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Abstract

It is known that a single gene can give rise to not only one but several di�erent alternative

protein variants through alternative splicing. It can be troublesome to compare a protein

sequence with other protein sequences if it is one of many alternative sequences produced by

a single gene. In such a case the gene's longest sequence is usually selected as its represen-

tative sequence. We suggest an algorithm that selects, for each input gene, a representative

sequence based on the sequence's similarity to the other genes' sequences. The algorithm is

tested on simulated data created with the SimSpliceEvol program, and the output represen-

tatives are compared with the longest sequences by creating a multiple sequence alignment

(MSA) for both of them respectively. The MSAs are scored with the sum-of-pairs method.

In 69.2 percent of 321 cases, the output representatives' MSAs scored higher than the longest

sequences'. However, since the algorithm frequently selected the longest sequences as rep-

resentatives, choosing the longest sequence as a gene's representative may not be the worst

choice most of the time. This project may provide a new perspective of selecting a gene's

representative sequence with this approach if it has not been explored already.

Sammanfattning

Det är redan känt att en enda gen kan ge upphov till �era olika alternativa protein vari-

anter genom alternativ splitsning. Det kan vara besvärligt att försöka att jämföra en protein

sekvens med andra protein sekvenser om den är en av �era alternativa sekvenser som är

producerad av en enda gen. I ett sådant fall brukar genens längsta sekvens väljas som

dess representativa sekvens. Vi föreslår en algoritm som väljer, för varenda gen som �nns

i indatan, en representativ sekvens beroende på sekvensens likhet med de andra genernas

sekvenser. Testning för algoritmen görs på simulerad data som är skapade med hjälp av Sim-

SpliceEvol programmet. Utdatan, alltså de representativa sekvenser, av algoritmen jämförs

med de längsta sekvenserna genom att en multiple sequence alignment (MSA) skapas för de

representativa och de längsta sekvenserna vardera, och båda alignments får poäng genom

sum-of-pairs metoden. I 69.2 procent av 321 fall har de representativa sekvenserna fått hö-

gre poäng än de längsta sekvenserna. Dock, eftersom algoritmen valde de längsta sekvenser

som representativa sekvenser för en stor andel av testerna kan det verka som att valet av

den längsta sekvensen som en gens representativa inte är det värsta valet i de �esta fallen.

Detta projekt kan ge ett nytt perspektiv på val av en gens representativa sekvens med hjälp

av våra metod om det inte redan hade utforskats.
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1 Introduction

1.1 Sequence alignment

All organisms have cells which each contain a DNA molecule, including ours [1]. A common
task in bioinformatics is to compare two or more sequences of DNA, RNA, or protein. A
DNA molecule contains information for building and maintaining an organism, and the infor-
mation is stored by a sequence made up of the four chemical bases along the molecule. The
four bases are adenine (A), guanine (G), cytosine (C) and thymine (T). An RNA molecule is
similar to a DNA molecule in that their sequences are made up of the same bases except for
thymine, which is replaced by uracil (U). RNA molecules are used for di�erent tasks within
the cell, one of which is to transfer information from the DNA to the production of a protein
[2]. Proteins perform most of the tasks in a cell and are vital for the function and regulation
of an organism's body [3]. Before a speci�c protein is produced, a gene's sequence, i.e. a
subsequence of the DNA that contains the information for building the protein, will �rst
be transcribed into an RNA molecule [4]. The RNA's sequence of base pairs will then be
translated to a sequence of amino acids, which is what makes up the protein. Sequence
alignments are used in order to study the similarity between sequences for various reasons,
one of which is phylogenetic analysis, which involves studying and comparing species, genes
or proteins, and estimating the evolutionary relationships between them [5].

An alignment of two sequences, called a pairwise alignment, is done by placing the se-
quences in rows on top of one another and having identical symbols placed in the same
column while having nonidentical symbols either placed in the same column or one of them
placed against a gap in the other sequence [6]. For example, in the alignment in Figure 1,
the last 'G' symbol of the second sequence is placed against a gap, '-', in the �rst sequence.
Meanwhile, in the alignment in Figure 2, the two symbols 'G' and 'C' are placed in the same
column as a mismatch, marked here with a '.' instead of a '|' which otherwise marks a
match. Sequences being aligned will have the same length in the resulting alignment.

