

Contents

1 Introduction 3
1.1 Question of Interconnectedness and Why it Matters 3
1.2 On Strings and Alignments . 4
1.3 The Gold Standard of Distance Methods: NEIGHBOR-JOINING 4
1.4 True Improvements? . 5
1.5 Novel Randomized Divide-And-Conquer Approaches 6
1.6 An Oversight of the Thesis . 6

2 Preliminaries 7
2.1 Terminology and Definitions . 7
2.2 The Newick Format . 9
2.3 Tree difference metrics . 10

2.3.1 The Robinson-Foulds Distance . 10
2.3.2 Tree Matching Distance . 11

2.4 Center vertex of a Tree . 11
2.5 The NEIGHBOR-JOINING Algorithm . 12

2.5.1 Selecting nodes and updating the distance matrix and edge weights . 13
2.6 The DNCTREE Algorithm . 14
2.7 Generating Data used in Experiments . 16

2.7.1 Creating Noisy Data . 16
2.7.2 Creating Simulated Sequences . 16

2.8 Putting it All Together: Snakemake . 17

3 The DNCTREE-K Algorithm 17
3.1 DNCTREE-K Walk-Through . 18

3.1.1 Allocating Sequences to Clades . 19
3.1.2 Calculating the Distance Between the Center Vertex and a Sequence 19
3.1.3 Complexity Analysis of DNCTREE-K 20

3.2 Implementation of DNCTREE-K in Python . 22
3.3 Calculating the Center Vertex . 22
3.4 Obtaining Clades and Distances to the Center Vertex 23
3.5 Unit tests . 23

4 Evaluating DNCTREE-K 24
4.1 Experimenting with Noisy Distance Data . 24
4.2 Experimenting with Varying MSA Width . 25
4.3 Experimenting Varying Sequence Set Sizes 25

5 Discussion 27
5.1 General Summary of Results . 27
5.2 Continued Investigation . 28

1

6 Availability 29

7 Acknowledgments 29

2

1 Introduction

1.1 Question of Interconnectedness and Why it Matters

Phylogenetic trees are often used as a graphical representation of how a given set of taxa1

S, for whom an interlinked evolutionary history is assumed, are interrelated with one
another. Each leaf in the tree represents an element of S, i.e. an individual taxon, and the
interior vertices the hypothetical ancestors connecting them. We assume that each of our
taxon is represented by some form of biological sequence.

Depending on what our taxa in the set S are, an understanding of their interre-
lation can give insight into different problems. For example, in the case that the taxon
are different species or populations, we can answer interesting historical questions such
as when the acquisition of new functions may have occurred, how they evolved [41] and
in turn at which point a new species has arisen from an already existing species [6]. If our
taxon set S is a group of related genes (i.e. a gene family) we might use the phylogenetic
tree inferred to predict gene function, classify environmental DNA sequence, or identify
functional residues [29].

It is therefore of great use, provided some form of evolutionary data, to infer what
these phylogenetic trees may look like. In general, if the primary goal is to infer a tree T
that has the highest probability of being the correct tree for your set S, then the approach
would be to apply a probabilistic method such as Maximum Likelihood or Bayesian infer-
ence. However, as pointed out in [11] these methods come at a prohibitive computational
cost compared to distance-based methods such as NEIGHBOR-JOINING which, while admit-
tedly less accurate than the aforementioned, take just a fraction of the time and often have
good enough accuracy for many cases. For example, distance-based methods are the go-to
approach in the case of handling very large sequence sets for which at least an approxi-
mate tree may be produced [5]. In the case of a large sequence set but with low sequence
divergence it has even been shown in [40] that NEIGHBOR-JOINING produces accurate re-
sults very quickly. Distance-based methods will also be used when we need to infer many
trees as is required for boot-strapping, a standard method used to estimate reliability in
inferred trees [10]. Furthermore, the trees inferred with distance-based methods, even in
the case that they are less accurate, can still be used as so-called guide trees for alignment
algorithms as shown in [9] or to generate clever starting trees required as input for one of
the more costly probabilistic methods.

All of these purposes justify why there remains a great interest in distance-based
methods. However, as sequencing technology is rapidly improving, the size of the se-
quence sets are growing, and, for reasons briefly explained below, even the current distance-
based methods will start to struggle, thus creating an impending need for the development
of even faster, distance-based methods.

1Throughout a taxon is understood to be some form of biological entity such as genes, species, individuals,
or populations, from which we can sample data in the form of a biological sequence.

3

1.2 On Strings and Alignments

When we have sampled from each of the taxon in our set S biological sequence data (i.e.
protein, DNA, or RNA), this can be used to produce evolutionary data. We start first by
noting that every sequence type has a standardized alphabet associated with it, and each
individual taxon sequence s ∈ S can therefore be represented by a string of characters
in the relevant alphabet. In order to identify regions of similarity and dissimilarity, one
might, using some form of method computationally create a good2 pairwise alignment for
all of our sequences in S, producing a so-called MSA, or multi sequence alignment. Note
that we assume that all of our sequences are of a similar length approximately L, and that
it is the individual characters along the string being aligned against one another, with,
if necessary, gaps being introduced strategically during the alignment process depending
on the exact method used.3 From our MSA, we can now, by selecting an appropriate
substitution model calculate an “evolutionary distance” for each pair of sequence in our
MSA. In the general case, the distance between two taxa is often measured by the number
of substitutions per site that are estimated (with the model) to have taken place along
the corresponding evolutionary path for each taxon since they split off from a shared
ancestor, with the distance often some measure of mismatches between the sequences
at the aligned character positions with areas of gaps either also counting as mismatches,
or alternatively being ignored, depending on the model [3]. These models can be used
not only for estimating evolutionary distance between sequences, but also for simulating
sequences, something that we do with the WAG model [37] when creating some of the
data used in our experiments.

This measure of distance between all of the pairs in a given taxa sequence set S
can then be used to create a so-called distance matrix, an |S| × |S| matrix containing all
of our distance estimates for each pair of taxa in our set S.

1.3 The Gold Standard of Distance Methods: NEIGHBOR-JOINING

A distance matrix is the required input for one of the most popular distance-based meth-
ods, NEIGHBOR-JOINING. The algorithm has been often referred to as probably the most
cited algorithm in the field of bioinformatics [1, 11, 25, 29]. It was first presented by
Saitou and Nei in 1987 [31] with simplified but equivalent formulas, used here, presented
a year later in [33]. NEIGHBOR-JOINING has been described as a greedy heuristic for
the balanced minimum evolution (BME) criterion [13]. The BME criterion requires for a
given set S a tree of minimum length, with a tree’s length defined as the sum of all branch
weights in the tree. When we refer to it as a “greedy heuristic” we simply mean that
in each iteration NEIGHBOR-JOINING attempts to construct this “tree of minimum length”
with the straightforward strategy of, in each step, always joining the two vertices that

2Due to the prohibitive computational cost required for finding the optimal alignments of S with sequences
of moderate length, most MSA are produced with a program that uses heuristic methods.

3For a very interesting oversight and introduction to the concept of MSA and the diverse algorithmic
methods used in their creation, we refer the reader to [7].

4

have been deemed by the so-called selection function to be neighbors (i.e. adjacent) in
the phylogenetic tree.

Despite its simplistic approach, NEIGHBOR-JOINING has not only been shown to
perform remarkably well empirically but that these good results have been justified theo-
retically. For example, NEIGHBOR-JOINING has a convergence radius (known as Atteson’s
convergence radius) which guarantees that the “true” tree topology T̂ for a set of taxa S
will be returned if the distance function D is additive or nearly additive, and has been
shown to return T̂ in even more cases than that empirically. However, this inference accu-
racy for n sequences comes at the time complexity of O(n3) [1, 11, 13, 33], which, while
remaining faster than the known statistical methods, begins to form a hurdle as n grows.

1.4 True Improvements?

Suggestions for developing algorithms with accuracy similar to NEIGHBOR-JOINING but
considerably faster, have often involved primarily either clever implementations or a strat-
egy for limiting unnecessary comparisons in the search for which taxa to join. For example,
the algorithm DECENTTREE [36] uses highly optimized and parallel C++ implementations
of both NEIGHBOR-JOINING and BIONJ. The algorithm BIONJ [15] utilizes the same ag-
glomerative scheme as NEIGHBOR-JOINING but additionally takes the variance of distance
estimation into consideration, and by doing so significantly improves its estimates of what
constitutes a true neighbor-pair, which, while not an improvement on speed, was shown
to improve accuracy in some cases.

