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Abstract

The pursuit of consistently increasing the precision in predicting equity
prices has increased over time along with advancements in computational
technologies. Institutions, fund managers, and stock managers are actively
seeking higher returns from financial markets with the help of algorithmic
models and cutting-edge technology. Forecasting equity prices is a con-
siderable challenge due to several factors influencing pricing fluctuations,
such as news dynamics, earnings reports, political events, and various
other elements that introduce volatility and unpredictability into the eq-
uity market landscape.

The thesis is centered on assessing the effectiveness of a feedforward neural
network model in predicting the price movements of an Exchange-Traded
Fund (ETF), specifically focusing on Invesco QQQ. Given the general per-
ception that ETFs present lower price fluctuations compared to individual
stocks, the research seeks to investigate the model’s ability to capture and
predict the shifts within the Invesco QQQ ETF. The feedforward neural
network incorporates fundamental deep learning principles such as early
stopping, rectified linear unit (ReLU), and the Adam optimizer. This
thesis comprises 713 observations, and while the results are satisfactory,
there is a recognition that further studies employing more complex models
are necessary for a comprehensive examination of ETF price forecasting
performance.



Sammanfattning

I detta arbete ligger fokuset på att utvärdera effektiviteten hos en feed-
forward neuralt nätverk modell när det gäller att förutsäga priset för en
börsnoterad fond (ETF), med specifikt fokus på Invesco QQQ. Med tanke
på att ETF:er uppvisar lägre prisfluktuationer jämfört med enskilda aktier,
undersöker arbetet modellens förmåga att fånga och förutsäga prisförän-
dringar inom Invesco QQQ ETF. Feedforward neuralt nätverk använder
sig av grundläggande principer inom djupinlärning, såsom early stopping,
rectified linear unit (ReLU) och Adam-optimizer. Studien omfattas av
713 observationer och resultaten är tillfredsställande. Det erkänns att
ytterligare studier med mer komplexa modeller krävs för en omfattande
undersökning av prestandan för att förutsäga ETF-priser.
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1 Introduction

Over years, the field of artificial intelligence has surged in innovation as
well as transformative technologies. Deep learning being a subfield of
machine learning inspired by neuroscience and the function of the human
brain [7, p. 13] , has emerged as a powerful paradigm reshaping the land-
scape of computational intelligence. The recent rise in the success of deep
learning can be attributed to several factors such as increased computa-
tional power, big data, improved algorithms and architectures and several
more of which the combination of these factors has led to a magnificent
improvement in deep learning.

Researchers and practitioners strive for continuous innovation, new archi-
tectures, algorithms, and further applications. The application of machine
learning and artificial intelligence has increased significantly the past few
years in the financial world as financial institutions and investors seek for
greater returns with less risk. Algorithms have been used for stock price
forecasting also known as algorithmic trading.

1.1 Aim and Research Question

The main focus of this thesis is to investigate the performance of a feed-
forward neural network in predicting the price movements of Exchange-
Traded Funds (ETFs). The past few years there has been plenty of re-
search papers investigating the performance of various machine learning
algorithms in predicting the price movement of stocks but it is not com-
mon in predicting the price movements of ETFs. Throughout this thesis,
the ETF Invesco QQQ (QQQ) has been selected as the focus for the feed-
forward neural network, aiming to predict the adjusted closing price for
the next day.

This thesis seeks to answer the fundamental question of whether feedfor-
ward neural network can effectively capture the distinctive patterns and
behaviors exhibited by ETFs.
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Specifically, the thesis aim to answer the following question:

• How effective is the feedforward neural network to predict the price
movement of Invesco QQQ Trust for the next day?

2 Background

The following section aims to overview the essential mathematical and
computer science fundamentals. There is a clear connection between
mathematical principles and computational techniques which has served
markedly on the development and innovation of artificial intelligence of
which it is the focus of this thesis paper.

2.1 Artificial Intelligence

Artificial Intelligence (AI) is a sub-discipline of computer science that fo-
cuses on creating machines and systems capable of performing tasks that
typically require human intelligence. Some of those tasks would be an-
alyzing data, recognizing patterns as well as decision making problems.
AI has a wide range of applications and it encompasses a wide range
of approaches, including machine learning and deep learning which are
discussed in the following subsections.