AGCUUUCAAGCUAA-
|| ||||||||
AG----CAAGCUAAG

Figure 1: Pairwise alignment of RNA sequences 'AGCUUUCAAGCUAA' and 'AGCAAGCUAAG'. When aligning closely
related sequences, gaps can be interpreted as evolutionary events, such as mutations. Here, for example, either the
�rst sequence gained the 'CUUU' segment or the second sequence lost it since both sequences evolved from their
common ancestor.



AGCUUUCACAGCUAA
|| ||.||||||
AG----CAGAGCUAA

Figure 2: Pairwise alignment of RNA sequences 'AGCUUUCACAGCUAA' and 'AGCAGAGCUAA'.

To �nd the optimal alignment one would have to �rst de�ne a scoring scheme, which gives
a score value to every possible pair of symbols that can occur in an alignment column of
a pairwise alignment. For an alignment of two sequences for example, one could have a
scoring scheme that yields 1 point for a column with a matching pair of symbols, −1 points
for a column with a gap symbol, and −2 points for a column with a mismatch. The opti-
mal alignment in this case would be the alignment that scores the highest with this scoring
scheme.

One can align sequences either globally or locally. Global alignment is when the sequences
are aligned in their entirety, resulting in an alignment containing all the symbols from the
sequences, like the ones in Figures 1 and 2 [6]. On the other hand, local alignment is when
segments of the sequences with the highest density of matches are aligned, resulting in an
alignment that can consist of several subalignments of subsequences, and can thus leave
out other segments of the sequences. The alignment in Figure 3 is an example of a local
alignment, in which only the segments of the sequences that are most alike are aligned. The
dashes here indicate both gaps and symbols of the sequences that are not included in the
alignment.

GCACTTAAGTA
||.|| |

---CTGAA-T-

Figure 3: A local alignment of RNA sequences 'GCACTTAAGTA' and 'CTGAATG'.

Local alignment is more suitable for �nding conserved patterns in sequences [6]. It is also
more appropriate if, for example, the sequences to be aligned are nucleotide sequences that
contain genes, but the exact boundaries of the genes are not known, and so one would not
want to include segments that are actually outside the genes' boundaries in the alignment
[7]. On the other hand, global alignment is more suitable for cases like �nding mutations in
closely related gene or protein sequences, where the sequences are more similar [8].



1.2 Alternative splicing

The genome of an organism provides the information for the organism to function [9]. It
contains the genetic information stored in DNA molecules. Gene expression is the process
where information stored in a segment, called a gene, of a DNA molecule is used to synthe-
size products, particularly proteins. Transcription is the �rst stage in this process, where
the DNA sequence of the gene is transcribed into an RNA transcript. In Eukaryotes many
genes give rise to RNA transcripts that have to go through what is called splicing, in which
segments of an RNA transcript are removed, and the rest are spliced together to form a
mature RNA transcript, ready to be translated into a protein.

The genes of eukaryotes usually contain segments of introns and exons. Introns are the
regions in the gene's nucleotide sequence that are non-coding for the resulting protein, and
exons contain the coding regions. When an RNA transcript goes through the splicing pro-
cess, the introns are the segments that are removed while the exons are the ones that are
spliced together. See Figure 4 for an example of an RNA transcript being spliced.

Figure 4: A gene with introns and exons. The RNA transcript of the gene goes through the splicing process and the
result is a messenger RNA (mRNA), which is ready to be translated into a protein. Courtesy: National Human

Genome Research Institute [10].

The resulting sequence of an RNA transcript that has gone through the splicing process
isn't always the same though. Alternative splicing events can occur, during which introns
can be retained in the resulting sequence (intron retention), or exons can be excised instead
(exon skipping). The 5' and 3' splice sites of introns, which are the ends of the intron where
the removal of it during splicing starts and ends, can also be altered, causing there to be

https://www.genome.gov/
https://www.genome.gov/


alternative splice sites [11].

These alternative splicing events can give rise to several alternative RNA transcripts, and
in turn, to several protein variants from a single gene. Since these resulting proteins di�er
in their amino acid sequences, so too may their functions [12]. A study done by Pan et al.
suggests that around 95% of human genes that contain multiple exons produce transcripts
that undergo alternative splicing [13].

