
Neighborhood Correlation in the age of
megagenomics: scaling down to scale
up

Yrin Eldfjell

Neighborhood Correlation in the age of

megagenomics: scaling down to scale up

Yrin Eldfjell

December 2, 2023

Abstract

The computational problem of protein homology inference is simultaneously facing
the challenges of handling dramatically increasing amounts of sequenced species and
maintaining � or preferably improving � both sensitivity and speci�city. Neighborhood
Correlation (NC) � a key method in improving both sensitivity and speci�city when
inferring homology between multidomain proteins � can in its current form not scale up
to meet these needs, much due to its computational cost increasing not only directly with
the size of the query set (Q) but also indirectly with the size of Q, as the method relies
on comparing Q with itself.

This project therefore explores the possibility of using a much smaller set of reference
sequences thatQ is compared to. The results show that this is � according to the available
metrics � a feasible strategy with comparable classi�cation performance which is expected
to lead to a signi�cant speed-up. To further help bridge the gap between the increasing
needs and the capacity of NC, an algorithm for computing Neighborhood Correlation
with improved time complexity over existing algorithms is presented. This improved
algorithm � PNC � should be easy to implement as a distributed computation.

Sammanfattning

Beräkningsproblemet att härleda evolutionärt släktskap för proteiner står inför dub-
bla utmaningar: att hantera en dramatisk ökning av antalet sekvenserade arter och att
samtidigt bibehålla � eller helst förbättra � sensitivitet och speci�citet. Neighborhood
Correlation (NC) � en central metod för att förbättra både sensitivitet och speci�citet
vid inferens av släktskap mellan multidomänproteiner � kan i sin nuvarande form inte
skalas upp för att möta dessa behov, mycket beroende på att dess beräkningskostnad inte
bara ökar direkt med storleken på frågemängden (Q) utan även indirekt med storleken
på Q, eftersom att Q jämförs med sig själv.

I detta projekt utforskas därför möjligheten att använda en mycket mindre mängd
referenssekvenser som Q jämförs med. Resultaten visar att detta � enligt tillgänliga mått
� är en realistisk strategi med jämförbar förmåga att klassi�cera homologer och som vän-
tas leda till betydligt snabbare beräkningar. För att ytterligare minska gapet mellan
de ökande behoven och NC:s förmåga, presenteras här även en algoritm för beräkna
Neighborhood Correlation med förbättrad tidskomplexitet jämfört med be�ntliga algo-
ritmer. Denna förbättrade algoritm � PNC � bör även vara enkel att implementera som
en distribuerad beräkning.

Acknowledgments

I would like to thank my thesis advisor Lars Arvestad for always taking his time to
bounce ideas and answer questions, my family for supporting me, everyone who has built
our civilization to the point where work like this is possible1 and �nally all those whose
curiosity, creativity and compassion make life a worthwhile endeavor.

1I'm sorry I couldn't include everyone in the bibliography.

3

Contents

1 Introduction 9

2 Theory 11
2.1 Neighborhood Correlation . 11

2.1.1 A remark on the skewness of m2 13
2.1.2 PNC . 14
2.1.3 SNC . 14
2.1.4 NC_standalone . 14

2.1.4.1 Minimum score � only with NC_standalone 14
2.2 A remark on O(k) � estimating scaling of NC for large n 14
2.3 P for Parallel � a note on the parallelization of PNC 15
2.4 DIAMOND . 15

3 Method 18
3.1 Data . 18
3.2 Software . 20

3.2.1 Choice of aligner . 20
3.2.2 Neighborhood Correlation implementation 20
3.2.3 Additional software used . 20

3.3 Making the reference database R . 20
3.3.1 The control . 20
3.3.2 Pfam-A domains as an index of what to include 21
3.3.3 Processing of the selected sequences 21

3.4 Neighborhood Correlation pipeline . 22
3.4.1 Validation using curated proteins 22

4 Results 24
4.1 Optimizing the alignment stage . 24

4.1.1 DIAMOND sensitivity . 24
4.1.2 DIAMOND max-target-seqs . 26
4.1.3 Other DIAMOND options . 26
4.1.4 Bit-score threshold . 28
4.1.5 Bit-score transformation . 30

4.1.5.1 Key observations . 30
4.1.5.2 Decision . 30

4

4.2 Selecting the best reference database R . 33
4.2.1 Fragmentation of reference sequences 33

4.2.1.1 Key observations . 33
4.2.1.2 Decision . 34

4.2.2 To fragment or not to fragment? Lessons from arti�cial multido-
main proteins . 38

4.2.3 Sequence with longest alignment vs. random sequence(s) 41
4.3 Consistency of snc vs. NC_standalone 41

5 Discussion 46
5.1 The case for fragmentation . 46
5.2 Comparing nc-scores generated with di�erent R 47
5.3 Limitations of my study . 47
5.4 Recommendations for future studies . 48

5.4.1 More extensive validation . 48
5.4.2 General idea: create the reference database as two-step process: . . 48
5.4.3 Verify the sequence diversity the selected �pfam longest� sequences 48
5.4.4 Try default scores . 49
5.4.5 Try a di�erent scoring matrix . 49

5.5 A note on Neighborhood Correlation being able to �nd more distant ho-
mologs than direct alignments . 49

6 Conclusion 50

Appendix 51
Pitfalls . 51
Things I didn't have time to try but might be worth looking into 52

Glossary 55

Bibliography 61

5

List of Figures

1 Number of queries per target for Q = HSA+MMU, R = frag_all_aln. . . 13

2 Comparison of di�erent �max-target-seqs (HSA+MMU) 26
3 Comparison of di�erent �max-target-seqs (frag_all_aln) 27
4 Comparison of reference databases: HSA+MMU vs frag_all_aln 35
5 Comparison of di�erent fragmentation methods 36
6 Arti�cial multidomain seqs as ref. db (based on extract-only-primary-aln) 39
7 Arti�cial multidomain seqs as ref. database (based on extract-all-aln) 40
8 Comparison of number of random sequences per Pfam domain 42
9 snc vs. NC_standalone: histograms of nc-scores compared 43
10 snc vs. NC_standalone: nc-scores compared 44

6

List of Tables

1 Variables used for time complexity analysis 11

2 Reference databases created in the project 19

3 Comparison of DIAMOND sensitivity modes . 25
4 Comparison of DIAMOND bit-score thresholds 29
5 Comparison of di�erent bit-score transformations 31
6 Additional comparisons of di�erent bit-score transformations 32
7 Comparison of di�erent fragmentation methods 37
8 Comparison of snc vs. NC_standalone . 45

7

List of Algorithms

1 Neighborhood Correlation v2.1 . 16
2 snc . 16
3 PNC . 17

4 Main NC pipeline . 23

8

1 Introduction

Homology inference � the identi�cation of genes sharing a common ancestry � is of pro-
found importance in biology. Applications include gene annotation, function prediction
and of course phylogenetic inference (Song et al. 2008).

It is predicted that there are on the order of 10 million eukaryote species in total
(Mora et al. 2011). Identifying homologs in 10 million species with an assumed 10000
proteins each would with O(N2) scaling require 1022 computational steps, thus posing a
signi�cant challenge even for exascale computers. This is not only a theoretical challenge,
however � already by the end of this decade, the Earth BioGenome Project aims to have
sequenced about 1.5 M genomes representative of all eukaryotic species (Lewin et al.
2018) � highlighting the urgent need for homology inference methods that can handle
such vast amounts of sequences.

Neighborhood Correlation Parallel to the problem of achieving computational e�-
ciency is the issue of correctly identifying multidomain proteins. They are important
and abundant � about 40% of proteins in metazoan (animal) species have more than one
domain (Tordai et al. 2005). Multidomain proteins can arise from gene duplication or
speciation, but also from of the insertion of an unrelated domain (see Glossary for de�-
nitions). This poses a major problem for the biologist trying to determine homology as
genomes � unlike well-maintained software � do not come with a version control system.
In order to tell apart:

1. homologous genes with a domain insertion, and

2. unrelated genes who just happen to share a domain with the other

various heuristics are used (such as alignment length). Song et al. (2008) question these
heuristics and proposes their own way of identifying homologs. For each pair of candi-
date sequences x and y, don't score the similarity between x and y (like your typical
BLAST-based homology search), but instead calculate the sample Pearson correlation
coe�cient (PCC) of their respective homology to a reference database R, as determined
by a BLAST-search. This similarity to the reference database sequences is encoded
in vectors of alignment scores (bit-scores) (X,Y) = (align(x × R), align(y × R)), with
R = {reference sequences}. That is, X and Y describe the protein sequence similarity
to the entries of R for x and y, respectively, and PCC(X,Y) describes the linear corre-
lation in their respective relations to R. They call the PCC of (X,Y) the Neighborhood
Correlation score (nc-score) for (x, y).

Song et al. (2008) have compared candidate pairs of both types � (1) and (2) as
described above � and claim that the nc-score measure is able to tell apart the true

9

homologs from the ones who just happen to have had the same domain inserted. They
validate this claim using a manually curated test-set (also used in this project) consisting
of 1577 proteins from human and mouse, each with the correct family speci�ed.

Their results look promising and their software implementation NC_standalone

runs quickly on small (few species) data-sets. But will it scale? We will explore this
question in the Theory section below.

Purpose The main goal of this project is to determine if it is possible to use a signif-
icantly smaller reference database (preferably of �xed size) when using Neighborhood
Correlation, thereby potentially greatly expanding the method's applicability.

Speci�cally this means that we will no longer use the set of query sequences (Q)
as reference database R (i.e. applying NC to the results of BLAST-searching Q × Q)
but rather need to construct a smaller R (subsampled from Q or taken from some other
source entirely).

In the pursuit of this goal, the following subgoals became apparent:

1. Find a way to validate the quality of a set of nc-scores � in particular the sensitivity
and speci�city.

2. Find a suitable source of reference sequences and determine how to best create a
database from them.

3. Determine the optimal parameters for the method. This will give a downsized
database the best chance of working while ensuring best-case performance from the
standard approach to serve as a gold standard. This includes �guring out settings
for the aligner and how to process the reference sequences before alignment.

4. Verify that the reimplementation of the NC method � snc � required for this project
(as the existing implementation NC_standalone requires R = Q) produces sim-
ilar results.

5. Learn as much as possible about what makes a good reference database in general.
Address questions like:

a) Will including similar � redundant � sequences in the database make the
classi�cation better, and if so how many are needed before we see diminishing
returns? Or should redundancy be avoided not only for speed � but also for
quality?

b) Is it okay to include intact multidomain proteins or should they be fragmented
into their domain parts �rst? How important is this?

10

2 Theory

Here we will consider the computational requirements of the two key softwares needed
to identify homologs using Neighborhood Correlation: the aligner DIAMOND and three
di�erent implementations of NC.

For parameter estimation from experimantal results, this section refers to reference
databases (HSA+MMU and frag_all_aln) explained in table 2.

2.1 Neighborhood Correlation

Variable De�nition

Q The set of all query sequences

x, y ∈ Q A pair of query sequences to compute nc-score for

qi ∈ Q Alternative, indexed notation for query sequences

n Number of sequences in Q

R = (r1, ..., rs) Reference sequences ri in the database R

X = (x1,..., xs) Log(alignment scores of x against each ri ∈ R)

Y = (y1,..., ys) Log(alignment scores of y against each ri ∈ R)

s Number of sequences in R

k Number of alignments (hits) from queries to R

m Number of hits (alignments) per query

mavg = k/n Average number of hits (alignments) per query

Table 1: Variables used for time complexity analysis

The variables used in this section are explained in table 1.
The nc-score of x and y is de�ned as the sample Pearson correlation coe�cient

(PCC) for the pair (X,Y) of alignment scores (bit-scores):

nc-score(x, y) = PCC(X,Y) =

∑s
i=1(xi − x̄)(yi − ȳ)√∑s

i=1(xi − x̄)2
√∑s

i=1(yi − ȳ)2
(2.1)

=
Σs
i=1xiyi − sx̄ȳ√

Σs
i=1x

2
i − sx̄2

√
Σs
i=1y

2
i − sȳ2

(2.2)

The rewrite1 (2.2) is the computationally most e�cient way of computing the PCC

1By using Σni xia = nx̄a for all three square sums.

11

� at least using this formula � as the complexity-determining step is the cross-product
(xiyi) sum and omitting the calculation of non-zero cross-product terms will alter the
result, so an algorithm with a lower order of steps won't work.

A note on estimating m : In this thesis we will assume m = mavg in order to express
m in terms of k and n. In reality m depends on both Q and R. Determining the nature
of this relationship is critical to giving accurate estimates of time complexity for the
method. Seeing as we are mainly concerned with comparing the relative performance of
di�erent Neighborhood Correlation methods however, it's not critical to know the exact
m.

When it comes to implementing this method into an algorithm, one would like to
avoid computing � or having to consider whether to compute � terms where the cross-
product xiyi is zero (naively comparing all xiyi terms for all pairs of queries would take
O
(
n2s
)
steps). This turns out to be hard to do. With a straight-forward translation of

(2.1) or (2.2) into an algorithm, one would �rst have to identify the pairs for which nc-
scores should be computed. NC_standalone and snc (see algorithm 1 and 2) do this
di�erently but still arrive at having to compute the PCC for each of the identi�ed pairs
(x, y). Using the database hits of x as a template [O(m)], the algorithm would then
have to determine whether y has corresponding hits to the same target, which would
make the cross-product xiyi non-zero and worth computing. This takes at least O(m)
computations.

How many candidate (i.e. with shared database hits) pairs (x, y) are there? While
upper-bounded by n2 there is obviously much fewer in a normal situation. On average,
for each of the s targets, there are k

s queries aligning to it. This means there are O
(
(ks)2

)
pairs for this target. Assuming the hits to the reference database are distributed uni-
formly over the targets (which they are not � we will get back to that), there would be
O
(
s(ks)2

)
pairs in total.