2.2 Machine Learning

Machine Learning (ML) is a sub-discipline of AI and it focuses on de-
veloping algorithms and systems that learn and are able to make predic-
tions/decisions by deriving patterns from data. The main idea of machine
learning is that systems are able to improve their performance and adapt
to any new data provided without the need of human intervention. One
known example of a simple machine learning algorithm is naive Bayes
which is able to distinguish spam and non-spam emails [7, p. 3].
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2.3 Deep Learning

Transitioning to deep-learning, which will be the central emphasis of this
thesis, is a sub-discipline of machine learning. The transition from AI to
ML and Deep Learning is simply illustrated in Figure 2, providing a visual
representation of the connection among these concepts. Deep learning
has incredibly involved over the past few years and it is an exciting new
technology that for many is considered relatively new. However, the fun-
damental concepts of deep learning existed already in the 1940s and the
fact that it has been associated with various names over time it has un-
dergone fluctuations in its popularity [7, p. 12]. As mentioned in the
introduction, deep learning is an approach to artificial intelligence inspired
by the field of neuroscience and just like humans learn from experience,
machines aim to improve their performance by learning and recognizing
patterns from given data. Deep learning relies on neural networks, which
get their name from neurons, a term used in neuroscience [9]. In figure 1 a
simple neural network consist of several layers (could be single), including
the input layer, an output layer and the layers in between called hidden lay-
ers. Nodes from separate layers are connected but not necessarily to every
node and that depends on the network architecture. Those connections
are called edges and they are represented with weights, simply defining
the strength of the connection. Each node receives an input information
from several nodes and with the assistance of its activation function, it
computes its activation value. If the activation value exceeds the given
threshold, then the node is activated and passes the information onto the
next one, otherwise it does not.
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Figure 1: A fully connected feedforward network with an input layer consisting of two neurons.
Thereafter, there is one hidden layer with three neurons and an output layer with
two neurons.
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Figure 2: Venn diagram visualising the connection between AI, Machine Learning and Deep
Learning.
Source: [7, p. 9]

2.4 Regression

Mathematically regression aims to predict or in other words find a cor-
relation between two or more variables given an input. The algorithm’s
objective is to give a function as output f : Rn → R. A machine learning
algorithm that is commonly used for solving regression problems is linear
regression. The aim of the algorithm is to produce a linear function that
maps the input vector x ∈ Rn to the output scalar value y ∈ Rn. Math-
ematically let us denote ŷ to be the output value and the output can be
defined as:

ŷ = w⊤x, (1)
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where x ∈ Rn is a vector of parameters. The symbol w is a vector of
weights associated with each feature in the input vector x. The weights
are important as it determines the strength and direction of the impact
each feature has on the predicted output. A vector with smaller weight
has less impact on the network compared to an input vector with higher
weight.

2.5 Bias and Variance

In supervised learning, two fundamental concepts are often referenced:
bias and variance. These are statistical metrics that are used to assess
model’s performance and error in its ability to generalize previously un-
seen data.

To begin with bias of an estimator is defined as:

bias(θ̂m) = E(θ̂m)− θ, (2)

where the θ̂m represents the estimate of a parameter obtained from a
particular model m, therefore it is written with the subscript m. The
expectation is over the training data and θ is the true underlying value of
θ used to define the data-generating distribution [7, p. 121] .

Thereafter, the variance of an estimator is

V ar(θ̂),

where the random variable is the training set.

Variance essentially indicates how fluctuating the model’s predictions are,
with respect to their expected value [15].

Both of the two statistical variables are essential when dealing with super-
vised learning as it help us identify how far off the predicted output value
is from the true value (bias) as well as how fluctuating the predictions are
from the true value (variance).
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2.6 Under-fitting and Over-fitting

Keeping the generalization error and error gap small is a common chal-
lenge in machine learning as it is quite delicate to maintain balance be-
tween under-fitting and over-fitting.

On one hand, over-fitting would fit complex patterns from the training
set with a very small training error but the model would fail to recognize
global patterns in the unseen data, implying a large test error [18].

On the other hand, an under-fit model will have a high training error
because it is not complex enough to fit the data from the training set.
The model often fails to recognize patterns from the training set and this
leads to poor performance on recognizing global patterns from the test
set, implying high test error [18].

Ultimately, the goal is to find a balance between over-fitting and under-
fitting, finding the correct balance where the model can achieve optimal
generalization performance [18]. In the plot shown in Figure 3 the correct
balance where the model achieves optimal generalization performance is
drawn with a dotted line. At that point the generalization gap between
the validation error and train error is neither too small (for underfitting)
nor too big (for overfitting).
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Figure 3: Visualisation of generalization gap between validation error (orange) and train error
(blue). Regions with large gap imply over-fitting, whereas those with smaller gap
implies under-fit.