FAST-NEIGHBOR-JOINING [11] uses the same selection function that is used in
NEIGHBOR-JOINING but is capable of retaining information between iterations, and uses
this to limit the search for a node’s neighbor to a smaller set enabling joins to be carried
out in linear time. FAST-NEIGHBOR-JOINING in particular has proven popular enough that
it has served as direct inspiration for many of the other algorithms developed. DNJ and
HNJ both introduced in [5] have been shown to handle sequence set sizes up to |S| = 106

by using similar operations as those in FAST-NEIGHBOR-JOINING combined with good im-
plementation.

Unfortunately, though, as pointed out in [1, 19, 29] even if these algorithms can
infer a tree on n sequences in O(n2) time, one must not forget the work needed to con-
struct the initial distance matrix required for these methods as input. If we assume that
we have n sequences, all of length L, then we have

(
n
2

)
distances that must be estimated

initially, with each estimate requiring L comparisons. Let us now further assume that L
is comparable in size to n. This is quite a reasonable assumption as modern sequenc-
ing techniques are becoming ever faster and cheaper, leading to both massive data sets,
and sequences whose lengths are ever-improving (see for example [8]). This would ulti-
mately mean that all of the algorithms mentioned above, having time complexity O(n2L),
would in fact actually have, in the reasonable case of L v n, time complexity O(n3) and
therefore offer in fact no true improvement with regards to time complexity compared to
NEIGHBOR-JOINING.

5

Focus should therefore be on developing algorithms that do not require the costly
initial distance matrix MS , and almost certainly on reducing the number of pairwise dis-
tance estimations needed to be carried out in general [1, 18] .

1.5 Novel Randomized Divide-And-Conquer Approaches

Arvestad’s DNCTREE [1] was developed to take a randomized divide-and-conquer approach
when inferring a tree for a set of n aligned sequences, S, using NEIGHBOR-JOINING as a
subroutine. To start with, rather than the costly distance matrix required for the algorithms
above, DNCTREE instead takes the aligned sequences and a distance function DS and uses
this to calculate distances only when they are needed, which, thanks to the divide-and-
conquer approach, is comparatively very limited.

Details of the algorithm will be gone through in section 2, but by utilizing the
same selection function for pairing taxa as NEIGHBOR-JOINING, the original S is parti-
tioned recursively into three sub-problems using three randomly selected sequences from
S to guide the paritioning, until a base-case case size of k is reached, at which point
NEIGHBOR-JOINING will be run. While Atteson’s convergence radius was proven to apply
to DNCTREE in [1] and work was reduced significantly, the trees produced in DNCTREE did
not exhibit the same accuracy as those produced with NEIGHBOR-JOINING, in particular
when the base case size k was relatively small.

The main goal in developing DNCTREE-K was to improve the accuracy of DNCTREE

while at the same time still keeping the workload (i.e. the number of pairwise distances
calculated) down as much as possible, with the main strategy focusing on improving the
quality of the partitions being used to create sub-problems. Empirical studies run for this
thesis indicate that this approach has led to a significant improvement regarding accuracy
issues, while having, like DNCTREE, a best case runtime of O(n lg n) and in a worst case
O(n2).

1.6 An Oversight of the Thesis

To aid the reader, we will now give a brief oversight to the organization of this thesis.
In Section 2, we will start first by looking at the most critical definitions for concepts
covered in this thesis, followed then by taking a closer look at the two key “predecessor”
algorithms, NEIGHBOR-JOINING and DNCTREE. We will also go over the metrics used in our
experiments for tree comparison, and explain how the data was simulated. In Section 3
the new DNCTREE-K algorithm will be introduced and examined depth. In Section 4 we will
provide the results of the initial experiments conducted with DNCTREE-K using simulated
data. Here, a side-by-side performance comparison between DNCTREE-K, DNCTREE, and
in some cases NEIGHBOR-JOINING will be presented. Section 5 is where our concluding
results regarding the performance of DNCTREE-K and some interesting possible points of
further investigation will be discussed. Finally, information on code availability is found
in Section 6.

6

2 Preliminaries

We will first cover general terminology and definitions in Section 2.1, followed by an
introduction to the Newick format we use to represent trees in section 2.2, and a brief
overview of the two metrics we will use to compare trees in our experiments in Section 2.3.
Finally we will introduce the canonical NEIGHBOR-JOINING algorithm in Section 2.5 and
give an overview of Arvestad’s original DNCTREE algorithm in Section 2.6. How the data
used in our experiments was simulated will be covered in Section 2.7 and in Section 2.8
we will conclude with a very brief description of Snakemake, the automation tool used for
setting up the workflow when evaluating the algorithms.

2.1 Terminology and Definitions

Throughout this thesis we often use the letter S to denote a set of taxa. We use DS
to denote a distance function DS : S × S → R+, where DS always satisfies DS(x, y) =

DS(y, x) (i.e., it is symmetric) andDS(x, x) = 0 for all x, y ∈ S. Instead of writingDS(x, y)

we will often, as a shorthand, use the notation dxy to denote DS(x, y), where S and DS
are understood from the context.

A phylogenetic tree T for a set of taxa S is an unrooted, edge-weighted tree with
|S| leaves where each leaf corresponds to one of the taxa in S. More precisely, there is
a bijection between S and the leaves of T . Each internal node of T has degree 3. The
idea with the phylogenetic tree is to capture the relationships between taxa such that the
weighted path from one leaf x to another leaf y is similar to the distance DS(x, y). We
formalize this idea next. Because there is a bijection between the leaves of T and S we
may use S to denote the leaf set of T .

Given a phylogenetic tree T for a set of taxa S, let w(x, y) be the edge weight
between any two nodes x, y of T . As a heads-up, note that we will often use the word
node and vertex interchangeably. Because T is a tree, there is a unique, well-defined
simple path between any two nodes x and y. Let Pxy denote this path. The weight of
Pxy, denoted w(Pxy) is defined as the sum of all edge weights along Pxy. That is, suppose
Pxy = x, a, b, c, d, y then

w(Pxy) = w(x, a) + w(a, b) + w(b, c) + w(c, d) + w(d, y).

We also define w(Pxx) = 0 for all x. The distance function DT : S × S → R is defined as

DT (x, y) = w(Pxy) (1)

for x, y ∈ S. Using this notation we are ready to formalize the idea of a phylogenetic tree
T “explaining” the set of taxa S with respect to DS .

Definition 1. A phylogenetic tree T for a set of taxa S realizes DS if DT (x, y) = DS(x, y)

for all x, y ∈ S.

7

The concept of “realizing DS” has been borrowed from [11]. We now have the
following definition.

Definition 2. A distance functionDS for a set of taxa S is additive if there is a phylogenetic
tree T for S that realizes DS .

A property of an additive distance function DS is that the phylogenetic tree T that
realizes it is unique [11]. We will use the notation T̂ to denote this tree. The additive
property is a rather strong property which does not necessarily hold for arbitrary distance
functions DS . A slightly more relaxed property is the idea of “nearly additive” which we
define below.

We define the difference between DS and DT as

|DS −DT |∞ = max
x,y∈S

|DS(x, y)−DT (x, y)|.

Note that in the case of DS being additive, we have

|DS −DT̂ |∞ = 0.

For a phylogenetic tree T , let µT denote the smallest edge weight over all edges of T . The
concept of realizing DS can now be extended as follows.

Definition 3. A phylogenetic tree T for a set of taxa S nearly realizes DS if

|DS −DT |∞ ≤
µT
2
. (2)

Similarly to the concept of additive, the notion of “nearly additive” now follows.

Definition 4. A distance function DS for a set of taxa S is nearly additive if there is a
phylogenetic tree T for S that nearly realizes DS .

The uniqueness of a tree that realizes DS also holds for the concept of nearly
realizes. That is, if DS is nearly additive then there is a unique tree T that nearly realizes
DS[2]. We use T̂ to denote this tree. Obviously, whenever DS is additive then it is also
nearly additive, hence T̂ is referring to the same unique tree. It has been proven in [1, 2]
that whenever DS is nearly additive, both NEIGHBOR-JOINING and DNCTREE will return a
tree with the same topology, or structure, as the phylogenetic tree T̂ . Note that DNCTREE

does not return a tree with edge weights. However, in the case ofDS being nearly additive,
it returns T̂ without edge weights.