1.3 Sequence alignment programs

There are several available programs for both pairwise sequence alignment, that is the align-
ment of two sequences, and multiple sequence alignment (MSA), the alignment of three or
more sequences. Although there are a multitude of these programs, they do not take into
account alternative transcripts if one would want to align RNA transcripts or protein se-
quences. If one would want to, for example, align the protein sequences from a set of genes,
and some of those genes happen to be able to produce several alternative protein sequences,
one might have to resolve this issue by selecting a representative sequence for each of those
genes before the alignment.

The RefSeq Select dataset provides representative transcripts for protein-coding genes based
on multiple selection criteria, including the transcripts' prior use in clinical databases [14].
The RefSeq Select dataset is currently available for human and mouse genes, and is planned
to provide sets for other eukaryotes. This unburdens scientists of choosing representative
transcripts but currently only for human and mouse genes. In the case where one has to
manually choose, the longest transcript is usually chosen. This is not always the best choice,
especially if the longest transcript is the longest simply because it accidentally contains in-
trons, which are non-coding for the protein. It could therefore be bene�cial to have another
method of selecting representative transcripts in case there are no such datasets for the genes
being studied.

1.4 Suggested algorithm

We suggest and test an algorithm that takes as input a set of genes, each having one or
more transcripts, and the algorithm will select a single transcript as a representative for
each gene. The selection of the representative transcript of a gene is based on the tran-
script's sequence similarity with the other genes' transcripts. The algorithm, using pairwise
alignment to calculate the similarity between two sequences, selects the transcript with the
highest sequence similarity with the other genes' transcripts.

The reason for this way of selecting representative transcripts is because it has been shown
that for a pairwise alignment of two related proteins with at least 50% residue identity,
that is the percentage of matching symbols in the alignment, the functions of the proteins
are likely to be signi�cantly similar [12]. There are, of course, exceptions where similar



sequences do not have similar function, and conversely, distantly related and dissimilar pro-
tein sequences that do have similar function. This can lead to erroneous assumptions about
a protein's function, but we choose to base our choice of the representative transcript on
this correlation between sequence similarity and function similarity. We will then compare
our method of selecting representative sequences with the method of choosing the longest
sequence as representatives.



2 Method

The algorithm is written in Python and uses the Bio.pairwise2 module for creating pairwise
alignments [15].

2.1 Algorithm

2.1.1 Input

The input for the algorithm is a set G of genes. The genes in turn are sets containing se-
quences of either only cDNA (coding DNA), only RNA or only protein residues. For example,
let g ∈ G, and g = {s1, s2} where s1 and s2 are the two sequences 'AGCUUUCAAGCUAA' and
'AGCAAGCUAAG' from Figure 1 respectively.

2.1.2 Output

The algorithm returns the set Gr, which holds, for each g ∈ G, a corresponding element gr,
which is the representative sequence for g. For example, if h ∈ G and h = {s1, s2, s3}, and
s2 is the representative sequence of h, then hr = s2.

A sequence, s, of a gene, g ∈ G, is selected as the representative, gr, if the sum of the
scores of its alignments with the sequences of all the other genes in G is the highest among
the sequences in g. Hence, in the example above, s2 was selected as hr because its alignment
scores must have been, in total, higher than both s1's and s3's.

2.1.3 Procedure

The algorithm iterates over all genes g ∈ G. Within each iteration the algorithm again iter-
ates over all the sequences s ∈ g, and in each of these iterations, global pairwise alignments
between s and each of the sequences of the rest of the genes in G are created and scored.
Let Ag be a set which contains, for each sequence s in g, a set of alignment scores between
s and the other genes' sequences in G. This is expressed mathematically as

Ag =
{
score(s, t) : s ∈ g, t ∈

⋃
g2∈G\{g}

g2

}
,

where g ∈ G, and where score(s, t) is the alignment score between the sequences s and t.

The pairwise alignments will be performed and scored using the Bio.pairwise2 Python mod-
ule [15]. After all of the sequences s ∈ g have been aligned with the other genes' sequences,
the one that has the highest sum of alignment scores is selected as g's representative protein
sequence. Expressed mathematically,

argmax
s ∈ g

∑
g2∈G\{g}

∑
t∈g2

score(s, t)



contains, for each sequence s in g, the sum of its alignment scores. The sequence with its sum
of alignment scores equal to max(Agsum) will be g's representative. After all genes g ∈ G
have been iterated over with the process just described above, we will have a representative
sequence for each of them.