2.7 Mean Squared Error

Machine learning often discusses the tradeoff between bias and variance.
The bias-variance tradeoff is a crucial concept that revolves around finding
the right balance between model simplicity and flexibility.

The tradeoff emerges as a delicate compromise: a model with high bias
tends to be too rigid, overlooking the complexity of the underlying pat-
terns in the data, while a model with high variance adapts too closely
to the training set, capturing noise and making it less adaptable to new,
unseen data.

Moving on and discussing in terms of choosing estimators, it is a common
issue. An increasing complexity could lead to decreased bias and increased
variance, therefore a common way to find the optimal complexity and ne-
gotiate this tradeoff is by using a technique called cross-validation. It is
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used to evaluate the generalization ability of predictive models and reduce
the risk of over-fitting. By systematically dividing the data into training
and testing subsets multiple times, it provides a robust way to assess how
well a model will perform on unseen data, thereby helping to identify and
prevent over-fitting [4].

In addition, one could use the mean squared error as an evaluation met-
ric of the different estimators in order to compare and choose the right
estimators for the model. The MSE is given by

MSE = E
[
(θ̂m)− θ)2

]
= Bias(θ̂m)

2 + V ar(θ̂m), (3)

which measures the overall squared deviation between the estimator and
the true value of the parameter θ.

Moreover, in supervised learning, MSE serves as a mathematical mea-
sure to assess the model’s performance. This is referred to as the ob-
jective function, quantifying the difference between the model’s predicted
outcomes and the actual values within the training data. The objective
function is defined as:

J(θ;X, y), (4)

where θ represents the parameter vector that the model aims to learn
during training. In the case of this thesis, θ is a parameter vector with
the updated weights associated with each node. X represents the matrix,
where each row corresponds to a data point, and each column signifies a
distinct node. Lastly, y is a vector containing the output values.

2.8 Generalization

When designing models, a fundamental goal is to develop robust mod-
els that perform effectively with previously unseen data. Therefore the
concept of generalization characterizes the model’s capability to perform
effectively on the test set. A measure that is used is called generalization
error and it is defined as the expected value of the prediction error. Nat-
urally the goal is to decrease the training error as small as possible while
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attempting to keep the error gap between the test and training set small.
There are various techniques that are used to enhance the performance of
the model by reducing the generalization error and they are referred to as
regularization techniques.

2.9 Regularization

Regularization is any supplementary technique that aims at making the
model generalize better, in other words reduce the error on previously
unseen data [10]. Regularization techniques are used in order to reduce
over-fitting.

It involves penalizing the model complexity by adding a parameter penalty
Ω(θ) to the objective function J.

Regularized objective function by J̃ is defined as:

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ), (5)

where α ∈ [0,∞) is a hyper-parameter that weights the relative contri-
bution of the penalty term, Ω relative to the standard objective function
J [7, p. 223]. When α = 0, the regularization term has no effect, and
the model only tries to minimize the objective function. However, as α

increases, the penalty on the model’s parameters is stronger, resulting to
simpler coefficients that prevent the model from overfitting. Therefore,
α is vital in controlling the trade-off in the model and finding a good
generalization performance.

There are several regularization techniques that are widely used, including
L1 regularization, L2 regularization, data augmentation, early stopping,
and dropout, which are available to mitigate over-fitting in machine learn-
ing models. The selection of an appropriate technique depends on the
characteristics of the data that each model is trained on.
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Early Stopping

When training a neural network, the aim is to reduce the training set
error to the smallest error possible. However it has been shown that as
the error decreases, there reaches a point where it eventually starts to
degrade, resulting in increases error on the unseen data. (See Figure
4) Generalization error is evaluated through the use of a validation set,
measuring the average error observed on distinct instances within that
particular validation set over multiple epochs. What is meant by the
term epoch is how many times the learning model will run through the
entire dataset in order to update the parameters [5]. In the context of
early stopping, the model assesses the generalization error over multiple
epochs, as the model will run through the entire dataset and update its
parameters. For example, one epoch implies that the learning algorithm
has run through the whole dataset once and it has updated the parameters
once (weights and biases).