In the literature the distance between taxa is often expressed with a distance
matrix rather than through a distance function DS . For example, the description of
NEIGHBOR-JOINING in Section 2.5 states that the algorithm takes a distance matrix as
input. We will use MS to denote the |S| × |S| matrix containing all pairwise distances be-
tween taxa in S. In our implementation of NEIGHBOR-JOINING, DNCTREE and DNCTREE-K

we do not use a matrix in a strict sense. Instead we use dictionaries that contain the

8

Figure 1: The string (T_4,((T_0,T_1),(T_3,T_6)),(T_7,(T_2,T_5))); is the Newick
format of this tree. Note that the “;” is always used to indicate the end of the string. Here
the node #4 has been used as the root stand-in.

distances of DS . This is a technical solution to the problem of storing and retrieving dis-
tances, as well as being able to add new distances between new taxa and new nodes
(“pseudo taxa”) which are created in the recursive steps of the algorithms. More on this
will be detailed later.

2.2 The Newick Format

Within bioinformatics one of the most commonly used notations for representing trees is
the Newick tree format4 which uses a series of nested parenthesis and commas to express
the tree topology. The representation is constructed recursively. While there are several
variations of the Newick tree format regarding what information about the tree is relayed,
the one we use only relays the leaf names, and ignores edge weights and internal nodes.
Note that when an unrooted tree is expressed in Newick notation, an arbitrary vertex,
which most often will be internal, will be selected as the root stand-in, that is starting
point for the recursion. To give a concrete example, refer to Figure 1. This tree has
following representation in Newick notation when we select node #4 as the root stand-in:

(T_4,((T_0,T_1),(T_3,T_6)),(T_7,(T_2,T_5)));

Here we ignore spelling out the edge weights and internal vertices. Thus, the representa-
tion above only captures the tree topology.

4How the format works was gleaned from the ETE3 tutorial page[12], and by studying the output of the
tree data structure in the original DNCTREE algorithm, which we then used for DNCTREE-K.

9

2.3 Tree difference metrics

In order to compare phylogenetic trees we employ two difference metrics: the Robinson-
Foulds Distance (RF distance) and the Tree Matching Distance (TMD). We begin by ex-
plaining the RF distance and its shortcoming, followed by a brief explanation to why the
TMD provides a more robust tree difference metric.

2.3.1 The Robinson-Foulds Distance

The Robinson-Foulds Distance [30] is a popular metric used to compare trees. Its popu-
larity is likely in part due to being intuitive to understand and relatively easy to compute.
Given a phylogenetic tree T on the set of taxa S, let Γ(T) denote the set of all subsets of
S that can be obtained by partitioning S though a split of the tree T at an edge. That is,
removing an edge naturally splits T into two sub-trees T1 and T2, where S1 is the set of
leaves in T1 and S2 is the set of leaves in T2. The two sets S1 and S2 are therefore in the
set Γ(T). The set Γ(T) contains all such leaf sets obtained by splitting T at every edge.

For two phylogenetic trees T1 and T2 on the same set of taxa S, the RF distance
between T1 and T2 is defined as

RF(T1, T2) = |Γ(T1) \ Γ(T2)|+ |Γ(T2) \ Γ(T1)|. (3)

Another distance metric is the relative RF distance which is obtained by normalizing the
RF distance with 2|S| − 6. Thus, the relative RF distance is given by

rel-RF(T1, T2) =
RF(T1, T2)

2|S| − 6
. (4)

To see why we normalize with 2|S| − 6 we will show that |Γ(T1) \ Γ(T2)| ≤ 2|S| − 6. By
symmetry is follows that the same bound holds for |Γ(T2) \ Γ(T1)|. First observe that for
a phylogenetic tree T , |Γ(T)| equals the number of edges in T , times two. We prove the
following lemma.

Lemma 5. The number of edges of a phylogenetic tree with n leaves is 2n− 3.

Proof. Let T be a phylogenetic tree with n leaves. The tree can be made a rooted binary
tree by taking an arbitrary edge and inserting a root on this edge. Since the number
of leaves is n, the number of internal nodes of the binary tree, including the root, is
n− 1. Hence there are 2(n− 1) edges in the rooted binary tree. By removing the root and
replacing its two outgoing edges with the original edge of T , we conclude that the number
of edges of T is 2n− 3.

Using the lemma above we conclude that |Γ(T)| = 4|S| − 6. Finally observe that
for two phylogenetic trees T1 and T2 on the same taxa set S, |Γ(T1) ∩ Γ(T2)| ≥ 2|S| since
|S| of the sets in Γ(T1) and Γ(T2) are represented by the single leaves S, and |S| of the

10

sets are represented by the complements of single leaves. Thus,

|Γ(T1) \ Γ(T2)| ≤ (4|S| − 6)− 2|S| = 2|S| − 6,

which is what we wanted to show. By further dividing by 2 we scale the relative RF
distance so that it has a maximum value of 1.

The Robinson-Foulds distance does have shortcomings. As pointed out in [23]
the RF distance is poorly distributed, and therefore does not give as refined a measure of
difference as one might hope, and simultaneously is easily saturated (its maximum value
is reached) since it is extremely sensitive to very small changes.

We utilized the Python programming toolkit Environment for Tree Exploration
(ETE3) [12] to compute the relative RF distance.

2.3.2 Tree Matching Distance

In order to address some of the issues with the Robinson-Foulds metric, the Tree Matching
Distance, TMD, was developed as an alternative by Lin, Rajan and Moret in [23]. TMD
is described as more robust compared to the RF distance, as it is not biased and does
not saturate as easily. TMD also compares sets of subsets of taxa, but, unlike the RF
distance, it also takes into account by how much subsets of taxa differ. For example,
the two subsets S1 ⊆ S and S2 ⊆ S could be large and differ just on a single taxon.
In terms of the RF distance, S1 and S2 are two completely different sets despite being
very similar. In the TMD however, S1 and S2 are considered similar, and this therefore
contributes to the distance metric differently than if S1 and S2 had been totally different.
We refer to [23] for details. In order to calculate the TMD, Arvestad’s Python module
TREE-MATCHING-DISTANCE was used.

2.4 Center vertex of a Tree

In the DNCTREE-K algorithm in Section 3 we use the concept of a center vertex of a tree
(not necessarily a phylogenetic tree). Here we define what a center vertex is and prove
that a tree has either one or two center vertices. The notion of a center vertex given below
and used in the DNCTREE-K algorithm should not be confused with the notion of the center
of a star shaped tree which we use when explaining NEIGHBOR-JOINING.

Definition 6. A center vertex c of a tree T is a vertex for which the length (number of
edges) of a longest simple path from c to a leaf of T is minimized.

Theorem 7. For any tree there are at most two center vertices. If there are two center
vertices then they are adjacent.

Proof. Suppose that the vertex v of a tree T is a center vertex. Suppose that P is a longest
path from v to a leaf and it goes via a neighbor w of v. Let |P | denote the length of P .

11

Let Tv and Tw be the two subtrees of T obtained by removing the edge between v and w,
where v belongs to Tv, and w belongs to Tw.

First we observe that v is the only vertex of Tv that can be a center vertex. Any
other vertex of Tv has a longest path to a leaf that is longer than P . Namely, the path that
goes to v and then follows P .

Second we note that there must be a longest path from v to a leaf of Tv of length
exactly |P | − 1 or |P |. Suppose that this is not the case and the length of a longest path
from v to a leaf of Tv is less than |P |− 1. In this case v could not be a center vertex since a
longest path from w to a leaf would have length |P | − 1. Moreover, the length of a longest
path from v to a leaf of Tv cannot be greater than |P | by the assumption that |P | is indeed
the length of a longest path from v to a leaf.

Suppose that the length of a longest path from v to a leaf of Tv is |P |. In this case
v is the unique center vertex of T . The longest path from a vertex of Tw to a leaf of Tv
would have length at least |P |+ 1.

Lastly, suppose that the length of a longest path from v to a leaf of Tv is |P | − 1.
In this case w is also a center vertex; the length of a longest path from w to a leaf in Tv is
|P | and the length of a longest path from w to a leaf of Tw is |P | − 1. For any other vertex
of Tw there is a path of length at least |P |+ 1 to a leaf of Tv. Thus, w is the only vertex in
addition to v that is a center vertex.

2.5 The NEIGHBOR-JOINING Algorithm

The Neighbor Joining algorithm is a remarkably popular distance-based method for infer-
ring phylogenetic trees, and is often used within bioinformatics pipelines [5]. It has been
referred to in [1] as likely one of the most implemented algorithms in the world. Intuitive
in function, it is also easy to implement, and relatively quick compared to more complex
methods, delivering good accuracy in many cases. It has been studied extensively both em-
pirically and theoretically, with particular interest being paid to why NEIGHBOR-JOINING

performs so well [25].
In short, NEIGHBOR-JOINING is an agglomeration greedy algorithm, taking as input

a distance matrix MS for a set of taxa S. In each step it greedily chooses the pair of taxa
that minimize the selection function given in equation 5, reducing the pair to a single
vertex, and then returning the completed tree after |S| − 3 iterations.