The pairwise alignments are scored by having every matching pair of symbols add 2 points,
and every mismatching pair is penalized with −1 points. Gaps are also penalized, and we
use the concept of the a�ne gap penalty [16]. The opening gap, that is the �rst gap symbol
following an RNA residue, adds −0.5 points, and the symbols of the gap extention, that
is the subsequent gap symbols following the opening gap, each adds −0.1 points. So, for
example, the alignment in Figure 5 would yield a score of 8.2, since it has 10 matches, 1
mismatch, 1 opening gap and a gap extension of 3 gap symbols.

AGCUUUCACAGCUAA
AG----CAGAGCUAA

Figure 5: Global pairwise alignment of the sequences 'AGCUUUCACAGCUAA' and 'AGCAGAGCUAA'.

The reason behind this way of penalizing gaps is because of our focus on alternative tran-
scripts. The genes' sequences can di�er from each other by long subsequences because of
evolutionary events such as exon gain, exon loss and exon duplication [17]. Because of this,
it might be more suitable to encourage fewer but larger gaps, with several subsequent gap
symbols, in the pairwise alignments rather than many seperate single gaps.

To aid in visualizing and in storing the alignment scores of a gene, the algorithm uses a
representation of a matrix such as the one in Figure 6, where a column represents a se-
quence of the gene that the algorithm is currently calculating the scores for, and the rows
of the column hold the scores of the alignments with the sequences of all of the other genes.
Note that all the columns together represent the gene.

As an example, let g1 = {s1g1 , s2g1 , s3g1 , s4g1 , s5g1} be a gene of the input set G that we
are currently calculating alignment scores for, in Figure 6 we see the alignment scores be-
tween g1's sequences and all the other sequences in G.



s1g1 s2g1 s3g1 s4g1 s5g1
s1g2 11 17 12 14 20

s2g2 21 13 22 15 10

. . . . . . . . . . . . . . . . . .

s1g3 10 27 15 24 30

. . . . . . . . . . . . . . . . . .

Figure 6: Score matrix for g1's sequences.

After all the alignment scores have been calculated and stored in the matrix, the sum of the
rows is calculated for each column. The column, which again represents a sequence, with
the largest sum of rows, that is the largest sum of alignment scores, is selected as the gene's
representative.

2.2 Testing and evaluation

2.2.1 SimSpliceEvol

The algorithm will be tested on simulated data provided by a program called SimSpliceEvol

[11]. It simulates not only traditional gene sequence evolution events, such as insertion, dele-
tion and substitution events, but also evolution events of the transcripts. The simulation of
evolution of the transcripts is based on the Christinat-Moret model of transcript evolution,
which is divided into two levels [17]. One acts on the exon-intron structure of the gene, that
is which segments of the gene are exons or introns, and the other level acts on the sets of
transcripts obtained from the exon-intron structure.

SimSpliceEvol takes as input a guide gene tree, such as the one in Figure 7, with branch
lengths that represent the expected number of evolution events along the branches [11]. It
then simulates a gene sequence and a set of alternative coding DNA sequences, which are
the alternative transcripts of the gene, at the root of the tree. The simulation of both the
evolution of the gene sequences and the evolution of the transcripts are applied conjointly
along the branches until it produces the �nal gene sequences and their respective sets of
alternative coding DNA sequences at the leaves of the tree. The algorithm outputs these
alternative coding DNA sequences.



Figure 7: An illustration of SimSpliceEvol's simulation of evolution events along the branches of the input guide
tree. Credits for this �gure go to Esaie Kuitche, Safa Jammali, Aïda Ouangraoua and the National Center for

Biotechnology Information [11]. Creative Commons license.

The SimSpliceEvol program comes with three of its own already de�ned input guide trees
[18]. They are the small, medium and large trees. The program will be used to create a
number of simulations with a set of genes each, and the small tree will be used as input for
the simulations. The branch lengths of the small tree are shorter than the medium and large

ones, and using it as opposed to using the other two trees therefore results in the genes not
evolving to be very distantly related. We choose to limit ourselves to using just this input
tree.