Figure 4: Early stopping is implemented when reaching the dashed line, signaling the inter-
ruption of training as the model exhibits no further improvement beyond this point.

Early stopping proceeds by first dividing the data into a training set and a
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validation set, commonly done in a 2-to-1 ratio. Thereafter the model is
exclusively trained on the training set, refining its parameters over several
epochs. Over multiple epochs, the model’s performance is evaluated on
the validation set and as soon as the model’s performance on the valida-
tion set is worse than the last step checked, the training process is stopped.
The model uses weights from the last check as the resulting outcome [16].

Moving on, it is important to have a stopping criterion in order to halt
the training of the model. There are several conditions that one could be
using as stopping criteria but in this section two possibilities is discussed.
The choice of stopping criterion depends on the specific characteristics of
the data-set, and the behavior of the learning algorithm during training.
A common stopping criteria that is set on this investigation is a thresh-
old equal to 0.001 that specifies the minimum improvement required to
consider the model’s performance as better. Training is halted if the im-
provement falls below this threshold.

In this study the early stopping technique is employed in the feedforward
neural network as a form of regularization. The main reason of employing
early stopping over other regularization techniques lies in the dynamic
nature of an ETF prices, which are influenced by various market conditions
over time. Early stopping is suitable regularization technique for this thesis
as it enables the model to adapt and be flexible during training. Other
techniques impose fixed penalties which may limit the flexibility in the face
of the dynamic environment of ETF pricing.

2.10 Hidden Units

Choosing in advance the right type of hidden unit in the hidden layers can
be quite hard but one can make a choice by intuition and trial and error.
Most hidden units can be described as accepting a vector of inputs x,
computing an affine transformation z = W⊤x+ b, and then applying an
element wise nonlinear function g(z) [7, p. 187].
However there exists a standard choice of activation functions i.e., Recti-
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fied linear units, logistic sigmoid or hyperbolic tangent.

2.11 Activation Function

Rectified Linear Units (ReLU) uses the activation function g(z) = max{0, z}.
Half of the rectified linear unit’s domain outputs zero and it does so when
x < 0. Otherwise it produces an outcome of a linear function when x ≥ 0
[2].
It implies that the activation function takes an input x and if the output
is positive, the output is equal to x. Otherwise, the result is 0.

In this report, ReLU is employed as an activation function. The main
reason behind this choice is because ReLU produces a function of non-
linearity which is suitable for the non-linearity problem of this report.

2.12 Architecture Design

The architecture design of neural networks require thoughtful considera-
tion due to its non-linearity. It is vital to optimize the performance of the
model by choosing the right depth (number of layers in the neural net-
work) and the right width (number of neurons in each layer). This process
involves organizing units into multiple layers that form a chain structure,
where each layer’s output serves as the input of the upcoming layer. The
architecture can be defined by functions representing the transformations
happening at each layer, where the first layer is defined as:

h(1) = g(1)(W (1)⊤x+ b(1)),

the second layer:
h(2) = g(2)(W (2)⊤h(1) + b(2))

and so on [7, p. 191].

In the case of this thesis and taking into consideration the small dataset,
architecture design of the model consists of 5 layers; input layer, three
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hidden layer and output layer. The input layer consists of nine neurons as
it has been determined from the Auto-correlation function shown in Figure
6. Additionally the three hidden layers consists of 8 neurons, 4 neurons
and 4 neurons respectively. Finally the output layer constists of a single
neuron which is the ETF’s next day adjusted closing price.

2.13 Optimization

Optimization algorithms are used for training of deep models and updating
model parameters in order to minimize the loss function. The loss function
can be written as an average over the data-generating distribution pdata

J∗(θ) = E(x,y)∼pdataL(f(x; θ), y), (6)

where L is the per-example loss function, f(x; θ) is the predicted output
when the input is x [?] [7, p. 268]. Per-example refers to the loss that is
actually computed for every data point in the dataset. Lastly p̂data is the
empirical distribution, which represents the distribution of the observed
data.

Batch and Mini-batch Algorithms

Most algorithms use more than one sample training examples, referred as
mini-batch, but do not use all training examples. Mini-batch is defined
as the use of a subset of training samples where the batch size is more
than one sample and less than the whole size of the training set. These
are called mini-batch stochastic methods. Approaches employing the en-
tire training set are referred to as batch gradient methods, whereas the
batch size is equivalent to the whole training set [5]. In this study, the
mini-batch stochastic method is utilized, whereas the use of mini-batches
is employed for more efficient optimization of the model.