In total, an algorithm that works this way would, for each of these O
(
s(ks)2

)
pairs,

have to compute the PCC withO(m) steps, thus having a time complexity of O
(
s(ks)2m

)
.

Assuming m = mavg this is equal to O
(
k3

ns

)
. snc actually achieves this.

We have now found a way to avoid computing the cross-product xiyi when both

factors are zero, thus going from O
(
n2s
)
to O

(
k3

ns

)
. Is there a way to avoid the com-

putation for pairs with only one factor being zero? Turns out there is. The idea is
that the cross-product only needs to be computed when there is input data for it, i.e.
a pair of alignment scores for a pair (x, y) aligning to the same ri. So do exactly that!
Going through the alignment scores � grouped by target sequence [so O(s)] � such an
algorithm would compute, for the set of queries q(ri) aligning to the current (i:th) target
ri: {xiyi | (x, y) ∈ (q(ri)×q(ri))}. These partial (only calculated for the current i) cross-
products [of which there are O

(
(ks)2

)
] would then have to be stored by incrementally

summing them to some kind of key-value data structure, e.g. a hashmap. This step can
be done in O(1) time. Once this procedure has been repeated for all target sequences, the
algorithm has to go through all the O

(
s(ks)2

)
cross-products and �nish the computation

of the sample Pearson correlation coe�cient. This step can be done in O(1) time per
cross-product.

12

Figure 1: Number of queries per target for Q = HSA+MMU, R = frag_all_aln.

Log scale y-axis. Average m = k/n = 9.4 (out of the queries that aligned to any target
� so targets with zero hits are not included in the plot).

In conclusion, we have put together an algorithm that avoids the redundant O(m)

extra steps per pair of queries, thus bringing us down from O
(
n2s
)
through O

(
k3

ns

)
to

O
(
k2

s

)
steps to compute NC.

2.1.1 A remark on the skewness of m2

In general m 6= mavg. How skewed is the distribution of the hits? A quick test using the
Q = R = HSA+MMU data-set showed that the actual average m2 was 4.6 times higher than
the theoretical m2 = (k/n)2. (When instead using frag_all_aln, the ratio was 4.1.)
See �gure 1 for an example of the distribution of queries over the reference sequences.

As mentioned above we will be ignoring this skewness going forward. The main
thing to keep in mind is that an O(m3) algorithm will be even worse a�ected by the
skewness than an O(m2) one.

There are ways of mitigating the detrimental e�ects of too many queries matching a
single reference sequence, among them are fragmentation � which is described in detail in
this thesis � and �ltering out some of the most frequently matched reference sequences.

13

2.1.2 PNC

The idea leading up to the O
(
k2

s

)
estimation above is fully developed in the PNC

algorithm (see alg. 3) which also has a working pure Python implementation, which
should � and appear to � give e�ectively identical results to snc. I wrote it very late in
the project, so it has not been used for the analysis. A preliminary test showed it ran
about ten times faster than snc on the Q = R = HSA+MMU data-set.

2.1.3 SNC

snc was developed by project advisor Lars Arvestad speci�cally for this project and
thus it supports using scaled-down reference databases (R 6= Q) (Arvestad 2023). See
algorithm 2. Internally it uses sparse matrices.

2.1.4 NC_standalone

NC_standalone � written by Jacob Joseph, see Song et al. (2008) � is the original
implementation of NC, designed to be used on all-versus-all alignment experiments where
the query set Q equals the reference database R. See algorithm 1. As this project is all
about not using R = Q, this implementation has only been used as a reference for what
level of performance is achievable.

2.1.4.1 Minimum score � only with NC_standalone

NC_standalone uses a default minimum bit-score for pairs of sequences with no sig-
ni�cant hit. This default value is based on the size of the database and number of query
sequences (Song et al. 2008, eqn. 2) and works out to about bit-score 28 for their hu-
man+mouse test case. The current implementation of snc does not use any default
score, so it's left at 0. I have not studied the consequences of this speci�c di�erence,
however a comparison between NC_standalone and snc can be found in section 4.3.

2.2 A remark on O(k) � estimating scaling of NC for large n

If one is interested in predicting the run time of NC based on number of queries n and
�xed size of database s, we can note that m = k/n⇔ k = nm. So the optimal NC time

complexity of O
(
k2

s

)
can be written as O

(
n2m2

s

)
. How big is m? Using an example

of a database from the project with 35.7 k sequences (frag_all_aln) with su�cient
redundancy to perform (almost) on par with a whole-species reference database, 37.6 k
queries yielded 227 k alignments to Q = HSA+MMU. Thus, m for this database was ∼ 6.3.
It's not unreasonable � though certainly not proven in this thesis � that an m of about
10�20 for a �xed-size downscaled database could be enough for most purposes. This
would correspond to a database size s of about 100000. Inserting these numbers we
have: 300n2

105
= 0.003n2. This is in contrast to the original NC: O(nm3), where m was

just under 100 for Q = R = HSA+MMU. Assuming worst-case scaling as more genomes are

14

added2, we expect that ∼ 0.25% of a genome matches, i.e. m = 0.0025n. This gives us
the following estimate for the original NC: n(0.0025n)3 ≈ 1.6 × 10−8n4. At n = 1 M
sequences the di�erence between PNC and NC would thus be close to seven orders of
magnitude (and even greater if accounting for the skewness in m).

2.3 P for Parallel � a note on the parallelization of PNC

The P in PNC stands for parallel as it has two features that makes it suitable for paral-
lelization:

1. Input is grouped by target sequence, so a reference database could be partitioned
into smaller sets with each instance of PNC working on just that set.

2. The memory demanding items (the cross-products) can easily be partitioned as
well, which means they could be stored on di�erent nodes in-memory on a compute
cluster, or even stored on disk if needed. Once complete, each such partition can
(together with some auxiliary data of O(n)) itself produce a complete part of the
�nal output, thus requiring only a trivial merge step to go from compute node
outputs to the complete program output. (Or just let the output sit in memory on
the nodes and query it directly.)

2.4 DIAMOND

DIAMOND is a protein sequence aligner similar to BLAST but focused on achieving
maximum speed. For the version used in this thesis (v2.0.7), the authors of DIAMOND
(Buch�nk, Reuter, and Drost 2021) claim a sensitivity fully comparable to BLAST while
accomplishing an 80-fold speed-up. Buch�nk et al. give the numbers for a performance
evaluation they did: n = 281M and s = 39M. This took 18 hours to run on 20800 cores
at highest sensitivity. In other words, assuming an R ∼ 3 orders of magnitude smaller
and a computer with correspondingly fewer cores, even an absurdly large query set would
only take about a day to align (assuming proportional scaling). It's clear that at no scale
will aligning the sequences be the rate-limiting step for computing NC (assuming DIA-
MOND or a similar tool is sensitive enough).

2I.e. same m regardless how distant a genome is.

15

Algorithm 1 Neighborhood Correlation v2.1

Key idea: Consider the graph G with the aligned sequences as vertices V and
their alignment bitscore (if any) as edges E. Consider a pair of sequences (a, b).
If they are to have any shared hits, i.e. a pair of alignments (a, s) and (b, s) �
a requirement to calculate a non-zero nc-score � their distance in G can be at
most 2. This algorithm traverses G up to depth 2 for each v ∈ V , thus �nding
all nc-scorable candidates.
Input: alignments: a list of alignment pairs with bit-scores (q, r, bitscore).
Output: nc-scores for sequence pairs (q, r, nc_score).

Require:

For the input alignments, the reference database has to equal the set of query se-
quences (i.e. R=Q).

. Note: villagers is just a terse way of saying neighbor's neighbors.

1: for query ∈ {q | (q, r,−) ∈ alignments} do . O(n)

2: neighbors← {r | (q, r,−) ∈ alignments, q = query} . O(k/n)

3: villagers = {vill | (q, vill,−) ∈ alignments, q ∈ neighbors, vill 6= q} . O(kn)2

4: for other ∈ (neighbors ∪ villagers) do

5: score← pearson_corr_coe�(alignments, {query, other}) . O(m) = O(kn)

6: print query, other, score

7: end for . Time complexity for NC (see main text): O(nm3) = O(k
3

n2)

8: end for

Algorithm 2 snc

Key idea: This algorithm is built upon the observation that a pair of sequences
with zero shared hits to the reference database can't have a non-zero nc-score.
It utilizes this by grouping the alignments by reference-db target.

Input: alignments: a list of alignment pairs with bit-scores (q, r, bitscore).
Output: nc-scores for query sequence pairs (x, y, nc_score).

1: neighbors = {}
2: for target ∈ {r | (q, r,−) ∈ alignments} do . O(s)

3: queries← {q | (q, r,−) ∈ alignments, r = target}
4: neighbors← neighbors ∪ {queries× queries} . O((ks)2)

5: end for

6: adjacency_matrix← make_sparse_row_matrix(alignments)
7: for {x, y} ∈ neighbors do

8: nc_score← pearson_corr_coe�(adjacency_matrix, {x, y}) . O(m)
9: print x, y, nc_score

10: end for . Time complexity for snc (see main text): O(s(ks)2m) = O(k
3

ns)

16

Algorithm 3 PNC

Key idea: In snc and NC_standalone calculating the cross-term Σn
i (xiyi)

is the inner-most loop, done for every candidate pair. The idea here is to turn
this loop inside-out and accumulate this cross-sum bit by bit over the entire set
of alignments � in PNC it's the sequence pairs (x, y) that become the inner-most
loop. This algorithm achieves optimal time complexity for this problem. It's not
possible to calculate NC with a lower order of steps as the cross-term has to be
calculated for all pairs of queries for each target sequence they have in common.

Input: alignments: a list of alignment pairs with bit-scores (q, r, bitscore).
Output: nc-scores for query sequence pairs (x, q, nc_score).

1: q_sums = array()
2: q_sums_square = array()
3: cross_terms = hashmap()
4: n = size({q ∈ alignments})
5: for target ∈ {r | r ∈ alignments} do . O(s)

6: queries← {(q, score) | (q, r, score) ∈ alignments, r = target}
7: for (q, score) ∈ queries do
8: q_sums[q]← q_sums[q] + score
9: q_sums_square[q]← q_sums_square[q] + score2

10: end for

11: for {(q1, scorex), (q2, scorey)} ∈ {queries× queries} do . O((ks)2)

12: cross_terms[(q1, q2)]← cross_terms[(q1, q2)] + scorex ∗ scorey
13: end for

14: end for

15: for (x, y) ∈ keys(cross_terms) do
16: Σxy = cross_terms[(x, y)]
17: Σx = q_sums[x]
18: Σy = q_sums[y]
19: Σx2 = q_sums_square[x]
20: Σy2 = q_sums_square[y]
21: x̄ = Σx/n
22: ȳ = Σy/n

23: nc_score =
Σxy − nx̄ȳ

√
Σx2 − nx̄2

√
Σy2 − nȳ2

24: print x, y, nc_score
25: end for

. Time complexity for PNC (see main text): O(s(ks)2) = O(k
2

s)

17

3 Method

Homolog classi�cation pipeline A major part of this project has consisted of varying
the settings of a mostly consistent classi�cation pipeline (see section 3.4)

Synthetic multidomain proteins In order to test the hypothesis that multidomain pro-
teins in the reference database cause false positives � and therefore should be fragmented
before inclusion � I produced arti�cial multidomain proteins. It makes more sense to
describe this process after the main pipeline has been explained. See section 4.2.2.

3.1 Data

These are the main sources of sequence data used in the project:

Name Source Count Description

Pfam-A (ver. 36.0) Mistry et al. 2021 Usable

domains:

7956

Major database of protein families and

domains. Contains domains and a listing

of sequences aligning to it.

Pfam-A-RP15 Chen et al. 2011 Usable

domains:

7677

Downscaled, less redundant version of the

full Pfam-A database. I only used it for

clustering.

HSA UniProtKB 2023a 20413 Human ref. proteome from UniProtKB.

MMU UniProtKB 2023b 17179 Mouse ref. proteome from UniProtKB.

UniProt Consortium 2023 About
125000

used

The Pfam domain alignments refer to

these UniProt sequences. Most sequences

were used for randomization experiments.

The main experiments used 7957 seqs.

Curated proteins Song et al. 2008 1577 Proteins from HSA and MMU manually

annotated with correct protein family

membership. From the original

Neighborhood Correlation paper. Number

of homologous pairs: 426 k.

The curated protein sequences were used for validation (calling TP, FP and FN).
For queries, the combined HSA∪MMU set of sequences (37.6 k) was used consis-

tently throughout the project since that was what the curated set of proteins covered.
The following sections will explain how the reference databases were created.

18

The actual identi�ers in the code are long and complex, so in this document I've typically
referred to them only using the most important part � this is what this table describes.

My identi�er Source Seq

count

Description

hsa+mmu

no_frag

HSA+MMU 37584 All human and mouse sequences, full
length.

pfam longest

extract_only_primary_aln

Pfam-A
(domains),
UniProt
(aln. seqs)

7956 For each Pfam-A domain, take the
sequence having the longest
alignment to this domain. Then
extract only the aligned domain.

pfam longest

frag_primary_aln

27278 Same as above but also keep the
non-extracted parts and fragment
into length=300 parts.

pfam longest

extract_all_aln

16281 Use the longest aligned seq as above,
but extract all non-overlapping
domains in all of Pfam-A (not just
the current domain.)

pfam longest

frag_all_aln

35735 Same as above but also keep the
non-extracted parts and fragment
into length=300 parts.

pfam longest

discard_all_aln

19455 The complement to
extract_all_aln. Consists
mostly of �non-domain� seqs,
fragmented into length=300.

pfam longest

frag_raw_seq:50

103773 Take the longest aligned sequence as
above, but ignore all domain
information and fragment the
sequence into length=50 parts.