It was proven in [2] that if DS is nearly additive then NEIGHBOR-JOINING is guar-
anteed to return T̂ . As previously mentioned, this is referred to as Atteson’s convergence
radius. This convergence radius is a safety radius, with safety radius defined in [39] as
“a radius from a tree metric (a distance matrix realizing a true tree) within which the
input distance matrices must all lie in order to satisfy a precise combinatorial condition
under which the distance-based method is guaranteed to return a correct tree.” It was
shown in [14] that NEIGHBOR-JOINING also has a corresponding stochastic safety radius for
which when |DS −DT |∞ is within the stochastic safety radius, then NEIGHBOR-JOINING is
guaranteed to return T̂ (referred to above as the “correct tree”) with a certain probability.

12

This likely explains why NEIGHBOR-JOINING has been demonstrated to return T̂ even in
the case that DS is not nearly additive (as mentioned in [1, 14, 39]).

In order to infer at tree for a set of taxa S, the input to NEIGHBOR-JOINING is the
distance matrix MS . At initiation, we have a completely unresolved tree (not phylogenetic
tree) which takes the shape of a star; one internal vertex c and |S| leaves corresponding to
each taxon in S. The algorithm runs through |S| − 3 steps. In each step, two neighbors x
and y of c are chosen according to a selection function. A new node z is then created and
x and y are disconnected from c and re-connected to z. The node z is then connected to c.
Hence the degree of c has decreased by one. This process is repeated until c has only three
neighbors. After the last step, the initial star has been transformed into a phylogenetic
tree where S is the leaf set and all internal nodes have degree 3.

After the step that disconnects x and y from c and connects the new node z to c,
we must update the distance matrix accordingly so that x and y are no longer part of the
matrix but z is. That is, we must add the distances between z and every other neighbor of
c. These new distances are calculated according to Equation 8 below.

2.5.1 Selecting nodes and updating the distance matrix and edge weights

Here we describe how NEIGHBOR-JOINING selects two nodes to merge and how the dis-
tances between nodes are updated. Suppose that the current state of the algorithm is a
star with the internal node c and n neighbors x1, . . . , xn. There might be other vertices
connected to the nodes xi but they are no longer relevant when selecting two neighbors
of c to merge. In the following we will refer to the node xi simply by writing i. Let dij
denote the distance between i and j. For each pair i, j we define qij as

qij = (n− 2)dij −
n∑
k=1

dik −
n∑
k=1

djk. (5)

In order two select the two neighbors of c to merge, we choose the i and j for which qij
is smallest. We disconnect i and j from c and connect them to a new node z, which in
turn is connected to c. Since we are building a phylogenetic tree we will also assign edge
weights to the edges of the tree. That is, we need to assign a weight wiz to the new edge
(i, z) and a weight wjz to the new edge (j, z). These weights are calculated as follows:

wiz =
1

2
dij +

1

2(n− 2)

(
n∑
k=1

dik −
n∑
k=1

djk

)
, (6)

wjz = dij − wiz. (7)

We update the distance matrix by removing i and j and adding z. We therefore
need to update the matrix with distances between z and all n− 2 remaining neighbors of
c. For a such a neighbor k, the distance dzk (which is identical to dkz) is calculated as

13

Algorithm 1 neighbor-joining(MS)

1. Create a star shaped tree with one internal node c and |S| leaves
corresponding to the taxa S.

2. for |S| − 3 steps:

(a) Select two neighbors i and j of c such that qij is minimized

using Equation 5.

(b) Create a new node z and connect it to c.
(c) Disconnect i and j from c and re-connect them to z.
(d) Set the edge weights of (i, z) and (j, z) with Equations 6 and 7.

(e) For every neighbor k of c, except i and j, set the distance

dzk with Equation 8.

(f) Update the distance matrix by removing i and j and adding z.
There are now three neighbors x1, x2, x3 of c.
3. Set the edge weights (xi, c) with Equation 9.

4. Return the tree with its edge weights.

dzk =
1

2
(dik + djk − dij) . (8)

After the last iteration we have a tree where the node c has exactly three neighbors
x1, x2, x3. This is indeed the final tree, however, in order to conclude the construction of
the phylogenetic tree we need to assign weights to the last edges (x1, c), (x2, c) and (x3, c).
Let w1c, w2c and w3c denote these weights, respectively. The weights are calculated as
follows:

w1c =
1

2
(d12 + d13 − d23), (9)

w2c =
1

2
(d12 + d23 − d13),

w3c =
1

2
(d13 + d23 − d12).

For completeness we describe the algorithm with pseudo code in Algorithm 1.

2.6 The DNCTREE Algorithm

The DNCTREE algorithm was developed by Lars Arvestad [1]. It is a heuristic that uti-
lizes NEIGHBOR-JOINING as a sub-routine, offering considerable improvements with the
time complexity being in the worst case quadratic, but initial experiments in [1] indicate
that in many cases it seems to scale O(n lg n). In short, DNCTREE randomly selects three
sequences from S and partitions the remaining sequences determined by a quartet test
outlined below. Arvestad has also shown in [1] that Atteson’s convergence radius holds
for DNCTREE.

As input the DNCTREE algorithm will take a set of n aligned sequences S and a
distance function DS . Let k be a base case size specified as a parameter, and an outline is

14

Algorithm 2 DNCTREE(S,DS)

1. If |S| ≤ k :

(a) Let MS be the distance matrix for S using DS .
(b) Return neighbor-joining(MS).

2. Randomly select three sequences: x, y, z ∈ S.
3. Use Dv to estimate dxy, dxz and dyz.
4. Introduce a �center� vertex c, set dxc, dyc, dzc optimally.

5. Create subsets Sx = {x, c}, Sy = {y, c}, Sz = {z, c}.
6. For s ∈ S\{x, y, z} :

(a)For w ∈ {x, y, z} : dsw = DS(s, w)
(b)Compute a quartet test on {x, y, z, s}.
(c)Place s accordingly: in Sx, Sy or Sz.
(d) If s ∈ Sx, set dsc =
(dsy + dsz − dyz)/2 or adjust accordingly if s ∈ Sy or s ∈ Sz.

7. For i ∈ {x, y, z} : Ti = dnctree(i, Dv).
8. Return T = Tx ∪ Ty ∪ Tz.

provided in Algorithm 2.
Though following the outline provided for DNCTREE seems very simple, some de-

tails regarding the specific steps may be helpful to the reader.
Regarding steps 4 and 5, after the three sequences x, y, z ∈ S are selected at

random, we let c be a new node representing a center vertex for x, y, z and introduce
edges {c, x}, {c, y} and {c, z}.The corresponding edge weights for dxc, dyc and dzc must
then be calculated “optimally” by setting them such that they satisfy

dxc + dyc = dxy,

dxc + dzc = dxz,

dyc + dzc = dyz.

The quartet test mentioned in step 6b is using DS to calculate all pairwise distances on the
set {s, x, y, z} for some s ∈ S\{x, y, z} forming the matrixMσ and then constructing a tree
we will call here Tσ by using NEIGHBOR-JOINING(Mσ). We will then use Tσ to determine
which subset s belongs to by seeing which leaf vertex a was selected as the neighbor for
s, and then assign s to subset Sa with a ∈ {x, y, z}.

15

Figure 2: Simple Symmetric Additive Tree with 128 leaves.

2.7 Generating Data used in Experiments

Three experiments were conducted with DNCTREE-K using simulated data. For the first
we simulated distances (but not sequences) by constructing a symmetric additive tree
with 128 leaves, to which we then added a specified error term to. Our purpose with
this was to see how the accuracy of our inferred trees was affected as the errors in our
distance estimates (i.e. distance function) increased. The remaining two experiments used
simulated sequences, and examined first algorithmic performance (i.e. tree accuracy) as
the MSA width varied, and then algorithmic performance (i.e. accuracy and work) on
trees with varying leaf-set sizes. See details below as to how the data was generated, and
see Section 4 for details on how the experiments were run and their corresponding results.