In the current thesis a mini-batch of size 8 and a number of epochs that is
run through is 100. The reasoning is because the number of observations
makes a small dataset, as the training set consists of approximately 572
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datapoints. In this case, the training dataset is divided into 71 batches,
each consisting of 38 datapoints. This implies that the learning model
will be updating its weights and biases after each batch (8 datapoints).
As defined in an earlier section, one epoch will take into consideration
71 batches. Since the number of epochs is 100, then it runs through the
whole dataset 100 times, giving a total of 7100 mini-batches for the whole
training of the model.

Stochastic Gradient Descent (SGD)

Stochasting Gradient Descent is an optimization algorithm that is most
used in machine learning and deep learning. The objective is to minimize
the loss function during the training process by adjusting the model’s pa-
rameters. Gradient Descent (SG) is an algorithm that is used for updating
the parameters of a model by computing the gradient on the whole training
dataset. However when dealing with large datasets, SG faces challenges
as it may require high computational memory or computation may be too
slow. Then SGD is a variation of GD and its core, as the word "stochas-
tic" reveals, is to update models parameters based on the gradient of the
loss function computed on only one data set per iteration, rather than the
entire training dataset. The process of SGD starts by selecting a proper
learning rate ϵ and initial parameter values of the model θ. Thereafter,
for every iteration the model’s parameters are updated as followed:

θi+1 = θi − ϵ×∇θJ(θ;x
j; yj) (7)

The process is repeated until the loss function is optimized, in other words
reaches a local minima [17].

Additionally, a variation that is used in this thesis is a mini-batch gradient
descent, whereas the gradient is computed on a mini-batch, consisting of
n training datapoints. The idea and steps are common to SGD with the
only difference being that the training dataset is split into smaller subsets
(mini-batches) and the gradient is calculated and parameters are updated
for every mini-batch [17]. Steps are identical to ones mentioned in the
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paragraph above, but the updating of parameters (θ) is defined as:

θi+1 = θi − ϵ×∇θJ(θ;x
j:j+n; yj:j+n) (8)

Two conditions which are related to the choice of the learning rate are:

Σ∞
k=1ϵk = ∞, (9)

and
Σ∞

k=1ϵ
2
k = ∞, (10)

where ϵk is the learning over k iterations [7, p. 287].

The parameter ϵ, referred as the learning rate, is crucial when consider-
ing SGD algorithm. It essentially determines the size of the step taken
during the optimization process. Consequently, too low learning rate can
result to very slow convergence, even causing the algorithm to be stuck
in local minima. Additionally, a too large learning rate can cause wild
fluctuations in the loss function. Thereafter as described above, condition
(0.9) ensures that the learning rate is large enough in order to evaluate
all parameters effectively. Condition (0.10) ensures that the learning rate
is not decreasing too fast so that convergence is guaranteed. A crucial
property relating SGD and mini-batch is that the computation time for
every update does not grow with the number of training points [7, p.
287]. One reason behind that is because every update is not determined
by the total number of training points, while it is determined by the size
of each subset (mini-batch). Additionally the property can be tested with
empirical observations. It is possible to time the training process of a
model with different datasets. If the time per update remains constant
or it is growing significantly slow as the dataset size increases, it confirms
the property relating SGD and mini-batch.

Momentum

Momentum is another important technique used in optimization algo-
rithms in order to boost the convergence of the process but simultaneously
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ensure no slow convergence or oscillations in the loss function. SGD as
already mentioned updates the parameters after each iteration k. At every
iteration, denoted as k, the model’s parameters are updated with the help
of computed gradient of the loss function at that specific moment (at iter-
ation k). This indicates that parameters are updated after each iteration
k, implying that previous steps are not considered when searching for the
next iteration’s solution [11].

Since SGD does not consider the history of the steps it results to two
issues: Firstly a non-convex loss function can have many local minima
which is problematic as there is not guarantee that the first local min-
ima found is also the global minima. Consequently the gradient of the
loss function is minimal which produces no weight updates. Secondly, it
can occur that gradient descent is noisy which causes several oscillations.
This is also problematic as a larger number of oscillations is needed until
convergence is reached [11].