...
...

...
frag_raw_seq:400 16522 Fragment length 400.
pfam longest

no_frag

7957 Take the longest aligned sequence as
above. Keep the full sequence.

random:1.no_frag 7868 Unlike above, for each Pfam-A
domain just take 1− 5 random
sequences aligning to it.

random:3.no_frag 23441 Keep the full sequence.
random:5.no_frag 38842
synthetic multidomains
(only primary domains)

398−
7956

Described in section 4.2.2

synthetic multidomain (all
domains)

815−
16281

Described in section 4.2.2

Table 2: Reference databases created in the project
These databases are all based on the data described in 3.1. See section 3.3.3 for the
processing of an example sequence. See section 4.2for comparison of results from using
these databases.

19

3.2 Software

See Theory (chapter 2) for descriptions of the algorithms.
In order to run Neighborhood Correlation, two key softwares are needed: an aligner

to produce the (seq1, seq2, bit− score) pairs used as input for NC, and a suitable imple-
mentation of NC.

3.2.1 Choice of aligner

Given the availability of modern high-performance aligners such as DIAMOND (v.2.0.7)
(Buch�nk, Reuter, and Drost 2021) andMMseqs2, there was no reason to use BLASTP
for this project. A direct comparison of DIAMOND and MMseqs2 showed DIAMOND
to be both more sensitive and faster thanMMseqs2 (Buch�nk, Reuter, and Drost 2021,
�g. 1).1

Another factor was that I wasn't sure how easy it would be to implement MMseqs2

� an apparently complex tool � in a work�ow that's originally designed for using BLAST
(or a direct replacement) speci�cally. Altogether, I decided to use DIAMOND, which
has worked well.

3.2.2 Neighborhood Correlation implementation

Only snc was available at the start of this project and able to work with R 6= Q. See
the Theory section for details.

3.2.3 Additional software used

� SciPy (Virtanen et al. 2020)

� matplotlib (Hunter 2007)

� Seqtk (Li 2023)

3.3 Making the reference database R

See table 2 for a complete list of all reference databases created in this project. Below
follows a description of how they were generated.

3.3.1 The control

The query set Q = HSA∪MMU was used as a reference (control) for the other databases
as I expected that using R = Q would perform better than any other database I
could put together. It was also necessary to use this database to compare snc with
NC_standalone, as NC_standalone requires R = Q.

1It should be noted that this paper was written by the authors of DIAMOND and didn't use the
currently (2023) latest version of MMseqs2 (if that would make any di�erence).

20

3.3.2 Pfam-A domains as an index of what to include

Dannie Durand had previously suggested using Pfam to select or sample sequences to
thesis advisor Lars Arvestad (personal communication, Feb 23, 2022). Pfam-A (version
36.0) contains close to 8000 domain entries, and I tried using them. In the version of
the database I accessed, only the aligned segments are available.2 So I used the UniProt
API to download one or more of the aligned sequences for each domain entry.

The question then became how to select what alignment to use out of the frequently
tens of thousands of alignments available for each entry. I tried three main approaches:

1. Longest alignment. Each alignment comes with an accession and the alignment
range, e.g. �Q6FNP0_CANGA/235-469�. This method simply selects the alignment
with the longest range. Or tries to select, I should say. I found that frequently,
UniProt entries being referenced by Pfam-A were marked as �inactive� or otherwise
permanently unavailable � so I made the program keep trying to get the next best
sequence until it could get one.

2. Random. One or more aligned sequences selected randomly. I did this for up to 5
sequences per entry (which were then subsampled to provide sets of 3 and 1 random
sequences per entry, respectively). I performed several trials to get stable average
values. See the results section.

3. Clustering. Early on in the project I �gured there would be a need to select multi-
ple sequences per Pfam-domain, and that it would be preferential to select a set of
sequences as diverse as possible. I used the SciPy implementation of the UPGMA
linkage method to create clusters of the alignments for each Pfam domain (techni-
cally using Pfam-A-RP15 and further subsampling to get a manageable number of
sequences (≤ 2000) per domain for the clustering). I would then select one sequence
per cluster.

Out of these, �longest� was the option I used for most of the experiments. I abandoned
the clustering method once I got results showing that multiple sequences per domain
weren't really helpful, as the clustering process was slow and cumbersome.

3.3.3 Processing of the selected sequences

Consider the following example protein sequence (numerals represent aligned Pfam do-
mains, dashes+letters the sequences between them):

EXAMPLE01 --a--1111122222222--b--3333--c--4444444444

And let's say that the current Pfam-A domain entry being processed is:

EXAMPLE01/6-10

Then the entries generated for the reference database will be the following assuming
a fragment length setting of 5 unless speci�ed (please reference table 2):

2I �rst tried extracting only the multiple sequence alignments and building a reference database of
those, but that didn't really work at all.

21

Identi�er Comma-separated list of entries to be added to the ref. db.

extract_only_primary_aln 11111

frag_primary_aln 11111,--a--,22222,222--,b--33,33---,--c--,44444,44444

extract_all_aln 11111,22222222,3333,4444444444

frag_all_aln --a--,11111,22222222,--b--,3333,-----,c--,4444444444

discard_all_aln --a--,--b--,-----,c--

frag_raw_seq:10 --a--11111,22222222--,b--3333---,--c--44444,44444

no_frag --a--1111122222222--b--3333-----c--4444444444

Note that the extracted domains are not further fragmented. All fragments (includ-
ing domains) shorter than 15 amino acids are discarded for the frag_all_aln, discard_all_aln,

frag_primary_aln and frag_raw_seq database types, i.e. the ones having undergone
�xed-length fragmentation and are thus likely to get �sequence stubs�.3

Implementation-wise this was done by putting the Pfam-A domain-alignment coor-
dinates into a 2,8 GB SQLite database with a table consisting of (accession, start_pos,
end_pos) � meaning that for any sequence (EXAMPLE01 in our example above) I could
immediately look up what parts of the sequence has domains aligned to it. In the �all�
variants above, overlapping domains are ignored (so if e.g. the 11111 domain overlaps into
the full 22222222 domain alignment (not visible here), the latter would not be extracted
unless it has another, shorter, alignment that doesn't overlap with the 11111 domain).

An option would have been to extract all overlapping alignments, but I was concerned
about database size.

3.4 Neighborhood Correlation pipeline

Pipeline key steps:

1. Take query sequences Q and a reference database R and align them using DIA-
MOND.

2. Use snc or NC_standalone to produce nc-scores for candidate homologs.

3. Validate the nc-scores by calling true/false positives and false negatives using a
curated set of homologous proteins with a known family assignment.

For an overview, see algorithm 4. In addition, much was done manually.

3.4.1 Validation using curated proteins

Song et al. (2008) has published their set of curated proteins annotated with the correct
family name. By simply looking up the family name for each of the sequences in an
identi�ed homolog pair, one can � if both sequences are in the annotated list � tell
whether this is a true positive or false positive. This can be done for a discrete range of

3It would have been smarter to merge them with the previous fragment, but I didn't think of that.

22

nc-score thresholds, by calling FP and TP on the set of homolog pairs that passed each
particular threshold.

Identi�ed �trivial self-homologs� i.e. pairs (x, x) that are returned by NC are ignored
by the validation script and also excluded from the �All� counts in the tables. Pairs are
counted correctly (only once).

Algorithm 4 Main NC pipeline

Purpose: Test (mainly) snc under diverse conditions and validate the results using a
curated test set with known family classi�cations.

Input:

R: a list of protein sequences to construct the reference database R out of.
Q: a list of protein sequences to �nd homologs in.
bitscore, transform: Bit-score threshold and bit-score transform.
curated: a mapping of accesion to family e.g. [("PROT0001", "kinase"), ...],
used for validation.

Output:

Signi�cant nc-scores for the query pairs: (q1, q2, nc_score).
Validation results containing counts of true positives (TP), false positives (FP)
and false negatives (FN), as well as a total count (ALL) of the number of iden-
ti�ed homologous pairs.

Require:

Depending on the precise settings, the pipeline may have restrictions such as R = Q
(when using NC_standalone) or may e.g. only be able to handle small databases
when testing very low bit-score thresholds.

This is a coneptual description of the typical case.

1: diamond makedb -d R.
2: diamond blastp �ultra-sensitive �max-target-seqs 1000 -d R �min-score bitscore -o

alignments
3: transform-bitscore log10 alignments > alignments.log10
4: snc (nc-score report threshold 0.05) alignments.log10 > scores.snc
5: validate-scores scores.log10.snc �annotated-proteins curated > validation-results

23

4 Results

These results will demonstrate how important it was to systematically tweak the pipeline
to give optimal performance. It turned out to be di�cult to predict which settings would
be most important and learning this proved more valuable than �nding the exact optimal
value for everything.

4.1 Optimizing the alignment stage

The settings used for the DIAMOND aligner turned out to be of critical importance. In
retrospect this should have been expected � the normal use case (and hence choice of
default settings) is not to return massive amounts of vaguely related sequences.

4.1.1 DIAMOND sensitivity

As can be seen in table 3, using the �fast� sensitivity instead of the highest �ultra-sensitive�
mode cuts the TPR % roughly in half at comparable FDR % in multiple comparisons
using di�erent reference databases and NC implementations. Therefore, DIAMOND is
simply unusable for NC unless a high sensitivity1 is used (then it performs very well on
the other hand).2 Using the default option, DIAMOND returns only about 20 %− 25 %
as many hits and it's apparently not enough.

1I only tested the highest, it's not limiting step anyway in terms of computational complexity.
2It should be noted that I never compared DIAMOND with BLAST.

24

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

(a) all-vs-all using NC_standalone

(HSA∪MMU)=R×(HSA∪MMU)
align(ultra−sensitive)
−−−−−−−−−−−−−−−−−−→

BS≥30

transf.−−−−−−→
log10

NC_standalone
−−−−−−−−−−−−−→ All

validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.90 86.32 85.93 85.76 85.38 84.88 84.17 83.40 82.25 80.52 77.90 74.87 70.29 63.22
FNR (%) 13.10 13.68 14.07 14.24 14.62 15.12 15.83 16.60 17.75 19.48 22.10 25.13 29.71 36.78
FDR (%) 0.12 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 451 89 26 8 8 2 0 0 0 0 0 0 0 0
All 2.8M 2.2M 2.0M 1.8M 1.6M 1.5M 1.4M 1.4M 1.3M 1.2M 1.2M 1.1M 1.0M 0.9M

(HSA∪MMU)=R×(HSA∪MMU)
align(fast)
−−−−−−−−−→

BS≥30

transf.−−−−−−→
log10

NC_standalone
−−−−−−−−−−−−−→ All

validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 44.61 33.85 26.14 20.67 16.67 13.79 11.53 9.96 8.64 7.55 6.52 5.64 4.72 3.64
FNR (%) 55.39 66.15 73.86 79.33 83.33 86.21 88.47 90.04 91.36 92.45 93.48 94.36 95.28 96.36
FDR (%) 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 91 0 0 0 0 0 0 0 0 0 0 0 0 0
All 0.9M 0.8M 0.7M 0.6M 0.5M 0.5M 0.4M 0.4M 0.4M 0.3M 0.3M 0.3M 0.3M 0.2M

(b) all-vs-all using snc

(HSA∪MMU)=R×(HSA∪MMU)
align(ultra−sensitive)
−−−−−−−−−−−−−−−−−−→

BS≥30

transf.−−−−−−→
log10

snc−−−→ All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.28 87.79 87.00 86.49 86.30 85.94 85.75 85.62 85.29 84.90 84.43 83.45 81.98 79.80
FNR (%) 11.72 12.21 13.00 13.51 13.70 14.06 14.25 14.38 14.71 15.10 15.57 16.55 18.02 20.20
FDR (%) 0.53 0.23 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1986 877 509 256 87 27 5 0 0 0 0 0 0 0
All 4.6M 3.2M 2.7M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

(HSA∪MMU)=R×(HSA∪MMU)
align(fast)
−−−−−−−−−→

BS≥30

transf.−−−−−−→
log10

snc−−−→ All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 51.63 40.22 31.38 24.38 19.05 15.22 12.24 10.14 8.53 7.09 5.88 4.87 3.82 2.88
FNR (%) 48.37 59.78 68.62 75.62 80.95 84.78 87.76 89.86 91.47 92.91 94.12 95.13 96.18 97.12
FDR (%) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 28 0 0 0 0 0 0 0 0 0 0 0 0 0
All 1.2M 1.0M 0.8M 0.7M 0.6M 0.5M 0.5M 0.4M 0.4M 0.4M 0.3M 0.3M 0.3M 0.2M

(c) frag-all-aln using snc

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all dom. in σ−−−−−−−−−−−−−−−−−−→
frag. remains (l=300)

R×(HSA∪MMU)
align(u.−s.)
−−−−−−−−−−→

BS≥30

transf.−−−−−−→
log10

snc−−−→ All
val.−−−−−−→

w. cur.

TP
FN
FP

TPR (%) 86.83 86.71 86.21 85.79 85.64 85.28 85.08 84.63 84.10 83.37 82.49 81.27 79.17 75.76
FNR (%) 13.17 13.29 13.79 14.21 14.36 14.72 14.92 15.37 15.90 16.63 17.51 18.73 20.83 24.24
FDR (%) 0.14 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 518 127 35 4 4 4 4 4 4 4 4 4 4 4
All 2.2M 2.1M 1.9M 1.8M 1.7M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M 1.1M 1.0M 0.9M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all dom. in σ−−−−−−−−−−−−−−−−−−→
frag. remains (l=300)

R×(HSA∪MMU)
align(fast)
−−−−−−−−−→

BS≥30

transf.−−−−−−→
log10

snc−−−→ All
val.−−−−−−→

w. cur.