Unfortunately, at the time of working on this project SimSpliceEvol did not work as de-
scribed in the article [11]. Among other errors, the most signi�cant was that it seemed
to only output one coding DNA sequence per gene in every simulation [18]. To attempt
to �x this a few modi�cations of the source code were done, which caused the program
to now output �ve sequences per gene. Now, though the program may not be running
properly or as the creators had probably intended, it at least produces several sequences
per gene during a simulation, which we can work with. Both the original source code
and the modi�ed version of SimSpliceEvol are provided in this GitHub repository https:
//github.com/ram97-boop/Representative-Sequence.

https://creativecommons.org/licenses/by/4.0/
https://github.com/ram97-boop/Representative-Sequence
https://github.com/ram97-boop/Representative-Sequence


For each simulated set of genes our algorithm will take, for each gene, the alternative cod-
ing DNA sequences as input and output a representative sequence. Two multiple sequence
alignments will then be created, one with the representative sequences and the other with
the longest sequences. The two multiple sequence alignments will then be scored using the
sum-of-pairs method.

2.2.2 Sum of pairs

To calculate the sum-of-pairs score for a multiple sequence alignment each pair of sequences
in it will be scored �rst, and the total score of the multiple sequence alignment will be the
sum of all the sequence-pairs' scores [19]. Let us introduce some de�nitions before going
through the process of calculating a sum-of-pairs score. Firstly is a de�nition of a multiple
sequence alignment provided by [19].

De�nition 2.1 Given k sequences, S1, S2, ..., Sk, a multiple sequence alignment (MSA) is
obtained by inserting gaps in the strings to make them all the same length.

De�nition 2.2 Given a sequence S of length m and an integer i such that 1 ≤ i ≤ m, let
S[i] be the residue, or symbol, in S at the i-th position.

One way to implement or to de�ne the calculation of the sum-of-pairs score is by looking at
one column of the multiple sequence alignment at a time, from start to end, and summing
the scores of all the pairs of rows in the column [19]. The sum-of-pairs score of the entire
multiple sequence alignment will be the sum of all the column scores. Let us de�ne a formula
for calculating the score of a column.

De�nition 2.3 Given two sequences S1, S2, that are in a multiple sequence alignment of
length m, and given an integer i such that 1 ≤ i ≤ m, let

score(S1[i], S2[i])

be the score of the pair of symbols S1[i] and S2[i] in the i-th column of the alignment.

De�nition 2.4 Given a multiple sequence alignment of k sequences, T1, T2, ..., Tk, with
length m, and given an integer i such that 1 ≤ i ≤ m, let

SP (T1[i], T2[i], ..., Tk[i]) =

score(T1[i], T2[i]) + score(T1[i], T3[i]) + ...+ score(Tk−1[i], Tk[i])

be the sum of the scores of all the pairs of symbols at the i-th column of the alignment.



Before scoring a column, we must assume score values for every possible pair of symbols
that can exist in the alignment. For a pair of symbols a and b we choose to assume the
following values:

score(a, b) =


3 a and b match

−1 indel

−2 a and b mismatch

0 a and b gap symbols

To clarify, a and b are a match only if they are both not gap symbols and are identical.
They are a mismatch if they are both not gap symbols and are not identical. Furthermore,
by indel we mean either only a or only b is a gap symbol.

Note that in a multiple sequence alignment there is no column entirely consisting of gaps.
Hence, when scoring a pair of sequences we do not penalize a column of gap symbols and
we ignore it to avoid extra penalization, since another sequence in the alignment will have
a non-gap symbol in the same column [19]. See Figure 8 for an example of scoring a pair of
sequences with our scoring function.

AGCTTTCACAGCTAA
AG----CAGAGCTAA

Figure 8: The score for this pair of sequences with our scoring function would be 24, since there are 10 matches, 1
mismatch and 4 indels.



3 Results

Using SimSpliceEvol, 500 simulations were run. In each of these simulations �ve genes were
created with �ve alternative sequences each. For each gene in each simulation, we select
a representative sequence using our algorithm and also extract the longest sequence. This
resulted in two output �les for each simulation, one consisting of the genes' representative
sequences and the other of the genes' longest sequences.

In 179 out of the 500 simulations both of the output �les were exactly the same, mean-
ing that the algorithm selected the longest sequence as the representative for 5/5 genes. See
Figure 9. In 209 simulations the longest sequence was selected as the representative for 4/5
genes. The same happened in 93 simulations for 3/5 genes, in 18 simulations for 2/5, and
in the remaining one simulation for 1/5, which is di�cult to see in Figure 9.

