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Abstract

I have researched to what degree C++ could be used to help optimize a
phylogenetic tree inferring tool that is currently implemented in Python.
The tool is called dnctree. It is well known that there is a signi�cant over-
head involved in using CPython, the reference interpreter of the Python
language. Luckily, there are many ways to optimize Python code. We
will especially focus on a central strategy called vectorization. I have also
integrated a distance estimation tool, called PaHMM-Tree that is writ-
ten in C++ into dnctree. This was done by turning PaHMM-Tree into
a Python library, which allowed for easier interfacing and integration into
the existing dnctree Python code. Lastly, I have re-implemented Neigh-
bor Joining (NJ) from dnctree in C++, and compared its performance
with dnctree. The C++ implementation showed promising results. This,
among other things, has lead to the conclusion that C++ can signi�cantly
boost the performance of dnctree in ways that would be very di�cult, if
not outright impossible to achieve with Python+NumPy.



Sammanfattning

Jag har undersökt till vilken grad C++ can användas för att optimera ett
verktyg för inferens av fylogenetiska träd som är implementerat i Python.
Verktyget heter dnctree. Det är väl känt att det �nns betydliga pre-
standakostnader involverade i användningen av CPython som är referen-
simplementationen av språket Python. Som tur är �nns det många sätt
att optimera Pythonkod. Vi kommer speciellt att fokusera på en central
strategi som heter vektorisering. Jag har också integrerat ett avståndses-
timeringsverktyg som heter PaHMM-Tree och som är skrivet i C++,
med dnctree. Detta gjordes genom att omvandla PaHMM-Tree till ett
Python-bibliotek, vilket möjliggjorde enkel anslutning och integrering med
dnctrees existerande Pythonkod. Slutligen har jag skrivit om Neighbor
Joining (NJ) från dnctree i C++, och jämfört dess prestanda med dnc-
tree. C++-implementationen visade lovande resultat. Detta, bland annat,
har lett till slutsatsen att C++ kan betydligt öka prestandan hos dnctree
på sätt som hade varit väldigt svåra, om inte omöjliga att uppnå med
Python+NumPy.
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2. Introduction

2.1. A Computational Problem in the Field of Biology

In biology, scientists are interested in �nding evolutionary relationships be-
tween organisms. An evolutionary common ancestry between organisms is
established by �nding a set of similarities between them called homologies.
They could be for example structural or behavioral features. Comparing
more than two organisms with each other, one could create a so called
phylogenetic tree that provides a visualization of the genetic relationship
between the organisms. See Figure 2.1 for an example of a phylogenetic
tree.

In earlier studies of homologies, one would look at morphological char-
acters such as bone-structures [21]. Today, homologies are also looked
for at a molecular level, in the organisms' genome as well as in proteins.
This has helped researchers by providing a larger amount of independent
characters. Homologies at this level may refer to structural or functional
relationships [4]. These genomes or proteins are oftentimes large molecular
sequences of nucleotides or amino-acids.

Homologies, which are found through molecular similarities between se-
quences, can be identi�ed by aligning two or more sequences with each
other. This used to be performed by hand. But as the quantity of such
sequences grew, there became an increasing need for automation of the
process. Thereby a wide variety of algorithms have been introduced to
solve this problem. Commonly, these algorithms are based on some kind
of Multiple Sequence Alignment (MSA) where more than two sequences
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are aligned together based on a scoring system. Sadly, computing such an
MSA is an NP-complete problem [26], meaning any optimal solver would
scale very badly [4]. Therefore, heuristics and approximative methods are
employed instead. The result of this estimated MSA can then be used to
estimate the distances between each pair of sequences. These distances
are in turn used to build a phylogenetic tree by using an algorithm such
as Neighbor Joining (NJ) or variations thereof [19]. This latter step is
computationally taxing as well. For example, with NJ a correct tree can
be constructed in cubic time [29], if the distances are correct enough [1].
There are also so called "alignment-free" methods for approximating phy-
logenetic trees, in which case distances between sequences are determined
using some simpler similarity measures rather than aligning the sequences.
A tool called PaHMM-Tree employs such a method, a tool which we will
be talking more about in the coming sections. I will also show how it
can be integrated with a scalable tree construction tool called dnctree.
By doing so I am hoping that we can get a phylogenetic tree estimation
solution that has good performance and accuracy.

2.2. Estimating Phylogenetic Trees

Constructing phylogenetic trees, to help us visualize evolutionary history
between genomes or proteins, can be done in many di�erent ways. A com-
mon strategy is to use distance-based methods. Generally, these comprise
of three steps:

1. Calculate a multiple sequence alignment (MSA).

2. Calculate all distances dxy between each pair of sequences x and y
given the alignment.

3. Use the pair-wise distances to construct the tree, most commonly
this will be done using Neighbor Joining (NJ). [4]

The �rst and second steps are central to the whole process, and are also
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Figure 2.1.: Phylogenetic tree of 29 samples of the Zika Virus constructed through a distance-
based method and Neighbor Joining. This diagram is distributed under the CC

BY 4.0 license through the PLOS Neglected Tropical Diseases journal by Weger-

Lucarelli et al. Copyright © 2016 Weger-Lucarelli et al. [27]

together the hardest problem to solve due to various pitfalls in attempting
to estimate proper distances, such as the introduction of biases. They
are also many times the most computationally intensive, especially when
the lengths of the sequences are much larger than their number. In the
case of PaHMM-Tree, the distance estimation is an O(N 2L) algorithm
where N is the number of sequences and L is the length of each sequence,
assuming they have similar lengths [6].

The third step is (usually) Neighbor Joining, an O(N 3) algorithm [19].
There exist improved variations of NJ with seemingly better scalability
than the original algorithm, for example Relaxed Neighbor Joining (RNJ)
which has a typical time complexity of O(N 2log(N)) "without any sig-
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ni�cant qualitative di�erence in output" [18].