TP
FN
FP

TPR (%) 46.90 40.44 34.13 28.99 24.31 20.22 16.64 13.61 11.08 8.89 7.07 5.43 4.11 3.11
FNR (%) 53.10 59.56 65.87 71.01 75.69 79.78 83.36 86.39 88.92 91.11 92.93 94.57 95.89 96.89
FDR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 3 2 1 0 0 0 0 0 0 0 0 0 0 0
All 0.4M 0.4M 0.3M 0.3M 0.3M 0.2M 0.2M 0.2M 0.2M 0.2M 0.1M 0.1M 0.1M 0.1M

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Table 3: Comparison of DIAMOND sensitivity modes

Three sets of comparisons of --ultra-sensitve vs. --fast: (a) R=(HSA+MMU) using

NC_standalone. (b) R=(HSA+MMU) using snc. (c) R={A set of UniProt sequences fragmented by

aligned domains (see sec. 4.1.1)}. The redundant, very similar outcomes are included to underscore

that the dramatic di�erence is consistent, not caused by a particular NC implementation and not

apparently dependant on the evolutionary distance between the query set and database R (self-species

vs. sampled from all species). --max-target-seqs 1000 was used for this comparison. Colors: The

green and gray background is just to make it easier to compare the same metrics across experiments.

The yellow background highlights (some of) the changes across experiments. FDR % ≥ 0.01 has red

color.

25

Figure 2: Comparison of di�erent �max-target-seqs (HSA+MMU)
Comparison of e�ects of changing number of alignments returned per reference sequence
(at BS=30, log10). R = HSA+MMU. In these scatter plots, the green dots (TP) are bigger
and the red dots (FP) biggest. Note the large amount of TP that are misclassi�ed
(have low nc-score) when limiting the number of target sequences to the default setting.
Missing scores set to 0.

4.1.2 DIAMOND max-target-seqs

As can be seen from �gure 2 (true positives in green in the bottom right quadrant of both
the top and middle �gures) and 3 (similarly for the TP and also the nc-score distribution
of TP in the histogram), there is dramatic loss of true positives returned by NC when
limiting the number of target matches to the default of 25. One possibility is that for
common multidomain proteins, the 25 hits are easily �consumed� by one of the domains,
leaving no matches left to the other domains, thus NC can't �know� they exist. The
setting of max-target-seqs 1000 has been used for all alignments in this project except
for this very comparison.

Note that similar settings are available for other aligners, e.g. BLAST.

4.1.3 Other DIAMOND options

No other aligner options were changed. I didn't really look into it.

26

Figure 3: Comparison of di�erent �max-target-seqs (frag_all_aln)
Comparison of e�ects of changing number of alignments returned per reference sequence
(at BS=30, log10). Top (scatter) and bottom (histogram): R = frag_all_aln. In the
scatter plots, the green dots (TP) are bigger and the red dots (FP) biggest. Scatter-
plots are intended to be mostly qualitative while the histogram provides a quantative
view of the same data. Note the large amount of TP that are misclassi�ed (have low
nc-score) when limiting the number of target sequences to the default setting. The o�set
in histogram is to make the nc-score average the same. Missing scores set to 0.

27

4.1.4 Bit-score threshold

I compared the nc-scores resulting from running DIAMOND at bit-score thresholds of 5,
10, 15, 20, 22, 24, 26, 28, 30, 32, 35, 40 and 50 on the pfam longest no_frag database.
As can be seen from table 4, going below bit-score 30 doesn't improve TPR % at e.g.
FDR = 0.00 % but comes at the cost of having more alignments to deal with (the run
time of snc was considerable longer). Going above 32 one sees a drop-o� in TPR at the
same FDR, but a plus is having less data to deal with.

Interestingly, compare bit-score 50 and bit-score 32 at FDR = 0.02 %. TPR only
goes down from 85.5 % to 83.2 %, but the total number of pairs is more than cut in half.
It's not clear how to interpret this. Is there a selection bias with Pfam-A so that NC will
perform better with annotated proteins (such as those in the validation set) compared
to all proteins (including potentially many unknown)? Or is much of the excess of
1.1M identi�ed pairs false positives? One way to answer that question is to look at the
corresponding results when using R = HSA ∪ MMU. (Results not shown.) The exact same
trend is there when using snc on this data-set, so it doesn't seem to be caused by an
annotation bias. Further investigation needed.

The optimal bit-score threshold out of these is 32, but the di�erence compared to
30 is small. In general, the optimal bit-score threshold may depend on multiple factors,
but its relation to which BLOSUM scoring matrix is used warrants investigation.

Perhaps the key take-away is that when working with low-FDR classi�cations there
exists an optimal value for the bit-score threshold � it's not a case of �more is better if
you can a�ord it�. 3

3It should be pointed out that with NC_standalone there is actually little di�erence between bit-
scores of 10− 30. But at least the lower scores are not apparently better.

28

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−→
BS≥5

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 87.51 86.91 86.17 85.79 84.88 83.97 83.30 82.54 81.64 80.81 79.36 76.78 72.92 65.92
FNR (%) 12.49 13.09 13.83 14.21 15.12 16.03 16.70 17.46 18.36 19.19 20.64 23.22 27.08 34.08
FDR (%) 6.46 1.21 0.36 0.13 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
FP 25723 4527 1318 481 224 105 48 21 10 2 1 0 0 0
All 24.0M 7.4M 3.7M 2.5M 2.0M 1.6M 1.4M 1.2M 1.1M 1.0M 0.8M 0.7M 0.6M 0.5M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥20

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 87.50 86.93 86.20 85.86 84.98 84.07 83.39 82.66 81.76 80.95 79.57 77.00 73.29 66.58
FNR (%) 12.50 13.07 13.80 14.14 15.02 15.93 16.61 17.34 18.24 19.05 20.43 23.00 26.71 33.42
FDR (%) 6.17 1.25 0.37 0.14 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
FP 24511 4703 1371 508 227 110 51 22 13 3 2 0 0 0
All 22.3M 7.2M 3.7M 2.6M 2.0M 1.7M 1.4M 1.3M 1.1M 1.0M 0.9M 0.8M 0.7M 0.5M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥26

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 87.91 87.04 86.61 86.25 85.82 85.47 85.18 84.71 84.20 83.47 82.78 81.79 79.65 76.58
FNR (%) 12.09 12.96 13.39 13.75 14.18 14.53 14.82 15.29 15.80 16.53 17.22 18.21 20.35 23.42
FDR (%) 3.76 0.85 0.41 0.23 0.11 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
FP 14631 3160 1532 851 417 179 55 25 14 7 6 6 6 6
All 7.7M 5.1M 3.6M 2.9M 2.5M 2.2M 1.9M 1.7M 1.6M 1.4M 1.3M 1.1M 1.0M 0.9M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.99 86.61 86.35 86.11 85.86 85.52 85.35 84.96 84.51 83.77 83.25 82.53 81.10 78.63
FNR (%) 13.01 13.39 13.65 13.89 14.14 14.48 14.65 15.04 15.49 16.23 16.75 17.47 18.90 21.37
FDR (%) 1.61 0.44 0.18 0.10 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 6059 1633 667 359 185 67 32 12 2 0 0 0 0 0
All 4.3M 3.4M 2.8M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.5M 1.4M 1.3M 1.2M 1.0M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥32

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.72 86.64 86.31 85.70 85.52 85.42 85.16 84.71 84.23 83.56 83.06 82.25 80.83 78.32
FNR (%) 13.28 13.36 13.69 14.30 14.48 14.58 14.84 15.29 15.77 16.44 16.94 17.75 19.17 21.68
FDR (%) 1.30 0.30 0.13 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 4877 1115 465 207 83 33 14 2 0 0 0 0 0 0
All 3.6M 2.9M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M 1.1M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥35

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.25 86.09 85.53 85.46 85.39 85.20 84.71 84.29 83.63 83.08 82.59 81.30 79.56 77.33
FNR (%) 13.75 13.91 14.47 14.54 14.61 14.80 15.29 15.71 16.37 16.92 17.41 18.70 20.44 22.67
FDR (%) 0.93 0.25 0.11 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 3433 927 387 186 75 23 11 0 0 0 0 0 0 0
All 3.0M 2.5M 2.2M 2.0M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M 1.1M 1.0M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥40

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 85.79 85.75 85.08 84.64 84.26 83.78 83.48 82.89 82.28 81.30 79.93 78.31 76.75 73.58
FNR (%) 14.21 14.25 14.92 15.36 15.74 16.22 16.52 17.11 17.72 18.70 20.07 21.69 23.25 26.42
FDR (%) 0.17 0.09 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 608 337 180 72 18 6 2 0 0 0 0 0 0 0
All 2.2M 1.9M 1.7M 1.6M 1.5M 1.4M 1.3M 1.3M 1.2M 1.1M 1.1M 1.0M 1.0M 0.9M

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}−→R×(HSA∪MMU)
align−−−−−−→
BS≥50

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 83.86 83.59 83.18 82.26 81.20 80.14 78.93 77.71 76.46 74.79 72.42 69.22 65.74 61.03
FNR (%) 16.14 16.41 16.82 17.74 18.80 19.86 21.07 22.29 23.54 25.21 27.58 30.78 34.26 38.97
FDR (%) 0.10 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 347 203 86 35 16 0 0 0 0 0 0 0 0 0
All 1.3M 1.1M 1.0M 1.0M 1.0M 0.9M 0.9M 0.9M 0.8M 0.8M 0.8M 0.7M 0.7M 0.6M

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Table 4: Comparison of DIAMOND bit-score thresholds

Database frag_all_aln. Log10 transformed.

29

4.1.5 Bit-score transformation

The need for the log10-preprocessing was determined experimentally by Song et al. (2008).
They reason that since the Pearson correlation coe�cient captures linear relationships,
the logarithm is needed to compress the bit-score range into a more linear scale.

Table 5 shows the results of using di�erent bit-score transformations on bit-scores
from aligning Q = R = HSA ∪ MMU. I didn't plan to include the results of using the
highly fragmented frag_all_aln reference database, but there are important di�erences
� see table 6. The identity transformation again stands out the most � but it still has
twice the TPR at nc-score≥ 0.5 compared to the results in table 5.

4.1.5.1 Key observations

� The identity transformation is inferior. This is consistent with what Song et al.
(2008) found.

� The binary/unweighted transformation � of great interest as it can be stored 16
times more e�ciently than the 16-bit �oating point numbers likely to be the optimal
storage of log-transformed bit-scores � showed great promise, particularly on the
fragmented database. However, it did perform worse than log10 (regardless of
reference database). This is generally consistent with what Song et al. (2008) found
even though they seem more skeptical. My results indicate that this transform is
really only worth using if hardware limitations require it. If used, additional tests
should be performed to validate that it performs well on the speci�c reference
database used.

� ln and log10 are practically indistinguishable.

4.1.5.2 Decision

Use log10. This is consistent with what Song et al. (2008) did.

30

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

(a) logs, binary and identity transformations.

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.28 87.79 87.00 86.49 86.30 85.94 85.75 85.62 85.29 84.90 84.43 83.45 81.98 79.80
FDR (%) 0.53 0.23 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1986 877 509 256 87 27 5 0 0 0 0 0 0 0
All 4.6M 3.2M 2.7M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
binary

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.35 87.88 87.33 86.52 86.38 85.98 85.78 85.64 85.32 84.88 84.26 83.43 81.95 79.99
FDR (%) 0.78 0.26 0.15 0.10 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 2963 960 557 375 215 40 7 0 0 0 0 0 0 0
All 5.1M 3.5M 2.9M 2.6M 2.4M 2.2M 2.0M 1.9M 1.7M 1.6M 1.5M 1.4M 1.3M 1.1M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log_e

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.28 87.79 87.00 86.49 86.30 85.94 85.75 85.62 85.29 84.90 84.43 83.45 81.98 79.80
FDR (%) 0.53 0.23 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1986 877 509 256 87 27 5 0 0 0 0 0 0 0
All 4.6M 3.2M 2.7M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−−→
identity

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 85.83 84.35 82.38 79.76 75.90 70.52 63.56 55.63 46.92 38.41 30.81 23.77 16.93 11.34
FDR (%) 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 96 14 0 0 0 0 0 0 0 0 0 0 0 0
All 2.3M 1.9M 1.6M 1.4M 1.3M 1.1M 1.0M 0.9M 0.8M 0.7M 0.7M 0.6M 0.5M 0.4M

(b) root transformations.

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−−−−→
square root

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 87.87 86.82 86.43 86.31 85.94 85.70 85.35 84.96 84.44 83.71 82.59 80.99 78.41 74.25
FDR (%) 0.32 0.13 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1206 482 170 78 22 5 0 0 0 0 0 0 0 0
All 3.7M 2.8M 2.4M 2.2M 2.0M 1.9M 1.8M 1.6M 1.5M 1.4M 1.3M 1.2M 1.2M 1.1M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−−→
cube root

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.14 87.63 86.63 86.42 86.19 85.90 85.71 85.47 85.15 84.73 84.08 82.92 81.30 78.84
FDR (%) 0.43 0.21 0.10 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1623 780 380 144 65 18 6 0 0 0 0 0 0 0
All 4.2M 3.1M 2.6M 2.4M 2.2M 2.0M 1.9M 1.8M 1.7M 1.5M 1.4M 1.3M 1.3M 1.2M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−−→
4th root

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.25 87.73 86.85 86.46 86.26 85.93 85.74 85.58 85.25 84.86 84.35 83.29 81.85 79.54
FDR (%) 0.50 0.23 0.13 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1872 851 497 178 80 23 5 0 0 0 0 0 0 0
All 4.5M 3.2M 2.7M 2.4M 2.2M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−−→
5th root

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.29 87.80 86.98 86.49 86.30 85.94 85.75 85.62 85.29 84.89 84.42 83.43 81.93 79.77
FDR (%) 0.54 0.24 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 2034 884 516 258 90 26 5 0 0 0 0 0 0 0
All 4.6M 3.3M 2.8M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Table 5: Comparison of di�erent bit-score transformations

Using R=Q=(HSA ∪ MMU). (a) logarithmic, binary and identity transformations. The default

transformation in this project � log10 � is shown on top. (b) roots 2-5. See section 4.1.5.