Figure 9: A bar chart of the number of simulations where the representative sequences are also the longest. The
numbers on the x-axis represent the amount of longest sequences that have been selected as representatives in a
simulation, so for example, the 5 on the x-axis means that all of the �ve genes' longest sequences are their
representatives.

For comparing our method of selecting representatives with the method of selecting the
longest sequences as representatives we ignore the 179 simulations where all the representa-
tive sequences were also the gene's longest and look at the remaining 321. For each of these
321 simulations two multiple sequence alignments were created, one for the representative
sequences and the other for the longest sequences. The sum-of-pairs scores was then calcu-
lated for both alignments. The multiple sequence alignment of the representatives scored
higher than the one of the longest sequences in 222 of the 321 simulations, which would be
around 69.2 percent. The average di�erence in sum-of-pairs scores between the MSAs of the



representatives and the longest sequences is approximately 5483.49 points for the 222 sim-
ulations where the representatives' MSAs scored higher, and approximately 2866.30 points
for the remaining 99 simulations where the longest sequences' MSAs scored higher. The av-
erage di�erence in sequence length between the representatives and the longest sequences in
the 222 simulations where the representatives' MSAs scored higher is approximately 115.08
residues, and in the remaining 99 simulations it is approximately 83.29 residues.

If we divide the simulations into cases based on the amount of longest sequences selected as
representative sequences like we've done in Figure 9 then we'd get the charts shown in Fig-
ures 10, 11, 12 and 13. The charts in Figures 10 and 11 both show the average di�erence in
sum-of-pairs score for the di�erent amounts of longest sequences selected as representatives.
Though, the �rst chart is exclusively for the 222 simulations where the representatives' MSAs
scored higher while the second is for the other 99 simulations where the longest sequences'
MSAs scored higher. The charts in Figures 12 and 13 show the average di�erence in length
between the representative sequences and the longest sequences for the di�erent amounts of
longest sequences selected as representatives. Similarly, the �rst chart is exclusively for the
222 simulations where the representatives' MSAs scored higher while the second is for the
other 99 simulations where they scored lower.

Figure 10: A bar chart of the average di�erences (with the standard deviations shown as red lines) in sum-of-pairs
score between the MSAs of the representatives and the longest sequences for the di�erent amounts of longest
sequences selected as representatives in a simulation. Notice that in the �rst case the standard deviation is zero
because there is only one simulation in that case and therefore only one di�erence in sum-of-pairs score. Note that

the averages shown here are for the 222 simulations where the representatives' MSAs scored higher than the longest

sequences'.



Figure 11: A bar chart of the average di�erences (with the standard deviations shown as red lines) in sum-of-pairs
score between the MSAs of the representatives and the longest sequences for the di�erent amounts of longest
sequences selected as representatives in a simulation. Note that the averages shown here are for the 99 simulations

where the representatives' MSAs scored lower than the longest sequences'.

Figure 12: A bar chart of the average di�erences (with the standard deviations shown as red lines) in sequence
length between the representatives and the longest sequences for the di�erent amounts of longest sequences selected
as representatives in a simulation. Note that the averages shown here are for the 222 simulations where the

representatives' MSAs scored higher than the longest sequences'.



Figure 13: A bar chart of the average di�erences (with the standard deviations shown as red lines) in sequence
length between the representatives and the longest sequences for the di�erent amounts of longest sequences selected
as representatives in a simulation. Note that the averages shown here are for the 99 simulations where the

representatives' MSAs scored lower than the longest sequences'.



4 Discussion

From Figure 9 we see that the representative sequences selected by our algorithm tend to
also be the longest sequences. In all of the 500 simulations there is at least one gene that had
its longest sequence selected as its representative. In 388 out of the 500 simulations either
four or �ve genes had their longest sequences selected as their representatives, which makes
up 77.6 percent of the simulations. This could suggest that selecting the longest sequence as
the representative is maybe not the worst choice most of the time. Especially if a retained
intron is what causes a sequence to be the longest, since intron retention is the rarest form of
alternative splicing [20]. On the other hand, the algorithm did select representatives whose
MSAs scored higher than the longest sequences' MSAs for the majority of the simulations
where at least one gene's longest sequence was not selected as its representative. It may
also be notable that the average di�erence in scores were larger in those simulations than
the average di�erence in the simulations where the longest sequences' MSAs scored higher,
meaning that in these simulations, the scores of the representatives' MSAs were not far o�
from the longest sequences' MSAs'.