2.3. The Goal of This Thesis

Marcin Mogusz and Simon Whelan from Uppsala University (UU) intro-
duced in 2016 a novel distance estimator called PaHMM-Tree (pronounced
"palm-tree") which is based on an HMM-model. It uses a statistical
method to calculate pair-wise distances between sequences. The reference
implementation is done in C++ and is released as open-source software
under the GPL license. Its input is a set of sequences in the FASTA format
[5], and its output is a corresponding distance matrix. PaHMM-Tree has
shown promising performance in terms of accuracy when compared against
other distance inference methods such as MAFFT and PRANK [6]. The
tool serves as an excellent candidate to ful�ll the role in the second step
described above, which is to reliably generate pair-wise distances. The
�rst step is not needed when using PaHMM-Tree, because it is employing
an alignment-free method.

Lars Arvestad from Stockholm University (SU) has developed a tool called
dnctree which can perform distance-based tree building faster by not al-
ways requiring every single distance pair. Because of this, not every single
pair of sequences has to be compared, and we save some execution time.
It is written in Python. Its input is a set of sequences in various formats
(including FASTA), and its output is an estimated phylogenetic tree in
Newick format (a machine-readable string). Dnctree is not open-sourced,
but I do have access to it with permission from Arvestad. More speci�-
cally, the version that I am going to focus on is from July 2020. This tool
is very well suited for performing the third step of the tree building pro-
cess, which is to construct the tree given the (required) set of distances.
No formal complexity analysis has been done on this tool, but with exper-
imentation we will see that it seems to have signi�cantly better scalability
than NJ.
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My �rst task is to integrate PaHMM-Tree into dnctree to unite their
advantages. There are several problems with regards to interoperability
that have to be solved:

� PaHMM-Tree is written in C++, and there needs to be a way to
make its distance-calculating functionality accessible from Python,
which is the language that dnctree is written in.

� The tree building part of dnctree requires the ability to select speci�c
distances. Always giving it all the distances like the PaHMM-Tree
tool does would defeat the whole point of dnctree's tree estimation
algorithm.

� Solving the two points above might require some modi�cations to
PaHMM-Tree's source code. We need a su�ciently reliable way to
test these modi�cations to make sure that the functionality remain
una�ected.

My second task is to answer the following research questions:

� (RQ1) The user must feed the tool sometimes large inputs of data,
and at the end receive a phylogenetic tree as output. Should the read-
ing of sequence input and writing of tree output be done in Python
or C++?

� (RQ2) What are the performance bene�ts of using C++ for central
calculations (the tree building and distance calculations) rather than
using Python+NumPy?

� (RQ3) Is it possible to estimate how much faster dnctree would have
been if it was implemented entirely in C++ rather than Python?

By answering these questions we will be comparing C++ and Python in
terms of computational performance, the focus will be mostly on execution
time. But I will touch upon the subject of memory consumption and
management as well, as this is an important aspect of computations that
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involve larger amounts of data, as phylogenetic tree building sometimes
does. But before that, we will take a closer look at Neighbor Joining to
gain a better understanding of what it really does.

2.4. Neighbor Joining

Just to illustrate what Neighbor Joining (NJ) is and how it works, I will
dedicate this section to explain the algorithm.

Assume that there is a weighted tree representing the true evolutionary
relationship between a set organisms. The weights represent evolutionary
distances between connected organisms in the tree. Let us say that the
leaves are organisms from which we have sampled genetic material, and the
other nodes are common ancestors for their respective child nodes. From
this weighted tree we can construct a distance matrix D with the size
NxN where N is the number of leaves. Each element dxy represent the
evolutionary distance between the organisms x and y. Neighbor Joining is
able to reconstruct this tree from D, even if the distance matrix has small
errors [1]. We are hoping that by using a distance matrix, which we have
computed with the help of an alignment based method (or otherwise),
estimate a phylogenetic tree with NJ that corresponds with reality.

Neighbor Joining is an iterative algorithm. We keep track of all nodes
considered for joining and join two nodes on each iterative step by intro-
ducing an auxiliary node which connects the pair, see (b) in Figure 2.2.
Below we will go through each step in the algorithm.

(Step 0) Let us call the initial set of nodes that are considered for joining
K0. This set refers to the leaves of our tree, or rather the set of genomes
that we have the pair-wise distances (D) for. Therefore, |K0| = N .
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Figure 2.2.: Neighbor joining done in three steps. (a) Initially, the phylogenetic tree is com-
pletely unresolved and all nodes can be seen as joined in a star-shaped topology.
(b) Taking one step with the algorithm joins s3 and s4 by introducing an auxiliary
node u1. Only nodes connected by dotted lines will be considered in the coming
steps. (c) s1 and s5 are joined. (d) When there are only 3 nodes left, they are
joined together by a �nal auxiliary node, in this example we call it u3. Notice
that the �nal tree is unrooted.

(Step 1) Next, we need to begin joining a pair of nodes from Ki. To
choose which nodes to join we use the following formula [24]:

argmin
x,y∈Ki

[
(|Ki| − 2)dxy −

∑
k∈Ki

dxk −
∑
k∈Ki

dyk

]
(2.1)

The index i refers to the iteration step. Initially, i = 0.

After choosing our pair (x, y) we introduce an auxiliary node u and con-
nect x and y to it. Then we replace these two nodes with the auxiliary
node in Ki, in other words we get Ki+1 = (Ki\{x, y}) ∪ {u}. Notice
that |Ki+1| = |Ki| − 1.

8



(Step 2) After having introduced the auxiliary node u, we calculate the
distances between u and each other node in Ki+1 using [24]:

duk =
1

2
(dxk + dyk − dxy) for k ̸= x, y (2.2)

If |Ki+1| = 3 we proceed to step 3, otherwise we go back to step 1 and
continue the algorithm.