31

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

(a) log10 transformation.

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all dom. in σ−−−−−−−−−−−−−−−−−−→
frag. remains (l=300)

R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.83 86.71 86.21 85.79 85.64 85.28 85.08 84.63 84.10 83.37 82.49 81.27 79.17 75.76
FNR (%) 13.17 13.29 13.79 14.21 14.36 14.72 14.92 15.37 15.90 16.63 17.51 18.73 20.83 24.24
FDR (%) 0.14 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 518 127 35 4 4 4 4 4 4 4 4 4 4 4
All 2.2M 2.1M 1.9M 1.8M 1.7M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M 1.1M 1.0M 0.9M

(b) binary transformation.

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all dom. in σ−−−−−−−−−−−−−−−−−−→
frag. remains (l=300)

R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
binary

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.85 86.77 86.18 85.78 85.62 85.28 84.99 84.53 83.93 83.19 82.16 80.68 78.24 73.75
FNR (%) 13.15 13.23 13.82 14.22 14.38 14.72 15.01 15.47 16.07 16.81 17.84 19.32 21.76 26.25
FDR (%) 0.19 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 695 245 60 14 4 4 4 4 4 4 4 4 4 4
All 2.2M 2.1M 2.0M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M 1.0M 1.0M 0.9M

(b) identity transformation.

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all dom. in σ−−−−−−−−−−−−−−−−−−→
frag. remains (l=300)

R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−−→
identity

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.65 86.49 86.09 85.65 85.35 84.94 84.39 83.59 82.25 80.19 77.09 72.75 66.74 59.26
FNR (%) 13.35 13.51 13.91 14.35 14.65 15.06 15.61 16.41 17.75 19.81 22.91 27.25 33.26 40.74
FDR (%) 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 142 45 17 8 4 4 4 4 4 4 4 4 4 4
All 2.1M 2.0M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.3M 1.2M 1.1M 1.0M 0.8M

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Table 6: Additional comparisons of di�erent bit-score transformations
Using R=frag_all_aln. (a) log10 (b) binary. (c) identity. See section 4.1.5.

The excluded transforms performed very similarly to the logs.

32

4.2 Selecting the best reference database R

All of the methods for generating reference databases explored in this section will have
the set of Pfam-A domains as a starting point, using di�erent methods to select and
process sequences for each domain.

4.2.1 Fragmentation of reference sequences

All of the databases in �gure 5 and all but the �rst database (shown for reference) in
table 7 are based on the the same set of 7957 UniProt sequences, generated by going
through all domains in Pfam-A and selecting the accession with the longest alignment
for that domain.

First it's important to point out that the distribution of the nc-score depends on the
database, which means one can't compare TPR and FDR directly between fragmentation
methods in the �gure4 � that's what the table is for (see also Discussion for more about
comparing nc-scores generated with di�erent databases).

4.2.1.1 Key observations

Instead what we can get from �gure 5 is general features. Observations from the �gure
and table:

� The extract_only_primary_aln database (dotted violet) stands out as perform-
ing very poorly in terms of TPR. Since it has the extracted full alignment for each
of the 7957 Pfam-A domains, I thought it would perform better.

� Interestingly, the next smallest database � extract_all_aln (dotted green) � is
only about twice as big and achieves an 85 % TPR � only about 1 percentage point
less than the best I've come up with (or equally NC_standalone) at a 0.00 % FDR.
I don't understand why it performs so much better than its half-sized companion
database � it's based on the same 8 k Pfam domains, just with more homologs.
Some of the di�erence could be due to sequences in the alignment gaps that get
included as well.

� It's important to note that while extract_all_aln generates (within 1-1.5 percent-
age points) a similar TPR (at the same FDR < 0.00 %) to frag_all_aln (dashed
green), there is a large di�erence in the total number of identi�ed homologous pairs
� snc �nds ∼ 50− 70 % more pairs with the latter.

� So we see that databases with very comparable TPR at the same FDR can vary
a factor of 2 when it comes to total number of identi�ed homologous pairs. How
many of these are false positives? We have no way of knowing for sure and this
is a limitation with this analysis. But in terms of evaluating the database-scale-
down method, we can compare the numbers with the complete database case (�rst

4Ideally these plots should be aligned so the midpoint of the x-axis always represents the nc-score giving
same FDR, for example 0.1%. The x-axis would then instead of nc-score show an nc-score o�set.

33

entry in table 7), and then there is no question that the databases containing the
complete sequences � fragmented or not � are better.5

� Very surprisingly, the �non domain� fragments database (dotted gray) performed
on-par with or better than the primary-domain-only database. Notably it achieves
a 67 % TPR at a 0.01 % FDR. Keep in mind that in this database we have gone
through the e�ort of �ltering out all non-overlapping Pfam-A domain alignments to
each sequence. It should be mostly clean of annotated domains6, yet it performs as
well as a database containing only annotated domains.7 While the �ltering process
could be incomplete, this suggests that annotated domains only contain part of
the information needed for homology inference. Is the rest mostly unannotated
domains or other sequence features?

4.2.1.2 Decision

Apart from the method that extracts only one domain per UniProt sequence, all of these
methods perform well � with ∼ 84− 86 % TPR with so few FP that they can be counted
on one hand. See �gure 4 for a scatter-plot and histogram of the comparing the nc-
score distributions of HSA+MMU (our �gold standard� query-species reference) and pfam

frag_all_aln (see table 2). Note that there are many horizontal bands but hardly any
vertical. I'm interpreting this as NC being able to identify more �ne-grained di�erences
in homology using the larger and evolutionarily closer HSA+MMU data-set. There are
some bands with very low scores for HSA+MMU that are in the 0.45− 0.70 range for pfam
frag_all_aln. At the same time, the latter database gives scores for all FP's safely
below 0.2 so it's hard to know for sure what to make of this. We do unfortunately see
a band of TP at the bottom that HSA+MMU caught but frag_all_aln is missing. I think
the reasonable interpretation is that frag_all_aln is missing some pairs, but achieves
better separation on the pairs it �nds � which is what we would expect to �nd if the
method (fragmentation) is better but the database (not species-speci�c) is worse.

I've chosen frag_all_aln as the default database for the project as it's the best
non-species-speci�c one.

5It should be mentioned that ideally one would like to compare the actual called pairs � not just the
total count. I.e. is it that one method just �nds more pairs, or do they �nd di�erent pairs?

6So one would think � but this should be veri�ed.
7I added the �discarded�-database to my analysis mostly for fun, not knowing if it would work at all.

34

Figure 4: Comparison of reference databases: HSA+MMU vs frag_all_aln
Top �gure (scatter-plot): N.B.: Green dots (TP) are bigger and red dots (FP) biggest.
Bottom �gure: histogram of same data (the lower half has the scores generated by the
frag_all_aln database o�set by +0.04 (the average score di�erence) to make the data-
sets more comparable. Scores of FP and TP set to 0 if missing. See section 4.2.1.2.

35

Figure 5: Comparison of di�erent fragmentation methods
The �gure shows the TPR % (upper plot) and FDR % (lower plot, log scale) of di�erent
reference db sequence fragmentation methods. Default settings (BS ≥ 30, log10) and
Q =HSA∪MMU was used. See section 4.2.1. See table 2 for databases.

36

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

hsa+mmu no_frag

(HSA∪MMU) =R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.28 87.79 87.00 86.49 86.30 85.94 85.75 85.62 85.29 84.90 84.43 83.45 81.98 79.80
FNR (%) 11.72 12.21 13.00 13.51 13.70 14.06 14.25 14.38 14.71 15.10 15.57 16.55 18.02 20.20
FDR (%) 0.53 0.23 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1986 877 509 256 87 27 5 0 0 0 0 0 0 0
All 4.6M 3.2M 2.7M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

extract_only_primary_aln

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract prim. dom. in σ−−−−−−−−−−−−−−−−−−−−→ R×(HSA∪MMU)

align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 64.24 64.24 64.24 64.20 63.91 63.05 61.39 59.45 57.05 54.83 50.99 47.14 45.11 37.70
FNR (%) 35.76 35.76 35.76 35.80 36.09 36.95 38.61 40.55 42.95 45.17 49.01 52.86 54.89 62.30
FDR (%) 0.03 0.03 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
FP 75 75 75 71 58 28 21 19 19 7 5 5 5 4
All 0.7M 0.7M 0.7M 0.7M 0.7M 0.7M 0.7M 0.6M 0.6M 0.6M 0.5M 0.5M 0.5M 0.4M

extract_all_aln

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all domains in σ−−−−−−−−−−−−−−−−−−−−→ R×(HSA∪MMU)

align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.05 85.87 85.33 84.99 84.76 84.47 84.33 84.12 83.60 82.93 82.20 81.29 79.70 77.46
FNR (%) 13.95 14.13 14.67 15.01 15.24 15.53 15.67 15.88 16.40 17.07 17.80 18.71 20.30 22.54
FDR (%) 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 374 104 41 18 13 9 4 4 4 4 4 4 4 4
All 1.4M 1.3M 1.2M 1.2M 1.1M 1.0M 1.0M 0.9M 0.9M 0.9M 0.8M 0.8M 0.7M 0.7M

frag_all_aln

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
extract all dom. in σ−−−−−−−−−−−−−−−−−−→
frag. remains (l=300)

R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.83 86.71 86.21 85.79 85.64 85.28 85.08 84.63 84.10 83.37 82.49 81.27 79.17 75.76
FNR (%) 13.17 13.29 13.79 14.21 14.36 14.72 14.92 15.37 15.90 16.63 17.51 18.73 20.83 24.24
FDR (%) 0.14 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 518 127 35 4 4 4 4 4 4 4 4 4 4 4
All 2.2M 2.1M 1.9M 1.8M 1.7M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M 1.1M 1.0M 0.9M

frag_raw_seq:300

{σ | σ w. longest aln. to δ ∈ Pfam-A domains}
fragment σ (l=300)
−−−−−−−−−−−−−−−−→ R×(HSA∪MMU)

align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.68 86.30 85.95 85.85 85.63 85.23 84.86 84.36 83.77 82.61 81.44 79.23 75.88 70.46
FNR (%) 13.32 13.70 14.05 14.15 14.37 14.77 15.14 15.64 16.23 17.39 18.56 20.77 24.12 29.54
FDR (%) 0.31 0.10 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1138 370 108 17 6 1 1 0 0 0 0 0 0 0
All 2.6M 2.4M 2.2M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.1M 1.0M 0.9M

no_frag

{σ | σ w. longest aln. to δ ∈ Pfam-A domains} −→ R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.99 86.61 86.35 86.11 85.86 85.52 85.35 84.96 84.51 83.77 83.25 82.53 81.10 78.63
FNR (%) 13.01 13.39 13.65 13.89 14.14 14.48 14.65 15.04 15.49 16.23 16.75 17.47 18.90 21.37
FDR (%) 1.61 0.44 0.18 0.10 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 6059 1633 667 359 185 67 32 12 2 0 0 0 0 0
All 4.3M 3.4M 2.8M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.5M 1.4M 1.3M 1.2M 1.0M

random

{σ | 1 random σ with align to δ ∈ Pfam-A domains} −→R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 87.71 87.20 86.85 86.45 85.96 85.70 85.41 85.22 84.89 84.37 83.62 82.92 81.92 79.90
FNR (%) 12.29 12.80 13.15 13.55 14.04 14.30 14.59 14.78 15.11 15.63 16.38 17.08 18.08 20.10
FDR (%) 1.08 0.36 0.20 0.15 0.10 0.07 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.00
FP 4071 1347 744 559 373 254 196 126 51 1 0 0 0 0
All 4.8M 3.6M 3.0M 2.6M 2.4M 2.2M 2.0M 1.8M 1.7M 1.5M 1.4M 1.3M 1.2M 1.0M

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Table 7: Comparison of di�erent fragmentation methods

Comparing four di�erent ways of fragmenting, possibly subsampling the exact same sequences. No

fragmentation shown second to last. A completely di�erent set of sequences shown at the top

(HSA+MMU complete database). At the very bottom: randomly selecting one aligned sequence per

Pfam-A domain. See section 4.2.1.

37

4.2.2 To fragment or not to fragment? Lessons from arti�cial
multidomain proteins

Using the extract_only_primary_aln set of domain-only sequences (∼ 8 k) extracted
from UniProt seqs based on alignments to Pfam-A domains, I generated arti�cial multido-
main sequences a by randomly concatenating k (k ∈ {1, 2, 3, 4, 5, 7, 10, 15, 20}) of these
domains together (with each domain belonging to exactly one �arti�cial� sequence):

Mk = {a = (d1, ..., dk) | d1≤i≤k ∈ extract_only_primary_aln}

The size of Mk is len(source)/k meaning the smallest database (20 domains per seq)
is only 398 sequences long.

Eight trials were ran to get stable averages. As we see on �gure 6, the validation
results indicate that there is no �safe level� of domain multiplicity, and especially the
FDR is badly a�ected � which one might expect. To understand why this might be
expected, let's look at an example. Consider the following two database sequences:

r1 = (d1d2), r2 = (d3d4)

and this pair of query sequences:

q1 = (d1d3)

q2 = (d2d4)

Because r1 and r2 are multidomain sequences, q1 and q2 will get an optimal nc-score!
If the reference sequences had been properly fragmented into single domains ri = {di},
then (q1, q2) would have gotten a zero nc-score (assuming no other shared hits).