The way this technique works is by calculating a weighted average of
all the previous gradients and utilize the average to update the model
weights [12]. It results to smoother steps taken during gradient descent
since previous gradients are all taken into consideration.
Therefore the updated equation where SGD is applied with momentum is
defined as:

θi = θi−1 − ϵ× bi, (11)

where bi is the momentum term, which is the modified step direction [12].
The modified step direction implies that the optimization process takes
into consideration both the current gradient as well as the momentum
from previous steps. This enhances the process by building momentum
towards directions where the gradient is pointing, resulting to smoother
and potentially faster convergence.
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Adam

Adam, short for Adaptive Moment Estimation, is probably the most com-
mon optimization algorithm used for training models. The algorithm is an
extension of the Stochastic Gradient Descent and it combines ideas from
momentum, Root Mean Square Propagation (RMSprop) and AdaGrad al-
gorithm [8].

An overview of the Adam algorithm according to Ajagekar [3] is broken
down into 5 parts, as the algorithm is used in this study for optimizing
the feedforward network.

Firstly, Adam initializes two moment variables, noted as s = 0 (estimating
momentum) and r = 0 (estimating RMSprop). In addition, there is the
initialization of time step t = 0.

Thereafter, the algorithm includes the following hyper-parameters:
- α, being the learning rate,
- β1, which is the exponential decay rate for the first moment estimate
(default set to 0.9).
- β2, which is the exponential decay rate for the second moment estimate
(default set to 0.999).
- ϵ, a small constant (10−8) to prevent division by zero.
Same values are applied for this thesis.

The Adam algorithm keeps running and updating the hyper-parameters
until the stopping criterion is met. Assuming there is a sampling of
a mini-batch of k samples, then the algorithm computes the gradient
gt =

1
kΣ

k
i=1∇Ji(θt) at each iteration t on the current mini batch. The

formula indicates that gt is an average of all the gradients of each indi-
vidual sample contained in the mini-batch.
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The algorithm updates the first moment variables s and r:

st = β1 · st−1 + (1− β1) · gt

rt = β2 · rt−1 + (1− β2) · g2t
.
One thing that is important is the bias correction as the initialized variables
are biased towards zero, therefore Adam applies bias correction to reduce
this. The estimations are calculated:

ŝt =
st

1− βt
1

r̂t =
rt

1− βt
2

The estimators shown are used for correcting the bias as the number of
iterations t increases. This is done by scaling with a factor of 1

βt
1

and 1
βt
2

respectively. It ensures a proper adjustment during the first and second
moment estimation, especially during the initial stages. It is essential at
the initial stages because as the number of iterations increases, the term
βt
1 and βt

2 decreases, resulting to a correction factor equal to 1.

The model updates parameters θ based on the corrected estimates:

θt = θt−1 − α · ŝt√
r̂t + ϵ

[3]

Adam algorithm is used in this thesis with the parameters: α = 0.001
β1 = 0.9 β2 = 0.999 and ϵ = 1e − 08. As already mentioned, Adam
algorithm takes the benefits from SGD, momentum, RMSprop and Ada-
Grad algorithms which makes it appropriate for this thesis. Since the aim
of investigation evolves around price forecasting, its ability to adjust its
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parameters automatically based on historical gradients, makes it suitable
for this problem. Thereafter, time-series analysis can be challenging and
Adam algorithm’s momentum terms take care of those challenges of find-
ing local in an efficient manner.

3 Method

In this section, a clarity on the chosen data-set and the reasoning behind
its selection will be given. The feedforward neural network model is de-
signed to forecast the adjusted closing price one day ahead, a task that
involves predicting a continuous numerical value and is thus framing it as
a regression problem.
Only one experiment will be undertaken in this study, with an inclusion of
predictor variables.

3.1 Programming

The study is using Python and a range of libraries to help with the create
of the model as well as the analysis of the performance.

To begin with, Python programming language version 3.11.6 is used for
implementing the different stages of the study. Thereafter, the Scikit-learn
library is used. It is a robust machine learning library and it is mainly used
for data pre-processing and to evaluate the performance of the model.
Pandas library is employed for efficient handling and pre-processing of
the data-set. Its main use is to read the data-set and ease the process
of organizing the data by cleaning and transforming the raw data into a
desired format. NumPy is an essential package for scientific computing,
playing a crucial role in numerical operations and array manipulations. The
library Matplotlib is quite popular and it is used for data visualization. It
is utilized to create clear and insightful visualizations. Further TensorFlow
is an open-source machine learning library. Its use is mainly employed
for building and training neural network models. Last, but not least,
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Statsmodels, a Python library, is utilized in this study to generate the
auto-correlation function on the data-set.