2.7.1 Creating Noisy Data

The first experiment was designed to investigate how tree inference accuracy is affected
as |DS −DT̂ |∞ varies. To do so, we will construct data that will be just within, and then
also to varying degrees outside the safety radius proven to apply for NEIGHBOR-JOINING

and DNCTREE-K. We can control this as described below.
We construct a symmetric additive tree of 128 leaves shown in Figure 2. We

now set the weights of the two innermost edges to 1.0, and all remaining edges are given
weight 0.1. This will be our T̂ and we will refer to the distances in T̂ defined by Equation 1
as the additive distances. Given a parameter E, we will now create a DS by adding
noise, or an error term sampled from a uniform distribution on [−E,E] to the additive
distances. This new DS will then be used as input to our algorithms DNCTREE, DNCTREE-K

and NEIGHBOR-JOINING for this experiment. As can be seen in Section 4.1 we will let E
vary in different rounds of the experiment from 0.05 up to a maximum value of 0.2. Note
that given that our shortest branch in T̂ is 0.1, this means that when E = 0.05, if Atteson’s
convergence radius holds for the algorithm being tested, then T̂ should be returned.

2.7.2 Creating Simulated Sequences

For the second test (results shown in Section 4.2),we simulated sequences using the tool
AliSim [24], which simulates biologically realistic sequence alignments and is available
with IQ-Tree version 2.2.2.6 [17]. In order to perform the simulation, we first generated
random trees with a specified number of taxa under the Yule-Harding model with the
tree branch lengths initially randomly assigned following an exp(10) distribution. An
evolution of these sequences was then simulated following the WAG model [37] Two tests
were conducted with simulated sequences, the first looked at tree accuracy as the width of
our MSA object varied from 200 up to 1000 columns (i.e. taxa sequence length varied from

16

200 up to 1000), while keeping the taxa set size to 200. The second, larger experiment,
kept the MSA width constant at 500 columns (i.e. each taxa sequence simulated has length
500), while the size of our taxa set simulated varied between 100 up to 3000. In order to
produce statistically robust results we replicated each parameter combination 100 times
in both tests.

2.8 Putting it All Together: Snakemake

As one may perhaps gather both from Section 2.7 and Section 4, simulating the data
required and running the experiments not only generated a large number of files, but
running the experiments for some parameter combinations being tested required several
days given the limited computational power we were restricted to. The process of run-
ning these experiments and collecting the most interesting results in relevant plots would
have been a tedious task to do manually, and it was therefore of paramount importance
to somehow automate the process. This was done with Snakemake [26], a text-based
workflow management system particularly popular in the field of bioinformatics.

The snakemake workflow is defined by rules composed into smaller steps specify-
ing the inputs, outputs, and shell commands. Snakemake is able to automatically deter-
mine dependencies between the rules by matching file names. The rules are always stored
in a “snakefile” written in the Snakemake language which is an extension of Python with
added syntactic structure that enables the rules and additional controls needed for the
workflow to be defined.

Snakefiles that Lars Arvestad had produced previously for testing DNCTREE were
modified and used to conduct testing on DNCTREE-K.

3 The DNCTREE-K Algorithm

Just as with DNCTREE the input for DNCTREE-K is a taxa sequence set S and a corresponding
distance function DS . Crucially, just as in DNCTREE we will only calculate the distance
values between a pair of sequences when we actually need them. All values that we
have calculated previously will also be cached so that we may look them up as needed.
Though we will not be using matrices in the same way as in NEIGHBOR-JOINING we will
still present here the estimated distance between a vertex x and a vertex y as dxy, and in
the case that this value has not been calculated yet, assume that we will and can do so
when we need to, storing it as we go along for reference later. Details of how this is done
in the implementation will be given in Section 3.2.

17

3.1 DNCTREE-K Walk-Through

The new algorithm DNCTREE-K attempts to address the accuracy issues found in DNCTREE

by increasing the quality of the partitions. Similar to DNCTREE, DNCTREE-K is a recur-
sive algorithm where we have the parameter k determining the base case size at which
NEIGHBOR-JOINING will be run. That is, if the number of sequences is k or less we run
NEIGHBOR-JOINING, otherwise we run DNCTREE-K recursively. Unlike DNCTREE, instead of
randomly selecting just three sequences from the sequence set S we randomly select r ≥ 3

sequences. Let Score ⊆ S represent these sequences, where |Score| = r is referred to as the
core size.5

For the set Score we construct a distance matrix MScore and infer a tree Tcore with
NEIGHBOR-JOINING(MScore). For tree Tcore we identify a center vertex (see definition of
center vertex in Section 2.4) and partition Tcore into three sub-trees T1, T2, T3 by splitting
Tcore at the center vertex. Let S1, S2, S3 denote the leaves of T1, T2, T3, respectively. Hence
S1 ∪ S2 ∪ S3 = Score. We refer to the three sets S1, S2, S3 as clades.

The DNCTREE-K algorithm proceeds by recursively calling itself on the three smaller
sets defined by the clades. Before recursively building trees based on the clades we need
to consider the sequences in S \ Score that have not yet been processed. The idea is to go
though all sequences in S \Score and allocate each one to exactly one of the sets S1, S2, S3.
Once all sequences have been allocated to its set Si we are more or less ready to perform
the recursive calls. The only part that remains is to also include the center vertex in each
of the three sets. The reason for including the center vertex is that we need a distinguished
vertex on which the three trees returned by the recursive calls will be joined on.

Before getting into the details of how the vertices of S \ Score are allocated to the
clades, let us introduce a bit of notation. Let S′

i ⊆ S \ Score be the set of sequences that
are allocated to the ith clade Si. Let c denote the center vertex of Tcore. If there are two
candidates for the center vertex we choose one arbitrarily. The three recursive calls of
DNCTREE-K will be on the sets

Si ∪ S′
i ∪ {c}

for i = 1, 2, 3. Here we are facing a potential issue: the vertex c is not a sequence of
S, hence there is no well defined distance between c and a sequence of S. To mitigate
this issue we will regard c as a new, or pseudo sequence and find appropriate distances
between c and other sequences of S. Once we have established these distances we can
call DNCTREE-K on the three sets. Subsequently, the three returned trees will all contain a
leaf that represents the sequence c. We now join the trees by merging them on the leaf c,
resulting in a tree with one leaf for each sequence in S, where each internal vertex has
degree three. This is the tree returned by DNCTREE-K. Next we explain how sequences are
allocated to the clades, as well as how the distance from c to a sequence in S is calculated.

5In the testing conducted as part of this project, we will let the core size r range from 50 to 200.

18

3.1.1 Allocating Sequences to Clades

In order to allocate a sequence s ∈ S \Score to one of the clades S1, S2, S3 we will identify
its “friend” f ∈ Score. If f belongs to the clade Si then s will be allocated to Si. That
is, a sequence is allocated to the same clade as its friend. The friend of s is identified by
using the neighbor joining selection function and selecting the sequence that minimizes
the q-value. The set of sequences we consider for this step is therefore Score∪{s}. Suppose
m = r+ 1 denotes the size of this set. Using the standard formula for the neighbor joining
selection function, we determine the friend f from

arg min
f∈Score

q(s, f) = (m− 2)dsf −
m∑
x=1

dsx −
m∑
x=1

dfx. (10)

We may rewrite the formula for q(s, f) as follows:

q(s, f) = (m− 2)dsf −
m∑
x=1

dsx −
m∑
x=1

dfx

= ((r+1)− 2)dsf −
∑

x∈Score∪{s}

dsx −
∑

x∈Score∪{s}

dfx

= (r − 1)dsf −
∑

x∈Score

dsx − dss −
∑

x∈Score

dfx − dfs

= (r − 2)dsf −
∑

x∈Score

dsx −
∑

x∈Score

dfx (11)

since dss = 0 and dfs = dsf . Finding the friend f of s is now straightforward. Given a
sequence s we utilize Equation 11 by iterating over the sequences of Score and selecting
the f that minimizes q(s, f). For the sake of implementing this step efficiently, we calculate
the values of ∑

x∈Score

dyx

for each y ∈ S once and reuse these values where needed.

3.1.2 Calculating the Distance Between the Center Vertex and a Sequence

Calling DNCTREE-K recursively requires a well defined distance between the center vertex c
and sequences of S. For a sequence s ∈ Score we set the distance dsc between s and c to
be the sum of the edge weights on the path from s to c in the tree Tcore. Since Tcore was
obtained by running neighbor joining on Score, the edge weights are readily available.

For a vertex s ∈ S \ Score it is less obvious what the distance dsc should be. Given
a vertex w ∈ Score, where w belongs to a clade different from the clade that s belongs, an
intuitive estimate of the distance dsc, parameterized by w, would be

dsw − dwc.

19

To see this we may think of s sitting in one of the sub-trees T1, T2, T3 and w in another
sub-tree. A path from s to w must therefore go via the center vertex c. Thus, the distance
from s to w may be split into two parts:

dsw = dsc + dcw.