However, since this database is so small it might not be all that representative. For
this reason I ran the same analysis using the similar but larger extract_all_aln database
(∼ 16 k seqs) instead, let's call these databases Nk (see �gure 7). At low nc-scores the
FDR is much worse. At the same time TPR is up to twice as high for the higher nc-score
thresholds. It seems to me that there wasn't enough information in the Mk's and that
the Nk's are more representative of the �real� situation. It seems the NC method is very
capable of �ltering out the false identi�cations that multidomain proteins cause � but at
the cost of a signi�cant drop in TPR. Looking at the case of 3 domains/seq, we seem
to be loosing about 1.5 − 3 percentage-points in TPR at the same FDR compared to
1 domain/seq. It's also important to point out that there is a lot of variation between
the random trials. Getting the �wrong� domains (common ones � I guess) merged can
apparently have big e�ect.

38

Figure 6: Arti�cial multidomain seqs as ref. db (based on extract-only-primary-aln)
The �gure shows the average TPR % (upper plot) and FDR % (lower plot) of eight
randomized trials for each domain count. Default settings (BS ≥ 30, log10) and
Q =HSA∪MMU was used. See section 4.2.2.

39

Figure 7: Arti�cial multidomain seqs as ref. database (based on extract-all-aln)
The �gure shows the average TPR % (upper plot) and FDR % (lower plot) of eight
randomized trials for each domain count. Default settings (BS ≥ 30, log10) and
Q =HSA∪MMU was used. See section 4.2.2.

40

4.2.3 Sequence with longest alignment vs. random sequence(s)

Selecting the UniProt sequence that has the longest alignment to a given Pfam domain
entry seems reasonable. One way of testing this assumption is to validate the longest-
alignment-sequence against simply selecting a random sequence, which is what we will
now do. Compare the last two entries in table 7. At low FP counts, the randomly selected
database is very slightly inferior.

Including additional random sequences (3 or 5 in total) per domain is of little use as
can be seen in �gure 8: the TPR is barely a�ected until very high nc-scores, the FDR is
still comparatively high � and all this comes at a massive cost in terms of database size.

4.3 Consistency of snc vs. NC_standalone

The distribution of scores of true positives and false negatives can be seen in �gure 9
(histogram) and in �gure 10 (scatter-plot at bit-score threshold 30). My best guess is
that the rather big di�erence in average nc-score is caused by the default score that
NC_standalone adds to unaligned pairs (see section 2.1.4.1).8

As can be seen in table 8, once the nc-score o�set has been accounted for, the
implementations perform very similarly. For example at bit-score 30, snc has a TPR of
85.94 % (at FP=27), while NC_standalone has a TPR of 85.93 % (at FP=26).

One thing to note is that it is very comforting to see that while the distribution of
true positives sadly has a pretty long tail into �false negative territory�, the distribution of
true negatives comfortably tight, further increasing the con�dence in the Neighborhood
Correlation method.

In conclusion, the implementations show similar classi�cation performance.

8I have not tested this hypothesis as it didn't seem to a�ect the end results much.

41

Figure 8: Comparison of number of random sequences per Pfam domain
The �gure shows the TPR % (upper plot) and FDR % (lower plot, log scale) of dif-
ferent numbers of random sequences selected per Pfam domain. Default settings (BS
≥ 30, log10) and Q =HSA∪MMU was used. Two databases using the longest domain
alignment included for reference.

42

Figure 9: snc vs. NC_standalone: histograms of nc-scores compared
TP (left column) and FP (right column) of identi�ed homologous pairs as determined
by validation against the curated annotated proteins. Top row: raw nc-scores compared.
Bottom row: nc-scores with the scores of NC_standalone o�set by +0.11 (the average
score di�erence). Score set to 0 if missing. Underlying data: Q = R = HSA+MMU, bit-score
threshold 30, log10 transformed.

43

Figure 10: snc vs. NC_standalone: nc-scores compared
Equal output from both programs would correspond to the line x=y. Green dots (TP)
are bigger and drawn on top of the gray dots (all homologs found by both programs).
The red dots (FP) are made to stand out even more. Scores of FP and TP set to 0 if
missing. See table 8 for a numeric summary. See section 4.3. Underlying data: Q = R =
HSA+MMU, bit-score threshold 30, log10 transformed.

44

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

(a) bit-score = 20

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥20

transf.−−−−−−→
log10

NC_standalone
−−−−−−−−−−−−−→ All

validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.46 86.05 85.85 85.58 85.10 84.53 83.92 83.15 81.94 80.12 77.47 74.36 69.57 62.35
FNR (%) 13.54 13.95 14.15 14.42 14.90 15.47 16.08 16.85 18.06 19.88 22.53 25.64 30.43 37.65
FDR (%) 0.10 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 372 64 19 8 6 0 0 0 0 0 0 0 0 0
All 2.7M 2.1M 1.9M 1.7M 1.6M 1.5M 1.4M 1.3M 1.3M 1.2M 1.1M 1.1M 1.0M 0.9M

(b) bit-score = 30

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

snc−−−→ All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 88.28 87.79 87.00 86.49 86.30 85.94 85.75 85.62 85.29 84.90 84.43 83.45 81.98 79.80
FNR (%) 11.72 12.21 13.00 13.51 13.70 14.06 14.25 14.38 14.71 15.10 15.57 16.55 18.02 20.20
FDR (%) 0.53 0.23 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 1986 877 509 256 87 27 5 0 0 0 0 0 0 0
All 4.6M 3.2M 2.7M 2.5M 2.3M 2.1M 1.9M 1.8M 1.7M 1.6M 1.5M 1.4M 1.3M 1.2M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥30

transf.−−−−−−→
log10

NC_standalone
−−−−−−−−−−−−−→ All

validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.90 86.32 85.93 85.76 85.38 84.88 84.17 83.40 82.25 80.52 77.90 74.87 70.29 63.22
FNR (%) 13.10 13.68 14.07 14.24 14.62 15.12 15.83 16.60 17.75 19.48 22.10 25.13 29.71 36.78
FDR (%) 0.12 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 451 89 26 8 8 2 0 0 0 0 0 0 0 0
All 2.8M 2.2M 2.0M 1.8M 1.6M 1.5M 1.4M 1.4M 1.3M 1.2M 1.2M 1.1M 1.0M 0.9M

(c) bit-score = 40

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥40

transf.−−−−−−→
log10

snc−−−→ All
validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 86.44 86.00 85.73 85.38 84.93 84.26 83.97 83.66 82.94 81.80 80.75 79.24 77.60 75.06
FNR (%) 13.56 14.00 14.27 14.62 15.07 15.74 16.03 16.34 17.06 18.20 19.25 20.76 22.40 24.94
FDR (%) 0.16 0.08 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 584 290 194 103 5 0 0 0 0 0 0 0 0 0
All 3.0M 2.2M 1.9M 1.7M 1.6M 1.5M 1.5M 1.4M 1.4M 1.3M 1.3M 1.2M 1.1M 1.1M

(HSA∪MMU)=R×(HSA∪MMU)
align−−−−−−→
BS≥40

transf.−−−−−−→
log10

NC_standalone
−−−−−−−−−−−−−→ All

validate−−−−−−−−−→
w. curated

TP
FN
FP

TPR (%) 85.97 85.63 85.07 84.45 83.73 83.19 82.41 81.23 79.64 77.96 75.92 72.82 68.06 60.57
FNR (%) 14.03 14.37 14.93 15.55 16.27 16.81 17.59 18.77 20.36 22.04 24.08 27.18 31.94 39.43
FDR (%) 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FP 222 31 8 8 0 0 0 0 0 0 0 0 0 0
All 2.2M 1.8M 1.6M 1.5M 1.4M 1.4M 1.3M 1.3M 1.2M 1.2M 1.1M 1.1M 1.0M 0.9M

nc-score
threshold

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Table 8: Comparison of snc vs. NC_standalone

Comparison of NC implementations at three di�erent bit-score thresholds: (a) Bit-score = 20 [data for

snc is unavailable (out of memory)]. (b) Bit-score = 30. (c) Bit-score = 40.

45

5 Discussion

5.1 The case for fragmentation

One of the hardest pipeline parameters to determine was fragmentation (if any). There
is a trade-o� between implementation complexity, speed and optimal sensitivity and
speci�city. However in the general case, we have seen that fragmentation outperforms no
fragmentation even using a simplistic homogeneous algorithm. It only makes sense then
to use fragmentation, but to try to make the fragments map to biologically meaningful
subsequences, such as aligned domains. Perhaps there are better ways of doing this than
using Pfam domains.

Going back to the arti�cial multidomain experiment in section 4.2.2, I think the
conclusion is that multidomain entries have the potential of generating many false pos-
itives, but that the Neighborhood Correlation algorithm is very e�ective in removing
these. However, we observe no downside to fragmenting the sequences in terms of TPR
and FDR � in fact, the TPR is a noticeably higher (�g. 7).

It's worth noting that classi�cation performance isn't the only factor in deciding to
fragment: it also a�ects the speed of the program. We saw in the Theory section that NC

has (optimally) time complexity O
(
n2m2

s

)
. What is the e�ect of fragmentation? Let's

assume we have a database of size s =100000 entries, m = 20 and cut each sequence in
half. s is now 200000, and k will likely be mostly constant (even though it will increase
a bit, since DIAMOND by default only reports one HSP per alignment), thus m will be

cut in half as well. This would mean: O
(
n2m2

s

)
fragment−−−−−−→
(pieces=2)

O
(
n2m2

8s

)
, i.e. an almost

order-of-magnitude improvement in run-time from just fragmenting once.
In conclusion, while clearly there is no point in fragmenting too much � the proteins

won't align properly anymore � we now have the following arguments in favor of extensive
fragmentation:

1. Experimental �ndings of improved performance on actual data (see table 7).

2. Evidence of improved performance on simulated data (see section 4.2.2).

3. An argument of reason:
We are trying to create protein ��ngerprints� that look similar for homologs. Match-
ing features (domains mostly) rather than entire proteins makes sense in this con-
text. Another way of saying this is that the �likeness� we �nd by aligning to a
whole protein we would have found with a fragment anyway, but the whole protein
comes with unwanted �likeness� included. To put it succinctly: whole � especially

46

large � proteins in the database will contaminate the queries � making it look like
they have similarity to domains they don't contain.

4. An e�ciency argument as described above, clearly showing how ine�cient it is to
compute all the cross-product terms for a large group of partially unrelated proteins
that happens to match an overly-generic target sequence.

5. Possibly: the potential for increased discoverability for the identi�ed homologs, i.e.
if the database is (somewhat) curated and annotated, just looking at what database
sequences are involved will immediately give some clues about the functionality of
a novel homologous cluster � in contrast to the case where they �happened to match
a bunch of random sequences�.

In conclusion, some form of fragmentation is necessary for scalable Neighborhood Corre-
lation.

5.2 Comparing nc-scores generated with di�erent R

An important point can be learned from the results in section 4.2: an nc-score without
some kind reference is close to meaningless! 1 A �high� score with one database can be
�low� with another. See �gure 9 for a nice illustration of this e�ect. However, the good
news is that � as discussed in section 4.3 � normalizing the nc-scores (so that they have
equal averages) seems to work well. 2

5.3 Limitations of my study

See also Recommendations for future studies below and Things I didn't have time to try
but might be worth looking into in Appendix.

Key limitations

1. Lack of extensive validation data for HSA+MMU and lack of validation data for more
species, thus making it hard to make general conclusions on the performance of the
method.

2. Small data-sets for testing � it would have been nice to illustrate the theoretical
discussion on scalability with actual data.

3. Only one main method for generating reference databases (i.e. using Pfam-A do-
mains). It would have been nice to test some methods using a selection of sequences
from UniRef50 � that's however a project all in its own right.

1The di�erence in TPR at the same FDR between fragment lengths 100 and 300 is, for example, only
a couple of percentage points.

2Of course this requires a suitable training set so that pairs with �known� scores can be used as a
standard.

47

5.4 Recommendations for future studies

See also the list of ideas in Appendix.

5.4.1 More extensive validation

All of the experiments in this project have been judged chie�y on calling true and false
positives using the small set of curated proteins provided by Song et al. 2008, covering
only 4.2% (by number of proteins) of the current reference proteomes of human and
mouse. This is problematic, especially as these two proteomes already are a minimally
small data-set (two species) for this type of analysis. A better way of calling false positives
in particular � on a larger data-set � is needed to con�rm the quality of the homolog
identi�cations generated by the methods explored in this project.

5.4.2 General idea: create the reference database as two-step process:

1. Generate candidate sequence fragments

2. Select a subset of these that are non-redundant � for most query sequences at the
bit-score threshold that will be used when aligning to them. One way to to this
could be to use a vast set of diverse sequences (e.g. UniRef100 (UniProt 2023))
and �lter out the candidate sequences having mostly the same alignments � as well
as �lter out the ones with too few alignments. This could be costly, but wouldn't
have to be repeated often.
(The candidate sequences could be clustered, and their respective alignments to
UniRef100 stored as bit-vectors (1=aligned). Pairwise comparisons within these
clusters could then be done quite e�ciently. As of Sept 2023 UniRef100 contains
365 M sequence clusters. This means that each alignment bit-vector would only use
46 MB of memory and could be handled using Hamming weight (bit summation)
and bitwise and � vectorized of course.)

Note that this idea somewhat goes against the concept of keeping R as small as possible.