3.2 Data Collection

The data-set is retrieved from Yahoo Finance and it is from the period
2019-01-01 to 2021-10-31. The data-set comprises 713 rows of data,
indicating a total of 713 data points corresponding to an equal amount
of trading days. The initial data-set includes columns Date, Open, Low,
High, Close, Adj Close, and Volume. Each column reveals information
on the price movement of QQQ. The Open and Close columns reveal the
opening and closing prices of QQQ for the respective trading days. There-
after the Low and High columns shows the highest and lowest prices of
QQQ for the respective trading days. Volume shows the total amount of
shares that have been traded during the specific trading date. However,
in a subsequent step, the columns Close and Volume have been filtered
out for simplicity.

This study focuses on a supervised learning problem, therefore the process
of splitting the data-set into training, validation and test set are not done
randomly. Instead, it employs a time-based selection, where older dates
are used as training set (80%) and leave the most recent 20% of the
data-points for the validation set (10%) and test set (10%).

3.3 Data Formatting

As previously mentioned, the data-set encompasses two columns, with
each column revealing distinct information corresponding to each trading
day.

To begin with, the Date column reveals the date of the trading day. Fol-
lowing this, the next column is called "Adj Close". It is chosen over the
"Close" column because it represents the adjusted closing price of the
Exchange-Traded Fund (ETF). This adjustment takes into account vari-
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ous corporate actions, including stock splits, dividends, and other events
that might influence the ETF’s price. Opting for the "Adj Close" column
ensures a more accurate depiction of the ETF’s true value over time.

In this study, the variable under consideration as the response is the next
day’s Adjusted Close price, while the factors influencing this response (pre-
dictor variables) include the current day’s Adjusted Close prices and the
Date. The following can be expressed mathematically as:

Adj Closet+1 = f(Adj Closet),with t=Date (12)

To start the process and before incorporating the data-set into the model,
it is essential to investigate the stationarity of the data.
The data shows to be extremely non-stationary. Therefore in order to make
the prices closer to stationary, the first difference times series is calculated.

The first difference time series for the Adjusted Close Price variable at
time t is calculated as:

△Ct = Ct − Ct−1 (13)
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4 Results and Discussion

Figure 5: First difference time series of the data-set, visualising an approximately constant
mean but not as much in variance.

Time series analysis is a vital technique used to analyse and interpret
data points over time. A time series achieves stationarity when its key
statistical characteristics such as mean, variance, and auto-correlation re-
main constant throughout time. Achieving stationarity is crucial for sev-
eral compelling reasons, notably to extract meaningful statistics such as
mean, variance, and auto-correlations with other variables. These statis-
tical measures become dependable indicators of future trends only when
assessed within the framework of a stationary series [13].

Figure 5 illustrates the first difference time series of the data, showing
how this technique aids in achieving stationarity. It can be observed that
approximately the mean and variance are more-or-less constant, which
makes it significantly easier to use its characteristics for forecasting. While
commonly employed for this purpose, it comes with at a cost of data loss.
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This introduces specific limitations and challenges when forecasting time
series of such a nature.

Figure 6: Auto-correlation function with vertical bars indicating the standard error. Strong
correlation up to lag 9.

Additionally, following the creation of the first difference time series plot,
the analysis proceeds to generate and examine the auto-correlation func-
tion (ACF) plot.

Mathematically it is defined as:

ACF (k) =
Cov(Yt, Yt−k)√

V ar(Yt) · V ar(Yt−k)
, (14)

The ACF plot serves as a statistical tool to analyse the correlation between
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the first difference series and its lagged values at different time intervals.
Analyzing the ACF is crucial for identifying potential temporal dependen-
cies and plays a key role in selecting the appropriate time series models.
It enhances our understanding of how past observations interrelate with
future ones in the transformed time series.

This plot is valuable in determining the number of lags (number of time
steps) to include in the model. Further, at lag 0, a perfect correlation is
expected, as it reflects the correlation between the time series and itself
at the same time point. Thereafter, the goal is to identify the model or-
der by examining spikes in the lags, indicating close correlations between
variables. It’s evident that for k > 10 there is no significant correlation,
gradually approaching 0. However, distinct spike is observed at lag k = 9.

In the context of time series analysis, negative lags are often less relevant,
representing correlations with values preceding the current time point.
Consequently, they are not given as much consideration.