(Step 3) The last step is to connect the last three nodes in Ki+1. This
is done by introducing a �nal auxiliary node and connecting it with the
remaining nodes. See (d) in Figure 2.2. If we do not care about the
distances of all edges in the tree, we can consider ourselves done at this
point.

2.4.1. Dnctree

A shortcoming of Neighbor Joining is the requirement of having to utilize
every single pair-wise distance in D. Since distance estimation can be
relatively expensive, it would help to minimize the number of distances
needed during the tree estimation process. The dnctree algorithm is an
improvement over NJ in this regard. It uses a recursive randomized algo-
rithm that is able to omit some distance computations when estimating
trees from a larger number of sequences. Each recursion step splits the
problem into three sub-problems. Eventually, a recursion step will �nd
that the number of nodes to join are ≤ 100 and will use the NJ algorithm
to create a sub-tree of these nodes. In other words, dnctree does use NJ,
but only as the base case of its recursive algorithm. After each of the three
recursive calls have been made in a recursion step, the resulting sub-trees
from each call are joined together with the help of an auxiliary node.

Note that the resulting tree in NJ ends up being unrooted. In the case
of dnctree, the same is also true, but the tree is presented as having the
�nal auxiliary node as its root in the output.
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2.5. The C++ Programming Language

C++ is a multi-paradigm, compiled and statically typed programming
language. It allows for manual memory management and has no Garbage
Collection (GC). It features classes, function overloading, operator over-
loading, templates (aka generics) and more. The standard library is exten-
sive but mostly features general-purpose routines, such as for threading,
string manipulation, various common data structures, �le manipulation
and a number of others. Its primary strength is that it is close to the
hardware, yet rich in features.

When a language is statically typed it means that all types must be de-
ducible while the program is being compiled (compile time). Languages
that do not have this property are commonly referred to as dynamically
typed, which implies that in general the program must be executed before
all types can be deduced, and thus inhibit certain optimizations that could
have been done to enhance performance.

To get an idea of how C++ code is compiled to an executable binary, see
Figure 2.3.

The language allows you to manually manage memory, which means that
you can allocate space in the heap and in the stack as you see �t, and you
are responsible for not accessing any addresses outside of that space. It
also means that you are responsible for freeing space in the heap once you
are done with it. Data in memory can be interpreted however you like, a
string, an array of integers, or whatever other prede�ned or custom data
types. This freedom allows you to manage your resources in detail and
gives you the ability to perform very interesting optimizations. It is worth
noting that there are caveats to these freedoms. There is an increased
risk of introducing faulty behavior and security vulnerabilities, like bu�er
over�ows or memory leaks.

By following best-practices such as using smart pointers rather than raw
pointers, and using containers from the standard library whenever possible,
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Figure 2.3.: A diagram that summarizes how C++ code is compiled into an executable binary.
The code is usually split into source �les (.cpp) that represent modules and header
�les (.h) that contain supplementary code. Both types of �les contain C++ code.
Preprocessing has to happen to merge the supplementary header �les with the
modules before compilation. The marked steps are (1) compilation of source
code into unlinked machine code, and (2) linking of several object �les (and
libraries) into an executable.

many such errors can be mitigated.

There are very mature compilers available such as GCC and LLVM that are
able to perform a number of optimizations automatically. Examples are
constant folding, constant propagation, dead code removal, loop invariant
code movement and tail call optimizations [16]. You also have the ability
to use very low-level routines such as ones that invoke SIMD instructions
in your CPU to perform many operations at once [11]. This allows you
to further optimize your code in ways that the compiler cannot do on its
own. You have �ne-grained control over which optimizations to apply, not
only because of the language and the libraries that are available, but also
because of the advanced selection of compiler �ags that we have at our
disposal. It is possible to stick to the defaults by omitting any optimization
related �ags, or enable a whole set of optimizations through the �-O�
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�ag, or individual optimizations like e.g. �-�nline-functions� that lets the
compiler consider all functions for inlining [10]. In C++, functions can be
inlined, this means that the function body is "placed" where the function
has been called, so no actual call happens. Rather, the function body is
executed as if the body was located where the function had been called.
This eliminates some overhead that is intrinsic to function invocation.

Much can be said about C++ and its vast set of features, libraries and
tooling. The most important thing to understand is that this is a low-level
language, it gives the developer much control over how to optimize their
software but at the cost of an increased responsibility from the developer's
side.

2.6. The Python Programming Language

Python is easy to use, has a very rich development ecosystem and provides
us with a solid foundation to work with through a well-designed and well-
documented standard library [14], and a helpful set of coding standards
[23]. However, when it comes to performance of pure Python code, a lot
is left to be desired. This does not mean that we cannot write fast Python
programs, indeed we can! We will discuss the probably most e�ective and
common way to do so, which is to o�oad much of the computational
burden unto fast compiled libraries. But before that, we will go through
some details about Python as a language and how performance is a�ected,
then we will start looking at how vectorization with the Python library
NumPy can help us in this regard.

Python is a multi-paradigm, interpreted dynamically typed programming
language. The most commonly used interpreter is called CPython, this
is also the reference implementation of Python. This implementation
uses reference counting based garbage collection. The language features
classes, introspection, re�ection, operator overloading, and more.

From now on, when talking about Python I will implicitly refer to CPython
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(version 3), unless speci�ed otherwise.

Unlike C++, Python takes care of memory management automatically
by using reference counting. This means that whenever an object is ref-
erenced, a counter for said object will be incremented, and when the
object is forgotten (seizes to be referenced) somewhere in the code, the
counter is decremented. When the object is �nally no longer referenced
anywhere, this unused object is cleaned up from memory (garbage is col-
lected). Python controls allocation and freeing of memory tightly, and
therefore leaves little room for segmentation faults, bu�er over�ows, dou-
ble freeing, and a myriad of other faulty behaviors that can be wrongfully
implemented with lower-level languages.