The algorithm seems likely to select representatives whose MSAs score equally to or higher
than those of the longest sequences. However, the algorithm was tested on only coding DNA
sequences. It would be interesting to see how it performs on protein sequences for example,
since there are only four nucleotides in a DNA or RNA sequence and there are 28 amino
acids that could make up a protein.

Caution has to be taken around the testing and evaluation of our algorithm. Firstly, it
was tested on simulated data created using the SimSpliceEvol program. It does not simu-
late certain occurances, like e.g. the evolution of splice sites and motif conservation, i.e. the
conservation of certain subsequences between diverged gene families [11]. It is therefore not
certain that our algorithm will perform similarly with real data.

Secondly, the simulations were run using the small input guide tree provided in the Sim-

SpliceEvol program, where its branch lengths were relatively short compared to the other
trees. The resulting genes and their respective alternative transcripts were therefore more
closely related. It is therefore uncertain if we would have similar results with di�erent input
trees.

Thirdly, the SimSpliceEvol program was initially not working properly and did not pro-
duce several alternative sequences per gene in a simulation like it was supposed to. While
it at least produces several sequences per gene after some modi�cations to the source code,
it probably is not doing so properly or as the creators, Kuitche, Jammali and Ouangraoua,
had intended [11]. Most notable is that it now strictly produces �ve sequences per gene,
which in turn can have a�ected the proper simulating of the evolutionary events occuring
in them.



Fourthly, the algorithm selects a gene's representative based on the gene's sequences' simi-
larity to the other genes' sequences in the input set. While it is shown that protein function
between two proteins is more likely to be similar if their sequences are as well, there are
exceptions for when this is not the case [12].

It should also be noted that the pairwise alignments in the algorithm may take a while
depending on the number of genes, the number of their respective alternative sequences and
their lengths in the input set. If the input set contains n genes with m alternative sequences
each, then (

n

2

)
m2 (1)

pairwise alignments would have to be computed. For example, if n = 4 and m = 5 the �ve
sequences of the �rst gene that is iterated upon will be pairwisely aligned with the sequences
of the other three genes, which gives us 5(3× 5) alignments so far. Then, the second gene's
�ve sequences will be aligned with the sequences of the remaining two genes, which gives us
5(2 × 5) alignments more. Lastly, the third gene's sequences will be aligned with the last
gene's sequences, which gives us 5(1 × 5) more alignments. So for an input set of 4 genes
with 5 sequences each there would be

5(3× 5) + 5(2× 5) + 5(1× 5)

= 52(1 + 2 + 3)

= 52 × 3(1 + 3)

2

= 52 × (4− 1)(1 + 4− 1)

2

= 52 × 42 − 4

2

= m2 × n2 − n

2

=
n(n− 1)

2
×m2

=
n!

2!(n− 2)!
×m2



=

(
n

2

)
m2

alignments, which is equal to the previous expression (1).

For the computation of the pairwise alignments the Bio.pairwise2 module uses a dynamic
programming algorithm [15]. The documentation does not speci�cally mention which algo-
rithm is implemented, but if we assume that it is the Needleman-Wunsch algorithm the time
complexity for aligning two sequences with lengths p and q respectively would be O(pq) [21].



5 Conclusion

Our algorithm seems to have selected representatives whose multiple sequence alignments
had higher sum-of-pairs scores than those of the longest sequences. However, choosing the
longest sequence as a representative may not be the worst choice most of the time since
the algorithm selected the longest sequences as representatives for a large portion of the
simulated data. Since the algorithm was tested on simulated data we cannot assume that it
will yield similar results with real data. Furthermore, the simulated data were of genes that
were closely related and the genes' alternative sequences were of coding DNA, so the testing
of the algorithm was limited to these contraints. Further testing will have to be done to
get a better picture of how the algorithm actually performs, especially with di�erent data
like more diverged genes for example, or with protein sequences instead of DNA or RNA
etc. We might also get more accurate results with a larger set of data to test on instead of
the 500 which we limited ourselves to. Lastly, because of the lengthy computation of the
algorithm it may not be a viable option for one who would want to select representatives for
hundreds of genes or more, each having several alternative sequences. Instead, this project
may primarily provide a new perspective of selecting a gene's representative sequence with
this approach if it has not already been explored.
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