In conclusion, based on insights from the ACF plot, the chosen model
order, implying the number of included lags, is determined to be k = 9.
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Figure 7: Training and validation loss over epochs with early stopping: Monitoring the learning
process as the model trains to prevent over-fitting and achieve optimal performance.
At epoch 5 to 6 the validation loss is flat, implying the model is no longer improving.

Figure 7 displays the training and validation loss curves, providing a vi-
sual representation of the loss resulted during the training and validation
phases. The learning curve derived from the training data-set illustrates
the model’s learning performance, showing how effectively it is adapting to
the provided data. Similarly, the learning curve generated from the valida-
tion data-set provides insight into the model’s generalization capabilities,
offering a visualization of its performance on unseen data [6]. These curves
serve as valuable tools for assessing and understanding the training and
generalization behavior of the model throughout the learning process.

As observed in Figure 7, the training loss curve tends towards 0 as the
number of epochs increases. This reflects the model’s effective learning of
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the training data. This outcome is anticipated, particularly given the rel-
atively small number of data points used for training, allowing the model
to accurately predict target values for the training examples.

However, the elevated validation loss observed at the beginning is a re-
sult of the model’s parameters being randomly initialized. This initial
randomness can cause predictions to deviate significantly from the actual
target values, resulting in a higher validation loss. As the number epochs
progresses, the SGD algorithm updates the model’s parameters based on
the gradients of the loss function with respect to these parameters. Each
iteration involves processing a random subset (mini-batch) of the train-
ing data, making the optimization process stochastic. Finally, the model
moves toward a minimum of the loss function and the validation loss grad-
ually decreases. It finally reaches plateaus at Epoch 5 − 6 implying that
the model is no longer improving.

A well-fitted model’s learning curve typically exhibits a high validation loss
initially, which decreases as more training examples are added. Eventually,
the curve plateaus, suggesting that additional training examples do not
significantly enhance the model’s performance on unseen data.

27



Figure 8: QQQ ETF’s adjusted closing prices are showing in blue line, whereas the train
predictions (orange) and test predictions (green) are visualised on top. Model uses
actual values from the dataset to make predictions.

Figure 8 provides a visualization of the model’s performance on the QQQ
data-set. On one hand the blue line represents the actual adjusted closing
prices of QQQ. On the other hand, the orange line illustrates the plot
generated from the training set, comprising 80% of the data points, while
the green line depicts test predictions based on the remaining 20% of the
data points.

The aim of the model is to predict the ETF’s next day adjusted closing
price for just one day and not an extended period time in future. Therefore,
the model is using the actual values from the dataset to predict the next
day’s adjusted closing priced instead of using the predicted values for
making further predictions. Therefore as it can be seen in Figure 8, the
simple feedforward neural network has demonstrated substantial success,
delivering close predictions of the actual adjusted closing prices for QQQ.
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5 Conclusion

In conclusion, this study has investigated into the performance of a feed-
forward neural network for predicting the adjusted close price of the QQQ
ETF. The study involved the formulation, training, and evaluation of a
neural network model using historical data.

The results obtained from the model conducted are promising. The neural
network demonstrated relatively decent predictive capabilities, capturing
more general patterns and relationships within the QQQ ETF data. The
training process allowed the model to learn from historical trends and make
relatively accurate predictions on the unseen test data.

Even though the performance is encouraging, it is essential to acknowl-
edge certain limitations and clarifications. Model’s complexity, such as
hyper-parameters, architecture, and data-pre-processing, all play crucial
roles in the neural network’s effectiveness. Further research could explore
optimizing these aspects, for a better a capture of long-term dependen-
cies and more accurate predictions. In addition, the model is designed to
predict only a single day in the future, reducing the risk of error accumu-
lation over time. Figure 8 should not mislead the reader to think that the
model can accurately predict the adjusted closing price of the ETF over
an extended period of time. For such purposes, a different model should
be designed, so that the predicted values are used for making further pre-
dictions.

The study aims on learning and applying machine learning techniques to
financial forecasting. The feedforward neural network did a good job pre-
dicting the QQQ ETF’s closing prices. This shows that these models can
understand to some extend complicated patterns in financial data.

As we move forward, continued exploration of advanced neural network
architectures, and fine-tuning of model parameters will likely perform bet-
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ter. The findings of this thesis could be an inspiration for future research
studies in the domain of financial forecasting using machine learning tech-
niques.
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