2.6.1. Python's dynamism and performance

Python is a highly dynamic language in the sense that a program's struc-
ture can be altered at runtime in more ways than usually possible. To
illustrate this, let us start with a simple example:

def my_function ( value = 0 ):

my_function.__defaults__ = (my_function.__defaults__[0] + 1,)

print(value)

my_function() # Prints: 0

my_function() # Prints: 1

my_function() # Prints: 2

my_function("cat") # Prints: cat

Listing 1: Python function that modi�es its own argument's default value.

In Python, functions are objects, they have a type "function", and have
their own attributes. One such attribute is __defaults__, a tuple which
houses all argument default values of a function, and yes, as seen in the
code above you can set that attribute to something else at runtime. In
general, neither the type of an argument, nor its default value (if it exists)
can be accurately deduced before actually running the code.

13



Let us look at an even more important example involving classes:

from random import randint

class Triangle:

def __init__(self, point1, point2, point3):

self.point1 = point1

self.point2 = point2

self.point3 = point3

random_triangles = [] # Create an empty list

# Fill the list with 100 random triangles

for i in range(100):

p1 = (randint(-5, 5), randint(-5, 5))

p2 = (randint(-5, 5), randint(-5, 5))

p3 = (randint(-5, 5), randint(-5, 5))

random_triangles.append(Triangle(p1, p2, p3))

Listing 2: Creates a list of Triangle-objects. Because of how the constructor is de�ned,
Triangles are always initialized with 3 points as their attributes.

In this example, we create our own data type (class) called "Triangle"
composed of 3 points. Each point is a tuple with 2 integers representing
a position in a 2D coordinate system. If we want to iterate over all
the triangles in random_triangles to perform some computation using
their attributes, we will su�er many cache misses. These cache misses
happen when the processor is unable to locate data in the CPU cache,
and has to consult lower-level cache/memory such as RAM which results
in higher latencies. When data is fetched from RAM, it is transferred to
the cache in so called cache lines. These lines are sequential blocks of data
that contain what was requested, and more [17]. This is why sequential
reads from RAM are faster than random reads, because we utilize more
of already loaded cache lines. The reason why we will su�er from many
cache misses with the aforementioned list is because the triangles (and
their attributes) are not located sequentially in memory, and cannot ever
be located sequentially due to Python objects' dynamic nature. You could
for example expand an object like this:
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random_triangles[49].color = 0xFFFFFF

Listing 3: Give the 50th triangle a color attribute and assign the value 0xFFFFFF to it.

The �exibility seen in Listing 3 is incompatible with having the objects
placed sequentially, because the objects can have variable sizes and can
be expanded arbitrarily at runtime. Therefore, the objects must be stored
non-sequentially, and that is in fact what CPython's list data structure
does. Internally, a list holds an array of PyObject pointers. When the list
is populated with elements, the pointers will point at PyObjects (Python
objects) that reside at arbitrary locations in the heap. In Python 3.10.4,
a list is de�ned approximately as follows:

struct PyListObject {

// Lists are Python objects as well,

// so they inherit the same properties:

PyObject ob_base;

// The internal array where pointers to all elements

// are stored:

PyObject **ob_item;

// The number of elements in ob_item:

Py_ssize_t ob_size;

// The actual size of ob_item (could be larger than ob_size):

Py_ssize_t allocated;

};

Listing 4: An approximative de�nition of PyListObject which represents list-objects inter-
nally in the CPython interpreter. Comments have been added for clarity. For the actual
de�nition see [12] and [13].

Both Listing 1 and Listing 3 above are examples of re�ection, the ability
of a program to introspect and structurally modify itself at runtime. Apart
from Python's dynamic typing and re�ection capabilities causing poor CPU
cache utilization, important optimizations such as the use of SIMD be-
come di�cult, if not outright impossible to perform reliably. In fact, type
related optimizations are completely absent in CPython (ver-
sion 3.9) [30]. Even though Python has support for type annotations,
these are not mandatory and are only there to for example help develop-
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ment tools perform static analysis [15], they do not help the interpreter
in optimizing code at all.

2.6.2. Other noteworthy expenses in Python

Relevant when speaking about the performance penalties in Python are
the following expenses:

� The reference counter itself has been shown to slow down execution.
This could possibly be due to cache misses [30].

� Function calls have a signi�cant overhead [30].

� Using global variables from a function can be signi�cantly slower than
using local variables. This has to do with dict-style lookup vs. array-
style lookup, di�erent opcodes are used in these respective scenarios
[30].

2.6.3. Vectorization with NumPy

One way to unburden the Python interpreter is to vectorize our operations,
and one of the most common ways of doing so is to use the NumPy library.
It is quite famous, and is known to be very performant. Internally, it is
powered by compiled C code that uses SIMD instructions [22] among other
optimizations to deliver the aforementioned performance. It is also able
to further boost the speed of certain operations such as the dot product
by utilizing external libraries such as BLAS or LAPACK if they are present
on the system [7].

The way we use NumPy e�ciently is by storing the numbers that are to
be processed in instances of NumPy's own array data structure, called
ndarray [8]. Then we call NumPy's functions or methods to perform the
operations we want. It could be for example summing up all numbers of
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each column in a matrix, �nding an inverse matrix, calculating the dot
product of two vertexes, or many others.

Here is an example how to use another highly performant library called
Pandas to load integers from a large CSV �le into an ndarray, and then
use NumPy to calculate the average of these numbers:

# scores.csv content:

# UserID,Score

# 1, 15

# 2, 142

# 3, 63

# ...

import numpy as np

import pandas as pd

print(np.average(pd.read_csv("scores.csv").Score.to_numpy()))

Listing 5: Python program that reads all scores from the Score column of a CSV �le and
calculates the average.

As shown in Listing 5, if we have libraries that support the input format
and want to perform operations that NumPy support, then we can create
a high performance program with very little code.