Since we already have an estimate for the distance dwc we can solve for dsc. This particular
estimate of dsc was parameterized by a sequence w. By considering all possible sequences
w we get many estimates of dsc. Taking the average of all these estimates gives us a
final estimate of dsc. For example, suppose that s ∈ T1. For each w ∈ T2 ∪ T3 we have
an estimate. The distance dsc is then the arithmetic mean of these |S2| + |S3| estimates.
Namely,

dsc =
1

|S2|+ |S3|
∑

w∈S2∪S3

(dsw − dwc)

=
1

|S2|+ |S3|

 ∑
w∈S2∪S3

dsw −
∑
w∈S2

dwc −
∑
w∈S3

dwc

 . (12)

The last step, breaking the summation into three sums, is illustrated here for the purpose
of matching the details of the implementation of DNCTREE-K where we calculate the three
sums separately. Note that the last two sums are independent of s. The estimates dsc for
s in T2 and T3 are calculated similarly. This concludes the description of DNCTREE-K. A
summary in pseudocode is given in Algorithm 3.

3.1.3 Complexity Analysis of DNCTREE-K

We analyze the runtime of DNCTREE-K for two cases: on data where the allocation of taxa
into the three clades is as unbalanced as possible, and on data where the three clades are
of the same size. In the former scenario we will see that the runtime is O(n2), and in the
latter case the runtime is O(n log n). We start by analyzing the first scenario.

In the most extreme situation Tcore consists of two clades with only one taxa each
and one clade containing the other k − 2 taxa. This scenario is technically not possible
since the center vertex would not sit this close to two leaves, but for the sake of analyzing
the time complexity we may assume that two clades contain just one taxa each. Further
suppose that all taxa that are not part of Tcore are allocated to the largest clade. The
recursive step of the algorithm would then involve two subproblems of size 2 (a leaf and
the center vertex) and one subproblem of size n − 1. Let T (n) be the runtime of the
algorithm on n taxa. Hence

T (n) = 2T (2) + T (n− 1) + k3 + rkn,

where the term k3 is the runtime of NEIGHBOR-JOINING on k taxa and r is a constant. The
last term rkn covers the part of the algorithm that calculates the center vertex, distances

20

Algorithm 3 dnctree-k

Input: A set of sequences S and a distance function DS.
Base case size k and core size r.

1. If |S| ≤ k :

(a) Compute MS using DS on S.

(b) Return neighbor-joining(MS).

2. Form Score by randomly selecting r sequences from S.
3. Compute MScore using DS on Score.
4. Let Tcore = neighbor-joining(MScore).
5. Identify a center vertex c in Tcore.
7. Use c to partition Tcore into sub-trees T1, T2,T3. Let S1, S2, S3 denote

the sets of sequences (clades) of the three trees, respectively.

Sequences s ∈ S\Score will be allocated to one of the three

sets S′
1, S

′
2, S

′
3 as follows:

8. For each s ∈ S\Score:

(a) Identify a �friend� f ∈ Score using Equation 10.

(b) If f ∈ Si then assign s to S′
i.

9. For each s ∈ Score, let dsc be the distance induced by Tcore
(see Section 3.1.2).

10. For each s ∈ S\Score, calculate dsc according to Equation 12.

11. For i = 1, 2, 3, recursively call dnctree-k with the sequence

sets Si ∪ S′
i ∪ {c} and the same values of k and r.

The distance function is augmented with the estimated distances dsc.
12. Return the tree obtained by connecting the three trees on c.

and allocates taxa to the three clades. It follows immediately that

T (n) ≤ (2T (2) + k3)n+ rkn2,

hence the time complexity is O(n2) if we keep k fixed. Thus, if the subproblems in each
step of the recursion are as unbalanced as in this scenario we would have quadratic run-
time of DNCTREE-K.

Suppose next that the subproblems are of equal size. That is, on n taxa the three
subcases are of size n/3 each (ignoring the center vertex). The runtime T (n) is therefore

T (n) = 3T
(n

3

)
+ k3 + rkn.

To solve this equation we use the Master theorem. By identifying the applicable case of
the Master theorem we conclude that the runtime T (n) is O(n log n).

21

3.2 Implementation of DNCTREE-K in Python

The DNCTREE-K algorithm has been implemented in Python closely following the steps
outlined in Section 3.1. In this section we will highlight some of the details of the im-
plementation. The code for DNCTREE-K is an addition to the extensive Python package by
Lars Arvestad implementing the DNCTREE algorithm. The package is publicly available at
https://pypi.org/project/dnctree/ and contains plenty of features and auxiliary func-
tions for handling sequences, distances and running the algorithm on various data. The
package also contains an implementation of neighbor joining.

The contribution by this project to the DNCTREE package is an implementation
of the DNCTREE-K algorithm. The code has been added as a single module that utilizes
functions and classes from the implementation of DNCTREE. We also provide a notebook
for unit testing some of the functionality of the implementation of DNCTREE-K. Efforts have
been made to include succinct, yet relevant comments, as well as informative docstrings in
the functions. The implementation of DNCTREE-K can be divided into the following parts.

• A slightly modified version of the implementation of NEIGHBOR-JOINING. The im-
plementation used in the DNCTREE package does not include edge weights for the
tree returned by the NEIGHBOR-JOINING function. Since we need edge weights when
calculating the distance from a sequence to the center vertex in Tcore we had to
augment the code for NEIGHBOR-JOINING.

• Code for calculating the center vertex of a tree.

• Code for splitting the tree Tcore at the center vertex c and extracting the correspond-
ing clades, as well as calculating the distances dsc for s ∈ Score.

• The DNCTREE-K algorithm, making use of above functions. The implementation fol-
lows tightly the procedure of Algorithm 3. As mentioned previously in Section 3.1
we directly utilize Equations 11 and 12.

• Unit tests of the new code.

The extension of NEIGHBOR-JOINING is relatively straightforward. Next we describe some
of the other parts of the implementation.

3.3 Calculating the Center Vertex

We use the Tree class of the DNCTREE package to represent trees. The internals of this class
uses a dictionary to map a vertex v to a list containing the neighbors of v. Calculating the
center vertex, or center vertices, is done through a helper function that returns the length
of a longest path from a vertex v to a leaf (via a specific edge starting at v). This function
uses recursion combined with memoization; a dictionary containing path lengths is passed
with each recursive call in order to avoid calculating the same quantity more than once.
In the case of two candidates for the center vertex, the code returns the one that happens
to be encountered first.

22

https://pypi.org/project/dnctree/

3.4 Obtaining Clades and Distances to the Center Vertex

Here we split a tree at the center vertex c and return three dictionaries: a mapping of a
leaf to its clade (a number in {0, 1, 2}), a mapping from a clade number to the list of leaves
in the clade, as well as a mapping from each taxa s (leaf) to the distance dsc. The distances
dsc are calculated recursively, starting from c and branching out towards the leaves.

In order keep track of distances, in general, we utilize the PartialDistanceMatrix
class of the DNCTREE package. This class uses dictionaries to store distances between
taxa, or any vertices for that matter. When asking the PartialDistanceMatrix object for
the distance between two taxa x and y, the distance will be returned immediately if it
has already been calculated. If the distance has not yet been calculated, an appropriate
distance function will be called (which depends on the input sequences). The distance
is then cached for fast retrieval. The PartialDistanceMatrix object is central to the
code and is passed between functions. This means that the number of cached distances
is constantly increasing. In particular, the PartialDistanceMatrix object is included in
the NEIGHBOR-JOINING call and is responsible for storing the edge weights. As new taxa,
or rather pseudotaxa or vertices are added, the PartialDistanceMatrix object ensures
that each new entry is given a unique identifier. Thus, the PartialDistanceMatrix object
will contain the edge weight between two vertices x and y of Tcore long after Tcore has
being discarded and served its purpose. The distances dsc that we calculate are added to
the PartialDistanceMatrix object. When we call DNCTREE-K recursively with the center
vertex c as part of the taxa, the distances dsc are therefore available.