5.4.3 Verify the sequence diversity the selected �pfam longest� sequences

I recommend that one tabulate the species of the selected �longest pfam alignment�
sequences (see table 2) to see how many come from human or mouse. I've kind of
assumed that they are more or less randomly distributed across the entirety of UniProt,
but it could be that the HMM:s used by Pfam have a bias for reference species such as
human or mouse. This would undermine the validity of the comparisons made in this
project under the assumption that the HSA+MMU test data is as �random� or evolutionary
distant as anything that would be thrown at this database.

48

5.4.4 Try default scores

Replicate the way NC_standalone assigns default scores in snc / PNC and compare
the results.

5.4.5 Try a di�erent scoring matrix

A di�erent alignment scoring matrix than BLOSUM62 might be optimal for the ap-
plication of �nding distant homologs. There are papers discussing the pros and cons
of di�erent scoring matrices. Experiment with this, particularly in combination with
di�erent bit-score thresholds.

5.5 A note on Neighborhood Correlation being able to �nd
more distant homologs than direct alignments

As is noted in Pearson (2013), a bit-score of 50 is needed to achieve a signi�cant hit
(E-value < 0.001) in a database with 7 M entries (assuming typical protein sizes). Pear-
son recommends a bit-score threshold of 50 as a rule-of-thumb when using direct align-
ments to identify homology. But as we have seen in section 4.1.4, a bit-score threshold
of 50 leaves out many homologous pairs that would have been found at a threshold of
32. At a comparable FDR of 0.00 % (rounded to two decimal points), TPR drops from
85.16 % to 81.20 % for the curated test set when lowering the bit-score threshold from 50
to 32.

Neighborhood Correlation can therefore be seen not only as a method for improv-
ing the speci�city of a homology search (by removing erroneous multidomain matches)
but also for potentially increasing the sensitivity by allowing a higher sensitivity in the
underlying alignments.

49

6 Conclusion

This thesis has shown that a down-scaled, species-agnostic reference database can pro-
duce classi�cation results that are on-par with using the full query-set as reference,
according to the available metrics.

We have explored the inherent time complexity of the Neighborhood Correlation
method and drawn important conclusions about scalability and reference database design.

The bene�ts of fragmenting the reference genome have been investigated in multiple
ways and a case has been made for fragmentation to be seen as a best-practice. A number
of parameters have been tweaked and optimal or near-optimal values have been provided.
The method of using Pfam-A as an index of diverse sequences covering a large pool of
domains has been explored and found viable.

This thesis presents an algorithm for computing Neighborhood Correlation achieving
an improved time complexity compared to existing NC algorithms. During the project
a fully working implementation of this algorithm was developed.

Speci�c key lessons:

1. The optimal nc-score threshold depends on the reference database and nc-scores
needs a reference scale to be meaningful (without a reference, one basically has to
guess if particular score is �good� or not).

2. There is such a thing as an optimal bit-score threshold, at least with the databases,
settings and choice of default score (0) used in this project.

3. Log10 as bit-score transform is as good as any.

4. It's super-important to set the correct aligner settings, particularly to use a high
sensitivity and a high --max-target-seqs.

5. Species-speci�c databases are better, but a global, species-agnostic database could
probably be almost as good � but this has to be con�rmed.

6. Fragmentation in some form is � as discussed in the Results section � needed for
optimal performance of NC (both in terms of classi�cation and running the soft-
ware). Focus on fragmenting into biologically meaningful units (e.g. domains).
This seems like an obvious machine learning problem.

7. Just throwing more �random� sequences at NC isn't likely the way forward � it
doesn't scale well and gives poor marginal improvements. Rather some kind of �in-
telligent� choices about both sequence selection and the processing of the sequences
should be made. That is not to say that the reference databases should necessarily
be very small � that's a price-versus-performance trade-o� in the end.

50

Appendix

Pitfalls

Repeated FASTA accessions

As long as --max-target-seqs isn't reached, DIAMOND doesn't seem to care about
duplicated accessions � a quick test showed an equal number of alignments. The output
of snc will however di�er, thus creating a subtle pitfall which causes incorrectly named
sequences to yield unintended results. This was close to corrupting the results of my
synthetic multidomain sequence analysis, had I not used the base case of domain count
of 1 as a control and compared it with my previous results.

Number of alignments reported

The DIAMOND option --max-target-seqs is discussed elsewhere in the thesis, but it
has to be mentioned here. Had I not stumbled upon this option more-or-less by accident
I would have missed it and gotten misleading results for the entire project. It is easy
to assume that the default values of a tool are good enough (and often better than any
guess a novel user might make), but the lesson in this is that this heuristic often breaks
down catastrophically when using a tool in a way that di�ers from the typical use-case.
A user of an aligner typically doesn't want to sort through a thousand matches � hence
the lower default threshold � but in this project we (or rather snc) do.

It's clear I'm not the �rst one to get bitten by settings like this, see Shah et al.
(2019) and Gonzalez-Pech, Stephens, and Chan (2018) � here in the context of BLAST
speci�cally.

SciPy fcluster sometimes returns too many clusters

The function scipy.cluster.hierarchy.fcluster takes a linkage matrix (and some
additional parameters) and returns a ��at� clustering (which is what I wanted in order to
subsample sequences). I used the maxclust criterion and speci�ed my requested number
of clusters. This is supposed to be a maximum, but I found that the function sometimes
returned more than this. The documentation says the function internally tries to �nd a
threshold r. I guess this could fail � e.g. if the nodes are too close in the linkage matrix.

The clustering was abandoned, and the e�ect of this problem was rather small as I
recall it.

51

UniProt API error messages

As mentioned earlier, UniProt entries referenced by Pfam-A were frequently marked as
�inactive�. When a sequence is missing some formats may not be available, not work as
intended or not give the full error message. It was not always immediately clear if an error
message is permanent (linked to the entry) or temporary. I only got disconnected from
the UniProt API once, and that was after an update to my code that fetched sequences
quicker. I found no issues when fetching 2-3 entries per second. A more explicit spec for
what error messages are possible would be nice.

On a side-note, there is a large di�erence in size between the di�erent formats. I
found that JSON was many times larger than FASTA.

Also, I built my own cache-solution, which saved me many extra downloads when I
had to re-run various scripts.

Things I didn't have time to try but might be worth looking
into

Note that this list is a bit out of order.

� Investigate DIAMOND settings for repeat masking, possibly consider adding a
separate step for this.

� Attempt to use di�erent reference databases and give the alignments from them
di�erent weights � e.g. something like frag_all_aln could be given a high weight,
while something like a database of clustered UniRef50 sequences could be added in
with a lower weight.

� Attempt to give di�erent sequences in the database di�erent weight � one might
think that a �real� domain should be �worth� more than some repeat-element. The
line is blurry of course. One measure that could be tried is simply multiply by
degree of uniqueness � rarer reference sequences will thus have a higher score.

� Verify that the �discarded fragments� database really is mostly clean of Pfam-A
domains and try to characterize the sequences in it.

� Find a real-world use-case to demonstrate the method (i.e. scaled-down database),
thus motivating further study.

� Use HMMs instead of a sequence aligner to identify domains or motifs within query
sequences. (Possible drawback: slow.)

� Try to �nd a more expansive domain/motif annotation than Pfam, keeping in mind
that the database itself does not need to be accurate or �correct�, only provide a
good quality �ink� with which to ��ngerprint� each query protein.

52

� Alternatively, go beyond using domain databases and try to �nd a good set of
kmers from UniProt (a good candidate would occur across species but not be too
common). A potential downside (apart from likely being slower) is that it becomes
harder to interpret the results � what kind of similarity is it that this method �nds?
Can we be sure it's actually homology?

� Experiment with heuristics for customizing fragment length (e.g. fragment at cer-
tain words � this can even be turned into a machine learning problem).

� Attempt to �clean� the database of domains and other sequence elements that are
very frequently occurring. Can the classi�cation process be sped up without loosing
accuracy? Can accuracy even be improved by reducing �noise� from such elements?
(We have already seen what could be an indication of the latter by the marginally
improved classi�cation performance when going from bit-score-threshold 10 to 30.)
It should be noted that by using --max-target-seqs 1000 (as opposed to even
higher) we're e�ectively already doing this to an extent.
A good start for this is to plot the distribution of the number of aligned sequences
per domain.

� Attempt to use clustering on the fragmented database to identify repeated se-
quences. I can see by just scrolling through the �le that there are some.

� Investigate whether sequence features other than domains are important for infer-
ence of homology. Start by using additional Pfam entry types: coiled-coil, disor-
dered and motif.

� Larger scale testing. May require snc to be re-implemented. Requires additional
validation data for a comprehensive quality analysis.

� Additional validation methods, possibly including manual validation of a random
sample of identi�ed homologous pairs.

� Test if returning multiple HSPs per alignment makes any di�erence.

� Determine if it helps increasing Diamond's --max-target-seqs beyond 1000 � or
alternatively if it safely can be reduced. For the HSA+MMU all-vs-all experiment, 112
queries maxed out the cap of 1000 target sequences. For frag_all_aln, no queries
maxed out.

� Do something more clever with overlapping domain alignments when fragment-
ing database sequences. Currently the code just takes the next non-overlapping
alignment, but it could consider alignment length, try to achieve optimal coverage,
allow a certain amount of overlapping alignments and/or prioritize based on the
uniqueness of a given alignment (i.e. how many other sequences this domain aligns
to).

53

� Outside the scope of using a scaled-down database, but related:
Try applying the Pfam-domain-alignment-based fragmentation method to the �clas-
sic� use-case of NC, i.e. when the reference database equals the set of query se-
quences. Could fragmentation improve the classi�cation accuracy?

54

Glossary

Accession, accession number A unique identi�er for a sequence in a sequence database,
such as UniProt.

Aligner A software that produces alignments.

Alignment, sequence alignment Given a pair of sequences A = (ai, ..., an), B =
(b1, ..., bm), an alignment can be described as a list of pointers P = (p1, ..., pm) satisfying
i < j ⇒ pi ≤ pj with each pi specifying the �best� index of where to place bi in A. If
several sequential p's point to the same ak only the last p is meaningful (which would
cause several letters in B to be �lost�, i.e. not aligned, we call this a �gap�). Similarly,
a �gap � in A can be caused simply by pi+1 being two or more positions ahead of pi. To
denote that the tail part of B isn't aligning to A a special position p = n + 1 is used.

What the meaning of �best index� is depends on the particular algorithm, scoring
system and other settings.

Intuitively, a sequence alignment is a way of putting two sequences together with the
�similar� parts together, much like a translator who is trying to �gure out the meaning
of two texts � of presumed similar origin but written in two di�erent obscure languages �
might start by lining up certain similar-looking words, numbers or names together. Just
like that translator might mistakenly put two similar-looking but entirely di�erent words
together, an alignment algorithm can accidentally identify sequence similarity that's not
biologically meaningful � it's just there by random chance.

The �quality� of an alignment is measured using bit-score and E-value.
(Swedish: linjering.)

Alignment pair A pair of sequences that have been identi�ed to be similar by an
aligner, having produced an alignment that describes how they relate to each other.

Alignment score The bit-score of an alignment between a pair of sequences.

Amino acid, aa. The building blocks of proteins, the individual characters of a pro-
tein sequence. Fur the purposes of homology identi�cation, there are 20 �standard� amino
acids worth considering.

Bit-score, BS A measure of alignment quality that corresponds to the log2 of the
database size expected to produce such an alignment by chance. Importantly for our
use, it is e�ectively a function of only the two aligned sequences � allowing for consistent

55

comparisons across data-sets and predictable results when using a �xed threshold. A
useful discussion regarding the determination of signi�cant bit-scores in the context of
homology inference can be found in Pearson (2013).

BLAST (software package) BLAST is a set of sequence aligners (for di�erent types
of sequences and use-cases) using heuristics to produce pairwise alignments at acceptable
sensitivity faster than more accurate methods. See Theory section. (Altschul et al. 1997)

BLASTP BLASTP the speci�c variant of BLAST that works on protein sequences.

BLOSUM62 In bioinformatics, a BLOSUM matrix is a 20-by-20 symmetric scoring
matrix used for calculating distances between aligned protein sequences, where each entry
sij contains the cost (positive or negative depending on similarity) of substituting amino
acid i to j. BLOSUM62 is a commonly used scoring matrix and default for DIAMOND.

Deletion When performing multiple sequence alignment, some sequences may lack a
part of the sequence that other sequences have, thus causing an alignment mismatch.
The sequence(s) lacking this bit of sequence are said to have a deletion at this point. See
also insertion. Insertions and deletions are collectively referred to as indels.

Domain, protein domain A domain is a functional subunit of a protein and often
performs a specialized function or provide a speci�c structure. The same domain often
occur (possibly with small or major modi�cations) in many proteins, and one protein
may have one or several domains. Loosely perhaps one can think of a domain like a
Unix tool � does one speci�c job well � and proteins like shell command �one-liners�. In
this analogy, programmers typically fork the software repository of the tool every time
they write a new shell-command, in order to tweak it just right for the job (or change it
signi�cantly).

DIAMOND Sequence aligner. See Theory section.

E-value, expectation value Reported by aligners such as BLAST or DIAMOND,
the E-value for an alignment is the expected number of times such an alignment would
occur by chance, given the database size and alignment quality (Fassler and Cooper
2011). So an E-value of 1 would mean that, in expectation, one alignment occurring just
by random chance would be reported by the aligner when making a query with a quality
(bit-score) threshold at this level.

FASTA Human-readable �le format for storing a list of (accession, sequence) entries
(optionally also a text string of arbitrary metadata per entry). Invented in 1983 (Pearson
2023).

56

False discovery rate, FDR For a binary classi�cation, FDR = FP
FP+TP is the pro-

portion of false positives among the reported positives.

False negative, FN False negative in a binary classi�cation.

False negative rate, FNR For a binary classi�cation, FNR = FN
all actually positive =

FN
TP+FN = 1−TPR.