The idea of operating on entire arrays rather than on each element indi-
vidually is called vectorization. If we want to perform high performance
mathematical operations with large amounts of data in Python, then it is
worth taking a look at NumPy. But it is important to understand that not
all types of algorithms can be easily represented with vectorized code. If
it is not possible, then another option would be to use special-purpose li-
braries to o�oad work from Python. Otherwise, due to the relatively slow
performance of pure Python code, you either have to implement these
routines (in a compiled language) yourself and interface with them from
Python, or even use another programming language entirely such as C++.

In light of all of this, as part of answering the research questions I will
discuss how dnctree could be optimized and which strategies might best
apply to its algorithm.
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3. Method

In this section I will describe how I have solved the main task as well
as how I have re-implemented the base case of the NJ algorithm within
dnctree in C++ to demonstrate a real-world comparison of performance
between C++ and Python.

3.1. Creating the PaHMM-Tree wrapper library: libpahmm

PaHMM-Tree is implemented in C++11 and uses Make for building/com-
pilation. It has a dependency called dlib which is shipped with the source
code [28]. This version of dlib is old (v18.17, released in August 2015),
and had to be updated due to past incompatibilities with CMake (the build
system that I use). I have also made sure to check if any custom modi�-
cations to dlib were made by the developers of PaHMM-Tree. Di�ng the
directory tree of v18.17 with the one included in PaHMM-Tree revealed
0 modi�cations, all �les were identical and updating the library should be
okay in this regard. Dlib has many components which themselves have
their own dependencies such as libjpeg, CUDA and others. I have ex-
plicitly set build-constants to disable many of these to keep the library
as light and portable as possible. The C++ version (C++11) had to be
updated to C++17 so that I would be able to utilize more modern parts of
the standard library, this required some modi�cations to the PaHMM-Tree
source code, but none that would a�ect the output of the program. Given
these modi�cations, I was able to proceed to turn PaHMM-Tree into a
C library. This C library would then be interfaced with using C Foreign
Function Interface (c�) from Python.
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To write the library code, the wrapper around PaHMM-Tree to interface
with it, I had to understand how the PaHMM-Tree code was supposed to
be used. The best reference for that would be the command line part of
the code, which instantiates the right objects, and uses them to create the
distance matrix given some arguments sent by the user. One problem how-
ever, was that there was no function that one could call to compute each
distance individually, you could only compute everything at once using the
method BandingEstimator::optimizePairByPair(). Luckily, this
method was easy to refactor and I was able to create a new method called
BandingEstimator::optimizePair(int i) that would compute the
distance of a single pair. BandingEstimator::optimizePairByPair()
was made to call the new method to compute every distance.

As you can see, the optimizePair method takes only a single index,
not a pair of indexes which would have referred to a pair of sequences.
The reason is that distances inside PaHMM-Tree are represented as the
elements of an upper-triangular distance matrix (excluding the diagonal).
They are actually stored sequentially in an array, starting from the �rst
row of the distance matrix. We have to �gure out which element in the
list corresponds to the distance between a given pair of sequences. The
following formula give us the right index: ((2N − 3) ∗ i− i2)/2 + j − 1
where N is the total number of sequences and (i, j) is a position in the
distance matrix upper-triangular part (i < j). This is equivalent to the
formula that is found in the command line code which does the same
thing, it is just slightly reformulated. The formula was used there to print
the distance matrix, and the code needed to access the elements given
an (i, j) position, which is exactly what we want to do. From there on,
�nishing the C-part of the library code was pretty straightforward. C++
is almost a super-set of C, and creating a C API using C++ is quite easy.
Primarily, there are two things to keep in mind when writing a C library
in C++:

1. Only use features that are supported by C in the public library header
�le (pahmm.h). In the module �les (*.cpp), where the implemen-
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tations actually are, and in private header �les, we may use C++-
exclusive features.

2. In the public header �le, we have to use the extern "C" { ... }

syntax to disable C++ name mangling, because otherwise we will
have issues exposing the API to a C program.

Once the C-part of the library was �nished, I prepared a setup.py �le
(something that is standard when deploying Python projects) that is ca-
pable of triggering CMake to build the C-library (called libpahmm) and a
special binary related to c� that links to this library. That special binary
can then be installed in an appropriate location to expose the C API to
Python. However, that was not enough. Due to limitations in C, we do
not have classes. Instead, essentially all we have are structs (data types
without methods) and functions, and they are not that pleasant to use.
Manual memory management is also necessary. We need to call functions
to create objects, and we need to call other accompanying functions to
clean up these objects, otherwise we get memory leaks. All such details
must be abstracted away. The end-user should be exposed to an object
oriented interface that is easy to use, and which follows Pythonic coding
patterns. So more wrapper code in Python had to be written, and in
the end 3 classes were exposed, with memory management being done
automatically.

3.1.1. Testing

Modifying the PaHMM-Tree code was risky, because if done incorrectly,
we might accidentally introduce bugs that a�ect the output. Even though
I have been careful while modifying the code, testing is necessary to prove
that the library produces the same results as the original PaHMM-Tree
tool. My strategy when testing libpahmm has been to compare each
distance produced from the library with the tool, given a set of sequences.
If we get di�erent distance values, then something is wrong. Some error
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tolerance had to be set, and I have decided that it should be 4 correct
decimal places because of the �oating-point precision in the output of the
tool.

One problem with testing PaHMM-Tree this way was that there were some
non-deterministic parts of the code. The function rand() (from cstdlib)
was invoked a few times, and the seed was set to be the current time,
which is hardly reliable if the tests run too slowly. Another problem was
that by using a newer version of dlib, PaHMM-Tree produced slightly
di�erent values, but in rare cases radically di�erent. To solve this, I had
to do two modi�cations to the original source code and libpahmm. The
�rst was to replace dlib with the same version that I had used in the library,
and the second was to make PaHMM-Tree deterministic by replacing the
randomization-code with code that uses the std::mt19937_64 [3] RNG
seeded with a �xed number, and sampled from in a way such that we
get a uniform distribution of numbers in the interval [0,RAND_MAX],
the same interval that the rand() generate numbers from [3, 2]. I have
been extra careful to not modify any other code than what is related
to randomization. These modi�cations can be found in tests/paHMM-
dist/core/Maths.hpp, cpp. In the end, the tests ran successfully. They use
a variety of input parameters and sets of sequences, which should create
enough coverage to give us con�dence that the behavior of PaHMM-Tree
has been su�ciently preserved. The test-suite is available under tests/ in
the libpahmm repository [20].