3.5 Unit tests

We provide simple unit tests for the implemented functions. The input is a set of eight
taxa, T_0,. . . ,T_7, with handcrafted pairwise distances as well as a complete tree with
edge weights. The edge weights are given by

taxa_distances = [[0, 20, 50, 50, 100, 60, 50, 60],

[20, 0, 50, 50, 80, 40, 70, 40],

[50, 50, 0, 40, 50, 10, 80, 30],

[50, 50, 40, 0, 50, 50, 40, 50],

[100, 80, 50, 50, 0, 40, 50, 40],

[60, 40, 10, 50, 40, 0, 90, 20],

[50, 70, 80, 40, 50, 90, 0, 90],

[60, 40, 30, 50, 40, 20, 90, 0]]

The tree is the one illustrated in Figure 1. The diagram was generated with https:

//csacademy.com/app/graph_editor, which has been an invaluable website for quickly
drawing trees during the implementation of DNCTREE-K. From the distances above we see
that the distance between T_0 and T_4 is 100, but the sum of the edge weights between
the leaves T_0 and T_4 of the tree is only 71. Using the distance matrix above and the

23

 https://csacademy.com/app/graph_editor
 https://csacademy.com/app/graph_editor

edge weights of the tree, we run several of our functions and compare the output with the
manually expected output.

4 Evaluating DNCTREE-K

We present here an oversight of the results obtained through initial experiments designed
to examine the performance of DNCTREE-K when working with simulated data. In order to
exhibit a comparison between DNCTREE-K and DNCTREE-K, we have presented graphs side-
by-side with the results of DNCTREE-K consistently on the left-hand side, and DNCTREE on
the right. All results have been plotted using seaborn [38]. The K value noted in all graphs
represents in the graphs with DNCTREE-K both base case size and core size throughout all
tests (i.e. base case size = core size = K). In the case of DNCTREE, K represents the base
case size. In order to provide a measure on tree similarity, we use either the relative RF
distance and/or TMD (see Section 2.3). Please see Section 2.7 for details on how the data
for the different experiments was actually simulated.

4.1 Experimenting with Noisy Distance Data

We have described in section 2 how we constructed T̂ (with |S| = 128) shown in Figure 2.
For this experiment, we will let the parameter E vary from 0.05 up until 0.2, and let the
value ofK for both DNCTREE-K and DNCTREE vary from just 5 up to 35. Again,K represents
the base case size for DNCTREE and both the core size and base case size for DNCTREE-K

The results on the same data achieved with running NEIGHBOR-JOINING are also presented
in the same plot as NJ. We compare the inferred trees to the original topology of T̂ using
the relative RF distance in Figure 3 and using the more robust TMD in Figure 4.

Both Figures are presented as box plots indicating quartiles, and with the outliers
removed. These outliers were determined by seaborn using a method that is a function of
the inter-quartile range. Given that the shortest branch length in T̂ is 0.1, we know that if
Atteson’s holds for the algorithm, when E ≤ 0.05, then the true tree T̂ should be returned
(i.e. both the RF-distance and TMD between T̂ and an inferred tree should be 0). We can
see indeed that when E = 0.05,DNCTREE returns T̂ for all base case sizes (K) tested, and
NEIGHBOR-JOINING returns T̂ . However, we see that DNCTREE-K is not returning T̂ consis-
tently in any case, though we are more likely to return T̂ as K increases. We can therefore
conclude that, given that we have correctly implemented DNCTREE-K, Atteson’s conver-
gence radius does not hold for DNCTREE-K. However, what is interesting to note, however,
is that as E increases, DNCTREE-K demonstrates a level of tree accuracy very much on
par with NEIGHBOR-JOINING when K = 25 and K = 35. This is confirmed by both plots
showing the RF distance, and also the more robust TMD. The original DNCTREE, however,
suffers significantly, with accuracy deteriorating rapidly compared to NEIGHBOR-JOINING

(and DNCTREE-K) as E increases.

24

0.05 0.075 0.1 0.125 0.15 0.2
E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
lR

F
RF distance

Tool
K = 5
K = 15
K = 25
K = 35
NJ

0.05 0.075 0.1 0.125 0.15 0.2
E

0.0

0.2

0.4

0.6

0.8

Re
lR

F

RF distance
Tool

K = 5
K = 15
K = 25
K = 35
NJ

Figure 3: Testing on data generated from simple trees (see Section 4.1) with an added
and varied error term E and using the popular but easily saturated relative RF distance
for tree comparison. Note that DNCTREE-K is on the left hand side, and DNCTREE on the
right.

4.2 Experimenting with Varying MSA Width

In the second test, we looked at how the accuracy of our inferred trees depended on the
length of our taxa sequences in S. For this experiment we simulated sequences of varying
length (from 200 until 1000), using the process described in Section 2.7.2 We then vary
base case and (for DNCTREE-K) core size and compare our inferred trees to the relevant
T̂ using just the relative RF distance this time. For each parameter combination we made
100 replicates, again presenting the results using the box plots in Figure 5. Note the plot
with DNCTREE-K had issues with a bug resulting in consistent abnormal coloring, but given
the clarity of results for all values of K tested we nonetheless have included it. In general,
as can be expected, our inferred trees have greater accuracy when based on sequences
that are longer (i.e. we have a greater MSA width). We can also see that with DNCTREE-K

for all values of K, the inferred trees are strikingly more accurate than those inferred
with DNCTREE. In fact, the results of the experiment indicates that for all values of K we
achieve a level of tree inference accuracy on par with NEIGHBOR-JOINING.

4.3 Experimenting Varying Sequence Set Sizes

In the final experiment, we once again simulated sequences following the process de-
scribed in Section 2.7.2. This time, however, we kept the MSA width consistently at 500,
but let the leaf size range from 100 up to a maximum size of 3000. For this experiment we
were interested not noly in seeing how our inferred tree accuracy would be for larger se-
quence set sizes (and varying base case and core sizes) but also in seeing how the number
of pair-wise distances calculated would scale as |S|andK increased. Again, just as with the
previous experiments, we let K represent the base case and core size for DNCTREE-K and
the base case size for DNCTREE. Results of the experiment are presented in Figure 6 which

25

0.05 0.075 0.1 0.125 0.15 0.2
E

0

100

200

300

400

500

TM
 d

ist
Tree matching distance

Tool
K = 5
K = 15
K = 25
K = 35
NJ

0.05 0.075 0.1 0.125 0.15 0.2
E

0

100

200

300

400

500

600

700

800

TM
 d

ist

Tree matching distance
Tool

K = 5
K = 15
K = 25
K = 35
NJ

Figure 4: Testing on data generated from simple trees (see Section 4.1) with an added and
varied error term E but this time using the more robust TMD to compare our inferred trees
to T̂ . Note that DNCTREE-K is on the left hand side, and DNCTREE on the right. Quartiles
are indicated, and outliers have been removed.

200 400 600 800 1000
MSA width

0.05

0.10

0.15

0.20

0.25

Re
l R

F

K = 20
K = 40
K = 60
NJ

200 400 600 800 1000
MSA width

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
l R

F

K = 20
K = 40
K = 60
NJ

Figure 5: Testing on simulated sequences with MSA width varying from 200 up to 1000.
Results from DNCTREE-K on left, and DNCTREE on the right. K indicates both base case size
and core size for DNCTREE-K and the base case size for DNCTREE. Quartiles are indicated,
and outliers have been removed.

uses the relative RF distance (denoted RF in the plot) as a measure of the accuracy of our
inferred trees, and the number of pairwise distances calculated is presented in Figure 7.
Once again, the trees inferred with the new DNCTREE-K are considerably more accurate
compared to DNCTREE even at very low values of K. Interestingly, we can also note that
whereas in order to achieve greater accuracy when using DNCTREE one requires a great
value of K, our experiments do not necessarily indicate that this holds for DNCTREE-K. In
fact, in Figure 6 we see that that we reach very good accuracy for all of our sequence set
sizes with DNCTREE-K and a base case/core size of K = 100 indicating that this may be the
value for which, given our data, we are able to create partitions of a higher quality leading
to inferred trees of good accuracy. Unsurprisingly, the number of pairwise distances cal-
culated is considerably higher for DNCTREE-K, yet as we showed in Section 3.1.3 we have
the same asymptotic time complexity as the original DNCTREE, meaning we are still doing

26

0 500 1000 1500 2000 2500 3000
#leaves

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070
RF

K = 50
K = 100
K = 150
K = 200

0 500 1000 1500 2000 2500 3000
#leaves

0.1

0.2

0.3

0.4

0.5

RF

K = 50
K = 100
K = 150
K = 200

Figure 6: Testing on simulated sequences with MSA width of 500 and leaf-count varying
from 100 up to 3000. Results from DNCTREE-K (shown on left) and DNCTREE (shown on
right). Note the RF value is in fact the relative RF value described in Section 2.3. The
mean relative RF distance for each combination of K and leaf count (represented as a
specific color in key) is shown in bold, with the corresponding dotted lines indicating the
standard error.

considerably less work than required for NEIGHBOR-JOINING, but, as demonstrated here,
capable of inferring trees with comparable accuracy.

