC program is written in Java and it was chosen for this
project to implement the program in Python. While you definitely can
convert Java code into Python it will not solve the structure issue the
Java code had, which led to the program requiring many inputs from the
user. However the NC module was reused almost completely, except for
the fixes to make code compatible with Python 3.x. The Python code for
NC was ported to Python 3.x because most likely a user will have a Python
3.x version on their computer. Furthermore Python 2.x is no longer being
supported which is a big reason to not use it anymore.



How to best integrate Neighborhood Correlation into
GenFamClust?

The best way to integrate NC into GFC is to use it as its own Python
module. First by downloading the source code from [9] and then put it in
a module in the GFC program. This does however mean that it needs to
be installed using the included install instructions. To simplify the process
of installing the module, relevant install instructions for the NC module
have been included in the GFC install instructions, so the user only needs
to follow one set of instructions for the whole program.

The resulting Python program for GFC is similar in structure to how it
was before, however it now contains a more simple structure of modules
and folders to manage the program. As previously mentioned in this re-
port, GFC now contains four modules: NC, SyS, SyC, Homology-Inference
module. To run the new GFC Python program, it only requires the user to
do a few things, first download the GFC folder from the Github repository
[8], then follow the included install instructions for the NC scipt. Then
simply follow the running instructions for GFC. The new GFC program
only requires 2 commands to run the whole program, first run the NC
script by using the command: ’NC_standalone -f some_file_name.dat -o
nc.txt’. Then call the GFC main function with the command: ’python3
GFC.py synteny_file1 synteny_file2’ to run the rest of the program. For
the user this should be an improvement over its predecessor.

The new GFC Python program has some expectations when it comes to
running it. First of all it requires NumPy to be installed on the system.
Furthermore it is highly recommended to have a C-compiler on the system
to speed up the NC module. It also expects the user to supply synteny files
for two genomes following the format shown in chapter 2.2 (SyS Module)
to the main program. Furthermore to run the NC script the user will have



to supply a file containing BLAST scores for the genes/proteins the user
want to infer homology on. If the user can supply both of the synteny
files and the file containing BLAST scores, assuming all files follow the
required formats shown in this project, then the user should be able to
run the GFC program without problems.

NumPy was used to calculate equation 2.3 in the SyC module, which
helps the program run a little bit faster compared to using normal Python
lists for the calculation. The SyC module ran a few minutes faster with
NumPy when the module took approximately 60 minutes to finish. This
was not the performance gain we had hoped for with NumPy, but it
was nonetheless a small improvement on running times which we gladly
welcome for our Python program.

NC SyS SyC Homology-Inference
small dataset < 1 13 7 < 1
large dataset 5 68 77 < 1

Table 3.1: Table showing run times (in minutes) for GFC modules with different sized data
sets.

Table 3.1 show run time in minutes for the modules in GFC for different
sized data sets. As shown in table 3.1, the NC and Homology-Inference
module does not contribute much to the overall run time for the GFC
program. Even for large data sets the SyS and SyC modules are what
takes up the majority of run time in the program. A large portion, 15
minutes, of the SyC run time for the large data set consist of only loading
the necessary data into memory. Most likely if the program had access to
more RAM memory this time would be reduced.

Unfortunately due to time constraints we were not able produce any direct
comparisons with the original GFC code. From the test data we were
using, we tried producing the necessary synteny files for the original GFC
code, but unfortunately due to poor documentation of the format for the
synteny file, we were unable to recreate the required file.



4 Discussion

Python as a language was chosen for this project because of its goal to
simplify the usage of GFC and Python is a very simple language to code
in which helps a lot when writing code, especially when three out of four
modules were required to be rewritten. Python also has a wide range of
libraries it can utilize, for example Numpy, SciPy and Matplotlib to help
with algorithms and visualizing results. In this project we decided to write
most of our own code, this makes the program a good base with the
GFC method, and can easily be improved by either 1) adding (or chang-
ing/upgrading) modules or 2) incorporating more libraries to increase its
effectiveness with the range of available functions but also enable GFC to
do more in-depth analysis on genomes with more advanced functionality
in the future. However Python is not good at everything, for its increased
simplicity it sacrifices speed and memory consumption. In this program
we brought down execution time by using some help functions for the big
loops, where we pre-compute some part of the inner loops. An example of
this is in SyC module where we need to find the mean of SyS(g1, i) and
SyS(g2, i) for all sequences i. We help the main loop by pre-calculating
the SyS mean for all genes. This helps with execution speed but increases
RAM consumption because we now need to save mean SyS values for all
genes.