3.2. Modifying dnctree to use libpahmm for distance
estimation

In the command line code of dnctree, an instance of a class called MSA is
created. This represents the sequence aligner that feeds the tree building
algorithm its distances. I have decided to utilize Python's duck typing (if it
looks like a duck, quacks like a duck, then it is a duck), and create another
class called MSApaHMM that mimics the MSA class' interface. This newer
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class will use (lib)pahmm to calculate the distances. It has approximately
the same methods, enough to keep the rest of the code satis�ed. The
pahmm library reads the input FASTA �le itself, and supplies distances per
the request of the caller. If a distance has already been calculated before,
then it is just fetched from an array. I have also added a command line
option to use pahmm as the distance estimator, rather than the preexisting
one.

3.3. Re-implementing Neighbor Joining in C++

The best way to answer (RQ3) would have probably been to re-implement
the entire dnctree tool in C++. But such an endeavor would have taken
too much time for it to be practical for the sake of this thesis. The other
extreme is to approach the question in a purely theoretical manner. I have
decided to take the middle ground by doing some analysis on the code of
dnctree in light of the facts which we have discussed about Python and
C++ in the introduction. But I want to also give a real-world example of
how the base case of dnctree's algorithm would have performed in C++
by re-implementing and benchmarking it. The tree building algorithm in
dnctree is recursive, if it is processing 100 sequences or less, then it will
execute normal NJ (the base case). If we have more than 100 sequences,
then the algorithm will take extra steps to process the sequences faster.
It is the re-implementation of this base case in C++ that I will describe
here. In the Results section I will show the benchmarking results.

I wanted the C++ implementation to mimic dnctree as closely as possible,
and ideally produce identical results every time for a number of sequences
N ≤ 100. This makes it easier for us to make comparisons later on,
and it also makes testing relatively trivial. To implement NJ in C++, I
began by analyzing the part of the dnctree code that performs normal NJ,
it is a function called dnc_neighborjoining. It appears that it has 3
branches, one for N = 1, one for N = 2, and one for every other case
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N > 2. The last branch is the most interesting one, and that is where we
�nd a while-loop which does most of the work.

The algorithm depend primarily on two data structures, a Python list to
keep track of nodes to join (Current_Leaves in Listing 6), and a general
Tree class which represent the tree being built. Internally, the Tree class is
composed of an adjacency list to keep track of the graph, and an attribute
to specify which node is the root. The adjacency list is a Python dictionary,
the keys are the nodes and the values are Python lists of connected nodes.
Nodes are identi�er strings of each sequence, and this is how sequences
are referred to throughout the algorithm.

The third branch with the while-loop look something like this:

Tree <- "Empty tree"

Distances <- "Lazy loaded distance matrix"

Current_Leaves <- "List of all sequence IDs"

while |Current_Leaves| > 3:

x, y <- Select(Distances, Current_Leaves)

Current_Leaves.FindAndRemove(x)

Current_Leaves.FindAndRemove(y)

auxiliary_node <- CreateRepresentative(x, y, Current_Leaves)

Current_Leaves.Append(auxiliary_node)

Tree.AddEdge(x, auxiliary_node)

Tree.AddEdge(y, auxiliary_node)

Listing 6: Pseudo code describing in abstract terms how NJ is done. Note: The �nal 3 nodes
will be joined together, but this is not described here.

Given how the algorithm works, I was able to reach the following conclu-
sions about the choices of data structures and their performance implica-
tions:

� Using a list to keep track of current leaves (aka current neighbors)
is costly for larger numbers of sequences because you have to �nd
and remove two elements that could exist anywhere in the list, this
is an O(N) operation. I have decided to use a hash table in my
implementation instead.
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� Sequences are referred to using a string as an identi�er, this is costly
because we need to use plenty of hashing and string comparisons to
work with them. Instead, I have decided to use indexes to refer to
the sequences throughout the algorithm, which is cheaper and allows
us to use arrays e�ciently.

� The tree is built in a very speci�c way: the tree is (apart from the
root) binary, and the size is predictable from the start. With this
knowledge in hand, rather than using a general-purpose Tree-class, I
have built one based on std::vector that has a �xed size, where
each element is a node that knows its sequence ID (an index) and its
two children. The tree does not keep track of the root, it is not even
explicitly speci�ed in my algorithm and it did not have to be.

� The distance matrix is expanded dynamically in dnctree to leave room
for distances to auxiliary nodes. Since we know exactly how many
auxiliary nodes will exist, I have pre-allocated enough space from the
start, and no dynamic expansion is necessary. All elements are stored
sequentially.

It is worth noting that more sequential storage should theoretically lead
to less cache misses, and better performance.

In every other way, the NJ algorithm should be very similar.

Note: Since I am only interested in the performance of the tree building
itself (and not the distance estimation), my C++ NJ program only takes
precomputed distances as input rather than sequences. The responsibility
of estimating distances, or computing them randomly lies elsewhere.

3.3.1. Testing

To ensure that my re-implementation worked correctly, the safest way was
to compare the output with dnctree's output and make sure that they
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were identical. The way I had done this was by feeding dnctree and the
C++ NJ implementation several randomly generated distance matrices.

Dnctree was originally not able to take external distances as input, I had
to create a new MSA-like class (similar to what I did when implement-
ing pahmm support). Instead of the distances being computed, they are
loaded from a �le, stored in a list and accessed by the tree building algo-
rithm when needed.