False positive, FP False positive in a binary classi�cation.

Hamming weight, bit count, bit summation De�ned for a binary number x, the
Hamming weight of x is the number of bits set to 1 in x. Can be computed e�ciently in
modern computers with just one instruction to count an entire register.

Hidden Markov model, HMM A statistical model used (among other things) to
model biological sequences, capable of modeling insertions and deletions.

Homology Similarity between biological sequences (DNA, RNA or protein) caused
by a shared evolutionary ancestry.

HSA Species code for human. In this project referring to the data-set of human
proteins, see 3.1.

High-scoring Segment Pair, HSP The BLAST algorithm uses HSPs � a top-scoring
gap-less local alignment between the query and a reference sequence. If it can, BLAST
tries to combine multiple HSPs into a longer � possibly global � alignment between the
pair of sequences. (Fassler and Cooper 2011)

Insertion (of domains) The term insertion can refer to two di�erent concepts: the
insertion of an entire domain (sequence fragment) into another protein (sequence) � likely
causing major changes in the function of the protein. See the introduction for more on
this.

Insertion (multiple sequence alignment terminology) The term can also refer to
the presence of a sequence fragment (1 letter or longer) in one of the aligned sequences
that is missing in (some of) the other. This makes the sequence no longer align perfectly
to other sequences. It's essential to be able to model or handle this when performing
multiple sequence alignment. See also the companion term deletion.

k-mer, kmer (Primarily in bioinformatics): A k-mer is a substring of �xed length
k. A 7-mer is thus a substring of length 7. A frequency table of k-mers occurring in
a sequence can be used to characterize that sequence. K-mers can also be used as
signatures, e.g. in a lookup table in an aligner.

57

MMU Species code for mouse. In this project referring to the data-set of mouse
proteins, see 3.1.

Multidomain protein Multidomain proteins � in contrast to single domain proteins
� are simply those containing more than one domain. The individual domains may be
related to other domains (in the same species or other species) in di�erent ways � see
insertion, orthology and paralogy � thus making it di�cult to determine the evolutionary
relationship between a pair of multidomain proteins.

Multiple sequence alignment, MSA The process of aligning more than two bio-
logical sequences together, often for the purpose of �nding homologous genes. The most
naive algorithm would be to produce pairwise alignments between all pairs of sequences
in the input set. Results can be reported in e.g. Stockholm format.

NC-score See the Introduction.

NC_standalone See Neighborhood Correlation [software].

Neighborhood Correlation, NC [method] See the Introduction and Theory sections.

Neighborhood Correlation, NC [software] Implementation of Neighborhood Corre-
lation by Song et al. (2008). See algorithm 1 and chapter 2.

Orthology Homology caused by speciation � i.e. the �same gene� but in another
species.

Paralogy Homology caused by gene duplication (i.e. the gene being duplicated and
now existing in two copies in the genome) at some point in the evolutionary history of
the species (including possibly today). This means paralogous relationships can exist
between genes both within and across species.

Pfam Major protein and family domain database. Domains are de�ned usingHMM :s.
(Mistry et al. 2021)

Pfam-A The main set of entries of Pfam. There is also a lower quality but more
complete Pfam-B database, which has not been used in this project.

Pfam-A domain Domain entry in Pfam-A. Each entry contains list of sequences
aligning to it, which have been used in this project to identify sequences for inclusion in
reference databases.

58

Proteome In the context of this thesis, the set of protein sequences for a given
species. In general the proteome of an individual cell in a multicellular organism such
as you � the reader (assuming you're a person) � may di�er from other cells in the same
organism (i.e. a skin cell and an immune cell have di�erent proteomes), or di�er between
di�erent time points.

PNC Implementation of Neighborhood Correlation by thesis author Yrin Eldfjell. See
algorithm 3 and Theory section.

Reference database, reference, R The database of sequences that an aligner at-
tempts to match query sequences to. In this thesis �R� speci�cally refers to the reference
database used by the Neighborhood Correlation pipeline.

References sequence One entry in a reference database.

RP15 Less redundant version of Pfam-A. (Chen et al. 2011)

SciPy Open-source Python library for scienti�c computing.

Sensitivity Same as true positive rate.

Sequence Bioinformatics / biology term for what in computer science is known as a
String.

snc Implementation of Neighborhood Correlation by thesis advisor Lars Arvestad.
Uses sparse matrices internally and supports using reference databases R 6= Q. See
algorithm 2 and Theory section.

Speciation The evolutionary process causing one species � for whatever reason � to
become two or more distinct species. Two species being separated by a speciation event
simply means they are now di�erent species.

Speci�city Same as true negative rate.

Stockholm format Text-based �le format for multiple sequence alignments.

TN True negative in a binary classi�cation.

TP True positive in a binary classi�cation.

True positive rate, TPR For a binary classi�cation, TPR = TP
all actually positive =

TP
TP+FN = 1−FNR.

59

UPGMA UPGMA is a hierarchical clustering method. Its distance measure for a
pair of clusters (A,B) is the mean distance between an element of A and an element of
B.

Query set, queries, Q The complete set of query sequences used during a single
run of an aligner. In this thesis �Q� speci�cally refers to the input sequences of the
Neighborhood Correlation pipeline � the set of sequences we want to �nd homologous
pairs within.

Query sequence The sequence being aligned to a reference database by an aligner.
If they are similar, the aligner will report a similarity score such as bit-score.

Target, target sequence In this thesis: same as reference sequence.

UniProt A central repository combining multiple protein databases, containing on
the order of hundreds of millions of sequences (Consortium 2023).

UniProt sequence A single entry � speci�ed by a UniProt accession � in UniProt.

60

Bibliography

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schae�er, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J. Lipman (Sept. 1997). Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids Res
25.17, pp. 3389�3402. issn: 0305-1048. url: https://doi.org/10.1093/nar/25.
17.3389.

Arvestad, Lars (Oct. 24, 2023). snc. url: https://github.com/arvestad/snc.
Buch�nk, Benjamin, Klaus Reuter, and Hajk-Georg Drost (Apr. 2021). Sensitive protein

alignments at tree-of-life scale using DIAMOND. Nature Methods 18.4, pp. 366�368.
issn: 1548-7105. url: https://doi.org/10.1038/s41592-021-01101-x.

Chen, Chuming, Darren A. Natale, Robert D. Finn, Hongzhan Huang, Jian Zhang, Cathy
H. Wu, and Raja Mazumder (Apr. 2011). Representative Proteomes: A Stable, Scal-
able and Unbiased Proteome Set for Sequence Analysis and Functional Annotation.
PLOS ONE 6.4, pp. 1�9. doi: 10.1371/journal.pone.0018910. url: https:
//doi.org/10.1371/journal.pone.0018910.

Consortium, The UniProt (Jan. 2023). UniProt: the Universal Protein Knowledgebase
in 2023. Nucleic Acids Res 51.D1, pp. D523�D531. issn: 0305-1048. url: https:
//doi.org/10.1093/nar/gkac1052.

Fassler, Jan and Peter Cooper (2011). BLAST Glossary. Bethesda (MD): National Center
for Biotechnology Information (US). url: https://www.ncbi.nlm.nih.gov/books/
NBK62051/.

Gonzalez-Pech, Raul A., Timothy G. Stephens, and Cheong Xin Chan (Aug. 2018).
Commonly misunderstood parameters of NCBI BLAST and important considera-
tions for users. Bioinformatics 35.15, pp. 2697�2698. issn: 1367-4803. url: https:
//doi.org/10.1093/bioinformatics/bty1018.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9.3, pp. 90�95. doi: 10.1109/MCSE.2007.55.

Lewin, Harris A. et al. (Apr. 2018). Earth BioGenome Project: Sequencing life for the
future of life. Proceedings of the National Academy of Sciences 115.17, pp. 4325�
4333. doi: 10.1073/pnas.1720115115. url: https://doi.org/10.1073/pnas.
1720115115.

Li, Heng (2023). Seqtk. url: https://github.com/lh3/seqtk.
Mistry, Jaina et al. (2021). Pfam: The protein families database in 2021. Nucleic acids

research 49 (D1), pp. D412�D419. doi: 10.1093/nar/gkaa913.
Mora, Camilo, Derek P. Tittensor, Sina Adl, Alastair G. B. Simpson, and Boris Worm

(2011). How many species are there on Earth and in the ocean? PLoS biology 9 (8),
e1001127. doi: 10.1371/journal.pbio.1001127.

61

https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://github.com/arvestad/snc
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1371/journal.pone.0018910
https://doi.org/10.1371/journal.pone.0018910
https://doi.org/10.1371/journal.pone.0018910
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkac1052
https://www.ncbi.nlm.nih.gov/books/NBK62051/
https://www.ncbi.nlm.nih.gov/books/NBK62051/
https://doi.org/10.1093/bioinformatics/bty1018
https://doi.org/10.1093/bioinformatics/bty1018
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1073/pnas.1720115115
https://github.com/lh3/seqtk
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1371/journal.pbio.1001127

Pearson, William R. (2013). An introduction to sequence similarity ("homology") search-
ing. Current protocols in bioinformatics Chapter 3, pp. 3.1.1�3.1.8. doi: 10.1002/
0471250953.bi0301s42.

� (Nov. 14, 2023). Was FASTA ever popular? url: https://www.biostars.org/p/
214943/#215417.

Shah, Nidhi, Michael G. Nute, Tandy Warnow, and Mihai Pop (May 2019). Misunder-
stood parameter of NCBI BLAST impacts the correctness of bioinformatics work-
�ows. Bioinformatics 35.9, pp. 1613�1614. issn: 1367-4803. url: https://doi.org/
10.1093/bioinformatics/bty833.

Song, Nan, Jacob M. Joseph, George B. Davis, and Dannie Durand (May 2008). Se-
quence Similarity Network Reveals Common Ancestry of Multidomain Proteins.
PLOS Computational Biology 4.5, e1000063. doi: 10.1371/journal.pcbi.1000063.
url: https://doi.org/10.1371/journal.pcbi.1000063.

Tordai, Hedvig, Alinda Nagy, Krisztina Farkas, Laszlo Banyai, and Laszlo Patthy (Oct.
2005). Modules, multidomain proteins and organismic complexity. The FEBS Jour-
nal 272.19, pp. 5064�5078. issn: 1742-464X. url: https://doi.org/10.1111/j.
1742-4658.2005.04917.x.

UniProt (Nov. 13, 2023). UniRef. url: https://www.uniprot.org/help/uniref.
UniProtKB (Oct. 19, 2023a). Human reference proteome. url: https://www.uniprot.

org/uniprotkb?query=reviewed%3Atrue+AND+proteome%3Aup000005640.
� (Oct. 19, 2023b). Mouse reference proteome. url: https://www.uniprot.org/

uniprotkb?query=reviewed%3Atrue+AND+proteome%3AUP000000589.
Virtanen, Pauli et al. (2020). SciPy 1.0: Fundamental Algorithms for Scienti�c Computing

in Python. Nature Methods 17, pp. 261�272. doi: 10.1038/s41592-019-0686-2.

62

https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1002/0471250953.bi0301s42
https://www.biostars.org/p/214943/#215417
https://www.biostars.org/p/214943/#215417
https://doi.org/10.1093/bioinformatics/bty833
https://doi.org/10.1093/bioinformatics/bty833
https://doi.org/10.1371/journal.pcbi.1000063
https://doi.org/10.1371/journal.pcbi.1000063
https://doi.org/10.1111/j.1742-4658.2005.04917.x
https://doi.org/10.1111/j.1742-4658.2005.04917.x
https://www.uniprot.org/help/uniref
https://www.uniprot.org/uniprotkb?query=reviewed%3Atrue+AND+proteome%3Aup000005640
https://www.uniprot.org/uniprotkb?query=reviewed%3Atrue+AND+proteome%3Aup000005640
https://www.uniprot.org/uniprotkb?query=reviewed%3Atrue+AND+proteome%3AUP000000589
https://www.uniprot.org/uniprotkb?query=reviewed%3Atrue+AND+proteome%3AUP000000589
https://doi.org/10.1038/s41592-019-0686-2

Masteruppsats 2023:1

Datalogi

November 2023

www.math.su.se

Beräkningsmatematik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

	Introduction
	Theory
	Neighborhood Correlation
	A remark on the skewness of m2
	PNC
	SNC
	NC_standalone
	Minimum score – only with NC_standalone

	A remark on O(k) – estimating scaling of NC for large n
	P for Parallel – a note on the parallelization of PNC
	DIAMOND

	Method
	Data
	Software
	Choice of aligner
	Neighborhood Correlation implementation
	Additional software used

	Making the reference database R
	The control
	Pfam-A domains as an index of what to include
	Processing of the selected sequences

	Neighborhood Correlation pipeline
	Validation using curated proteins

	Results
	Optimizing the alignment stage
	DIAMOND sensitivity
	DIAMOND max-target-seqs
	Other DIAMOND options
	Bit-score threshold
	Bit-score transformation
	Key observations
	Decision

	Selecting the best reference database R
	Fragmentation of reference sequences
	Key observations
	Decision

	To fragment or not to fragment? Lessons from artificial multidomain proteins
	Sequence with longest alignment vs. random sequence(s)

	Consistency of snc vs. NC_standalone

	Discussion
	The case for fragmentation
	Comparing nc-scores generated with different R
	Limitations of my study
	Recommendations for future studies
	More extensive validation
	General idea: create the reference database as two-step process:
	Verify the sequence diversity the selected ''pfam longest'' sequences
	Try default scores
	Try a different scoring matrix

	A note on Neighborhood Correlation being able to find more distant homologs than direct alignments

	Conclusion
	Appendix
	Pitfalls
	Things I didn't have time to try but might be worth looking into

	Glossary
	Bibliography