Initially we tried to implement GFC fully with NumPy, however this ap-
proach quickly got cancelled due to excessive runtimes compared to using
native Python structures when iterating over the data. Instead we used
NumPy with some calculations with vectors to lower runtime in the SyC
module.

17



As briefly mentioned in chapter 2.4 (Homology-Inference module), the
decision boundary was determined from a specific multispecies dataset.
This decision boundary probably does not work well with every dataset
out there, and depending how similar a dataset is from the multispecies
dataset (used for determining the decision boundary) it might warrant a
completely other decision boundary. To find such a decision boundary the
user will have to investigate and test a better one themselves.

This project have only been tested for Unix based systems with 16 GB
of RAM, since this GFC Python program was developed using a IDE (In-
tegrated Development Environment) in Windows, but installed and tested
using the WSL (Windows Subsystem for Linux). Therefore we have only
been able to create install and running instructions for Unix systems.



5 Conclusion

GFC has been shown to perform well with homology inference in previous
studies, however the original code made it somewhat tedious to use. Most
of those usability problems have been solved in this project by writing
new code in Python to help automate the process of using the modules
the program consist of. Furthermore this project has provided step-by-
step instructions for installation and execution of the program. The new
Python GFC program took a big step in the right direction when compared
to its predecessor in terms of its usability and at the same time opened up
the program for upgrades in the future, either swapping out modules or
incorporating more advanced methods that could potentially yield better
results in determining homology.

19



Bibliography

[1] Ensembl, n.d. https://www.ensembl.org/index.html, Last ac-
cessed on 2021-01-10.

[2] Raja H Ali, Sayyed A Muhammad, and Lars Arvestad. GenFamClust:
An Accurate, Synteny-aware and Reliable Homology Inference Algo-
rithm. BMC Evolutionary Biology, 16(1):1–19, 2016.

[3] Raja Hashim Ali. GenFamClust, 2019. https://bitbucket.org/
rhali/genfamclust/src/master/, Last accessed on 2021-12-05.

[4] Raja Hashim Ali, Sayyed Auwn Muhammad, Mehmood Alam Khan,
and Lars Arvestad. Quantitative Synteny Scoring Improves Homology
Inference and Partitioning of Gene Families. BMC Bioinformatics,
14(15):1–9, 2013.

[5] Malay Kumar Basu, Eugenia Poliakov, and Igor B Rogozin. Domain
Mobility in Proteins: Functional and Evolutionary Implications. Brief-
ings In Bioinformatics, 10(3):205–216, 2009.

[6] The NumPy Community. NumPy, 2006. https://numpy.org/doc/
stable/index.html, Last accessed on 2021-01-10.

[7] Python Documentation. 2to3, 2009. https://docs.python.org/
3/library/2to3.html, Last accessed on 2021-12-05.

[8] Jesper Holm. GenFamClust, 2021. https://github.com/
Jesperholm98/GenFamClust, Last accessed on 2021-12-05.

[9] Nan Song, Jacob M. Joseph, George B. Davis, Dannie
Durand. Neighborhood Correlation, 2008. http://www.
neighborhoodcorrelation.org/, Last accessed on 2021-12-04.

20

https://www.ensembl.org/index.html
https://bitbucket.org/rhali/genfamclust/src/master/
https://bitbucket.org/rhali/genfamclust/src/master/
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/index.html
https://docs.python.org/3/library/2to3.html
https://docs.python.org/3/library/2to3.html
https://github.com/Jesperholm98/GenFamClust
https://github.com/Jesperholm98/GenFamClust
http://www.neighborhoodcorrelation.org/
http://www.neighborhoodcorrelation.org/


[10] NCBI. BLAST, 1989. https://blast.ncbi.nlm.nih.gov/
Blast.cgi, Last accessed on 2021-01-10.

[11] Nan Song, Jacob M Joseph, George B Davis, and Dannie Durand.
Sequence similarity network reveals common ancestry of multidomain
proteins. PLoS Computational Biology, 4(5):e1000063, 2008.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi


Matematiska institutionen

Datalogi
www.math.su.se

Beräkningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm


	Introduction
	Methods
	NC Module
	SyS Module
	SyC Module
	Homology-inference Module

	Results
	Discussion
	Conclusion