I have created a program that for each sequence count 10, 20, ..., 100,
create a random distance matrix with the seeds 100, 101, ..., 109. So in
total, we have 100 test cases of various sizes. The program would for
each matrix compare the Newick tree output of dnctree with the one from
C++ NJ.

One problem that caused some test cases to fail initially was when two
similarly suitable pairs of sequences were selected by the algorithm's selec-
tion function (see Listing 6). The result was either based on how current
leaves were stored, or by extremely small errors at the end of the distances
that were di�cult to control or emulate in C++. To solve this problem,
I �rstly made the algorithm select nodes similar to how they were stored
in dnctree by taking advantage of the fact that they were stored in order
(�rst all sequences in ascending order, and then all auxiliary sequences
from new to old). Then I reduced the precision in dnctree a small bit to
eliminate the minor numerical di�erences, and in C++ NJ I adjusted the
tolerance when comparing distances accordingly.

After these adjustments, all test cases passed.

3.4. Benchmarking

To help us answer (RQ3) I have constructed a couple of benchmarks that
show the performance of tree building in Python (dnctree) and in C++
(NJ). The benchmarks ran on an Intel i7 6700k processor with Linux
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5.18.16-xanmod as the kernel. For C++ I used the perf tool for pro�ling
with 1 kHz sampling frequency, and I sampled the running time of the
NeighborJoining::build() method to only include the NJ algorithm
itself. GCC compiler �ags were �-O3 -DNDEBUG -std=gnu++20�. The
same idea was used for dnctree where I used the cPro�le pro�ler with
Python 3.10. There I sampled from the dnc_tree function. This func-
tion not only calls dnc_neighborjoining but also performs the full tree
building algorithm (if N > 100). The idea was to also compare dnctree's
tree building algorithm in Python with basic NJ in C++. For both pro-
grams I benchmarked using 6 di�erent random distance matrices of sizes
50, 100, 200, 300, 400 and 500. For every distance matrix I sampled the
running time of the aforementioned functions 20 times. That is in total
6 ∗ 20 = 120 executions for each program. For exact running times see
Appendix A.
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4. Results

For a comparison between dnctree's and C++ NJ's running time see Fig-
ure 4.1.

Figure 4.1.: Benchmark of dnctree's and C++ NJ's runtime performance in milliseconds.
The vertical black lines represent the standard deviations of each respective set
of running time samples.
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For N ≤ 400 the C++ NJ implementation clearly outperforms dnctree,
while also having a more predictable running time (see the lower spread in
Figure 4.1). Its memory consumption was also signi�cantly lower. But the
cubic growth of basic NJ in the C++ implementation is obvious. For N =
100 where both implementations use basic NJ, the C++ implementation is
more than 250 times faster! But for N = 400 the C++ implementation
is only 1.08 times faster. For N = 500 dnctree was 2.61 faster than
the C++ NJ! Clearly the improved tree building algorithm of dnctree
scales signi�cantly better than normal NJ, even with the huge performance
improvements gained from using C++.
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5. Discussion

In this section I will summarize this thesis by answering the research ques-
tions and re�ect upon the �ndings that have been made.

5.1. Answering RQ1: Input and Output

RQ1: The user must feed the tool sometimes large inputs of data, and
at the end receive a phylogenetic tree as output. Should the reading of
sequence input and writing of tree output be done in Python or C++?

Now that dnctree has support for estimating distances with pahmm, it is
better to let pahmm handle the input. The reason is that if we process
the input in Python, and then pass it on to the pahmm library, we will
be creating redundant copies of the data. In actuality, if I/O is done in
Python the entire process will be a bit slower due to Python's inherent
�aws when it comes to performance. It is inevitable that redundant copies
will be made, because the data structure that would have been created
with Python would be di�erent from the ones used by pahmm, and because
memory management is handled di�erently.

When it comes to output, the size of a tree in Newick format is relatively
small, and printing it to the Standard Out Stream (stdout) or to a �le
would likely account for only a tiny fraction of the entire phylogenetic tree
building process. But if one wishes to save some computational resources
here as well, and if a library is performing the NJ, then one could let it
handle the outputting of the tree if possible.
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5.2. Answering RQ2: C++ for distance estimation and tree
building

RQ2: What are the performance bene�ts of using C++ for central cal-
culations (the tree building and distance calculations) rather than using
Python+NumPy?

There are clear performance advantages of using C++, both in practice
and in theory. As we saw with the NJ implementations (dnctree's NJ vs.
C++ NJ), by using C++, using the right data structures and eliminating
some redundant computations (strings vs. indexes) we were able to reach
more than 250 times better performance. Much of this is owed to the
�exibility in how we perform our computations which we get with C++,
including our ability to program in a more cache-friendly way to reduce
cache misses. The C++ compiler is also able to perform many interesting
optimizations, and the performance increase when using the �-O3� �ag was
very noticeable. Even in the C++ pro�ler, I noticed aggressive inlining of
functions, which is a type of optimization that reduces the overhead of
function calls.

Because of the results and what we know from past literature about the
performance of C++, it is easy to say that the distance estimation would
bene�t (is bene�ting in the case of pahmm) from being implemented in
C++.

However, we can de�nitely achieve similar performance with NumPy for
some applications due to its heavy optimizations and vectorization. But
it is not immediately clear how NumPy could be useful for NJ. We could
replace the Distances data structure seen in Listing 6 with a NumPy ma-
trix. Current leaves could be implemented as an array of indexes, given
that we use indexes rather than strings. This index array would then have
elements added to/removed from it O(N) times in Python (see the while-
loop in Listing 6). This is an okay compromise, because the array is useful
for optimizing the summation of distances which occur many times in the
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selection function. From my experiments, these account for a signi�cant
part of the runtime overhead of dnctree. When it comes to the tree itself,
it is unclear for me how to utilize NumPy to optimize it.

Regardless, it does seem that we have to do non-constant amount of work
in pure Python, and C++ could help (at least) in this regard given its
performance advantages.

5.3. Answering RQ3: The Performance of a C++-based
Dnctree

RQ3: Is it possible to estimate how much faster dnctree would have been
if it was implemented entirely in C++ rather than Python?

To be fair, I have only re-implemented the basic NJ part in C++, and
to say that dnctree's NJ would have been 250 times faster if it had been
written in C++ is a bit of a stretch. So we need some more analysis.
Given that the distance estimation code is purely implemented in C++
(pahmm), and that I/O is relatively insigni�cant in terms of time com-
plexity, I will only talk about the tree building. Neighbor Joining is only
a part of dnctree, the entire algorithm would possibly need more complex
data structures than the ones I have used, which might reduce perfor-
mance. It is also worth noting that the distance matrix that dnctree uses
is lazy-loaded, for the reason that dnctree does not need all distances. I
do not think that NumPy's ndarray data structure has support for lazy
loading, let alone from an external source. So using NumPy for the dis-
tance matrix for the entire algorithm may prove challenging, if not outright
impossible. A di�erent approach here would probably have been to only
build a NumPy distance matrix when executing the base case (NJ), then
taking the same approach mentioned in my answer to (RQ2). This does
require O(N 2) copying every time it is done, but it could be worth it.

With that said, the benchmarks do show very large di�erences in perfor-
mance, even when the algorithms are almost identical (when N ≤ 100).
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It is clear that even if we decide to implement the entirety of the dnctree
algorithm in C++, with O(N 2) copying for NJ, we would get a signi�cant
performance boost. With regards to the base case alone, it is safe to say
that once a full distance matrix has been created, its performance would
by huge (the benchmarks can attest to that), and it would help dnctree
signi�cantly.

5.4. Possible Improvements

I will dedicate this section to mentioning some things that could have been
done better when it comes to coding and analysis within this project.

Firstly, the C API's naming was not very clear because the names were
immediately based on the PaHMM-Tree code base, and without some
context it is di�cult to understand what everything means. This could
have been improved. Secondly, when implementing a getter (or a setter)
in C, it is a good idea to leave the return value for error codes, and
use a pointer parameter to pass the return value, otherwise it might be
di�cult to express many di�erent errors for the same routine (unless we
use the ugly errno pattern). Lastly, the code is not thread-safe. In fact,
I have not mentioned threading at all until now. The reason is that this
adds another layer of complexity which is beyond the scope of this thesis.
In reality, threading support could be very useful and signi�cantly boost
performance, especially if the improved NJ algorithm in dnctree could be
parallelized (and C++-based).

I feel con�dent about my analysis given the scope of this thesis. However,
it is worth mentioning that there is plenty of depth when it comes to ana-
lyzing the runtime performance of phylogenetic tree building software such
as this. One could conduct this analysis in a much more in-depth manner,
by among other things utilizing more information about the hardware it
runs on, about the various algorithms involved and the C++ toolchain
used to build and debug the applications.
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It is also worth noting that there are other Python interpreters out there
than just CPython. Another example is PyPy which implements Just-In-
Time (JIT) compilation to achieve (many times) better performance than
CPython [25]. There is also Cython, which has its own typing system and
is able to use it to optimize code [9].
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6. Conclusion

I have managed to turn the PaHMM-Tree tool into a Python library,
and make dnctree use it as its distance estimator to hopefully enhance
dnctree's accuracy. I have also managed to implement basic NJ in C++
based on dnctree's algorithm, and by doing so getting empirical data that
helped me answer the research questions. My hope is that this thesis has
proven that C++ can enhance dnctree's performance signi�cantly. I also
hope that my analysis of the data structures and how they are used within
dnctree could aid in further improvements to its runtime performance as
well as memory usage, and also provide some useful hints that could be
useful for optimizing other similar programs as well.
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A. Benchmarking data

Detailed results from the C++ NJ vs. dnctree benchmarking.

50 100 200 300 400 500

527 7973 4161 13346 15273 12535
519 7934 4877 7221 10352 17602
506 7790 7339 6509 13341 8949
507 8238 8525 10898 13713 10565
502 7840 9975 13329 15491 20500
504 8047 8499 6173 12899 11486
578 8126 7881 2752 15187 7734
503 8343 5003 4959 6478 13991
548 8126 7323 7650 15132 5802
533 8289 10561 9743 8580 16680
565 7998 10075 7163 12311 8701
502 8230 6610 4527 11014 5303
495 8159 5987 14505 22028 11777
497 8179 5477 6696 11884 8600
512 8025 7786 6975 13706 9642
512 7930 2623 7745 6516 4957
518 8118 8470 10800 5415 9307
504 8365 9755 12119 12542 15374
497 8022 2989 10637 15999 15975
504 8177 7596 6312 9639 14363

Table A.1.: Running times in milliseconds for dnctree's tree building. The headers show the
number of sequences the distance matrix described (N = 50, 100, ...), and the
numbers beneath them are samples generated by measuring how much time it
takes to process a random distance matrix.
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50 100 200 300 400 500

1 31 671 3519 11505 30053
1 31 674 3546 11508 30037
1 29 667 3515 11462 30247
1 31 665 3520 11463 30037
1 26 674 3530 11408 29970
1 28 662 3507 11499 30118
1 30 670 3546 11706 30287
1 32 672 3549 11396 30083
1 32 660 3571 11444 30304
1 30 672 3529 11536 30087
1 31 665 3547 11431 30009
1 30 664 3540 11430 30014
1 32 667 3542 11443 30008
1 29 659 3540 11483 30122
1 31 650 3550 11465 30002
1 29 666 3575 11461 29994
1 29 668 3542 11435 29914
1 32 662 3525 11431 29925
1 29 676 3540 11456 30002
1 30 664 3554 11432 30025

Table A.2.: Same as Table A.1, but for the C++ NJ implementation.
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