5 Discussion

In section 5.1 we will offer a general summary of the conclusions reached in this thesis
regarding the performance of DNCTREE-K and how it compares to both NEIGHBOR-JOINING

and DNCTREE. We will then conclude with Section 5.2 in which we give a brief overview
of a few aspects and extensions of the ideas laid out here that may be interesting to
investigate in the future.

5.1 General Summary of Results

The primary intention of this thesis was to develop, implement, and investigate a random-
ized divide-and-conquer algorithm for phylogenetic tree inference that was based on, but
more accurate, than Arvestad’s original DNCTREE. Considering the results of the experi-
ments run here with simulated data, we have indeed done this. Not only did we show,
given the data we have worked with, that DNCTREE-K infers trees with more accuracy
than DNCTREE but, even at a relatively low K value (representing both base case and core
size) our trees inferred with DNCTREE-K have a similar accuracy to those inferred with
NEIGHBOR-JOINING even when working with noisy data, across varying MSA widths, and
for larger data sets. And while the number of pairwise distances required is more than for
DNCTREE, we have also shown in Section 3.1.3 that DNCTREE-K has the same asymptotic
time complexity as DNCTREE.

Perhaps one of the most interesting results shown in Figure 6 is that we seem to

27

0 500 1000 1500 2000 2500 3000
#leaves

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
n

1e6
K = 50
K = 100
K = 150
K = 200

0 500 1000 1500 2000 2500 3000
#leaves

0

50000

100000

150000

200000

n

K = 50
K = 100
K = 150
K = 200

Figure 7: Side by side comparison of the number of pairwise distances computed during
tree inferences over varying leaf sizes. Again, we have DNCTREE-K on the left with K =
base case size = core size and DNCTREE on the left with K = base case size. The vertical
bars indicate standard error.

have extremely good performance with a base case and core size of K = 100 indicating
that the mantra “bigger is better” which was certainly the case in the original DNCTREE,
does not necessarily hold for DNCTREE-K. It may be that this is the core size value at which
our partitioning method is capable of creating subsets of high quality, but to investigate
this would require much more extensive testing.

Unfortunately, what also doesn’t seem to hold for DNCTREE-K based on Figures 3
and 4, is the Atteson’s convergence radius.6 We see that when E = 0.05, T̂ is recovered by
NEIGHBOR-JOINING and DNCTREE (regardless of base case size K). Disregarding this, how-
ever, given the otherwise similar accuracy results when compared to NEIGHBOR-JOINING

despite considering we are getting away with only a fraction of the work, we must con-
clude that DNCTREE-K in initial testing on simulated data seems to exhibit exciting po-
tential to be a scalable alternative to NEIGHBOR-JOINING without sacrificing too much in
terms of accuracy.

5.2 Continued Investigation

Undoubtedly, clever improvements can be introduced to the straight-forward Python im-
plementation of DNCTREE-K that we present here.

It was mentioned in [15] that in the case that substitutions rates were higher, and
more varied across lineages for a given taxa set, BIONJ (mentioned briefly in our introduc-
tion) had considerably more topological accuracy compared to NEIGHBOR-JOINING. Per-
haps one could replace the standard NEIGHBOR-JOINING functions utilized in DNCTREE-K

with those modified versions that take variance into account used in BIONJ and see how
the performance of this modified DNCTREE-K compares to our original DNCTREE-K pre-
sented here.

6We assume, based on careful review, that we have implemented DNCTREE-K correctly.

28

It would also be of interest to conduct more extensive experiments than those run
for this thesis. For example, a good starting point for a closer and more comprehensive
comparison of NEIGHBOR-JOINING and DNCTREE-K could be to run NEIGHBOR-JOINING on
the simulated data created for the experiment in Section 4.3. This would of course how-
ever require considerably more computational power than what was available during the
writing of this thesis, or at the very least a considerably greater capacity for patience.

The fact that DNCTREE-K greatly reduces the number of pairwise distances calcu-
lated, just as DNCTREE does, would also mean that, as Arvestad suggested for DNCTREE in
[1] we would be able to consider more computationally heavy but accurate distance func-
tions. And, if one is more concerned with speeding up things, such as would be required
for working with data sets of extreme size, perhaps it would be interesting to look into
finding a way to modify and combine DNCTREE-K so that it instead works with alignment-
free estimations such as the ones mentioned in [20] or [3]. An experiment similar to the
one in Section 4.3 (but with even larger sequence set sizes) could then be used to com-
pare this modification with a modified version of NEIGHBOR-JOINING also working with
alignment-free estimations. Such a modification of NEIGHBOR-JOINING has already been
initially studied in [20].

6 Availability

The source code for DNCTREE-K is available in Lars Arvestad’s github repository and found
in the branch AMY at https://github.com/arvestad/dnctree. Please note that this reposi-
tory may be private.

7 Acknowledgments

Immense thanks is due to Lars Arvestad, not only for his patience and expert guidance
during the development of the project, but also for the use of modules he developed for
testing his original DNCTREE algorithm, the permission to reuse his plots showing results
form his original testing with DNCTREE, as well as the allowance of hijacking his snakefiles
originally written for testing.

29

References

[1] Arvestad, Lars. Scalable distance-based phylogeny inference using divide-and-
conquer, October 16, 2023. DOI:10.1101/2023.10.11.561902

[2] Atteson, K. The Performance of Neighbor-Joining Methods of Phylogenetic Recon-
struction . Algorithmica 25, 251–278 (1999). DOI: 10.1007/PL00008277

[3] Marcin Bogusz, Whelan, S. Phylogenetic Tree Estimation With and Without Align-
ment: New Distance Methods and Benchmarking, Systematic Biology, Volume 66,
Issue 2, March 2017, Pages 218–231. DOI: 10.1093/sysbio/syw074

[4] Bryant, D. On the Uniqueness of the Selection Criterion in Neighbor-Joining. Journal
of Classification 22, 3–15 (2005). DOI: 10.1007/s00357-005-0003-x

[5] Clausen, Philip T L C. Scaling neighbor joining to one million taxa with dynamic
and heuristic neighbor joining, Bioinformatics, Volume 39, Issue 1, January 2023,
btac774, https://doi.org/10.1093/bioinformatics/btac774

[6] Conant, G.C. and Wolfe, K.H. (2008) Turning a Hobby into a Job: How Du-
plicated Genes Find New Functions. Nature Reviews Genetics, 9, 938-950. DOI:
10.1038/nrg2482

[7] Chatzou M, Magis C, Chang JM, Kemena C, Bussotti G, Erb I, Notredame C. Multi-
ple sequence alignment modeling: methods and applications. Brief Bioinform. 2016
Nov;17(6):1009-1023. DOI: 10.1093/bib/bbv099.

[8] da Fonseca, R.R.; Albrechtsen, A.; Espregueira Themudo, J.G.; Ramos-Madrigal,
J.; Sibbesen, J.A.; Maretty, L.; Zepeda-Mendoza, M.L.; Campos, P.F.; Heller, R.
and Pereira, R.J. (2016) Next-generation biology: Sequencing and data anal-
ysis approaches for non-model organisms. Marine Genomics, 6, pp.3-13. DOI:
10.1016/j.margen.2016.04.012

[9] Edgar, RC. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. DOI:
10.1093/nar/gkh340

[10] Efron B, Halloran E, Holmes S. Bootstrap confidence levels for phyloge-
netic trees. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13429-34. DOI:
10.1073/pnas.93.23.13429

[11] Elias I, Lagergren J. Fast computation of distance estimators. BMC Bioinformatics.
2007 Mar 13;8:89. DOI: 10.1186/1471-2105-8-89

[12] Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, Analysis, and Visualization
of Phylogenomic Data. Mol Biol Evol. 2016 Jun;33(6):1635-8. DOI: 10.1093/mol-
bev/msw046

30

[13] Gascuel, O. and Steel, M. Neighbor-Joining Revealed, Molecular Biology and Evolu-
tion, Volume 23, Issue 11, November 2006, Pages 1997–2000, DOI: 10.1093/mol-
bev/msl072

[14] Gascuel, O. and Steel, M. A ’stochastic safety radius’ for distance-based tree recon-
struction. Algorithmica, 74:1386-1403, 2016. DOI: 10.48550/arXiv.1411.4106

[15] Gascuel, O. BIONJ: an improved version of the NJ algorithm based on a simple model
of sequence data. Mol Biol Evol. 1997 Jul;14(7):685-95. DOI: 10.1093/oxfordjour-
nals.molbev.a025808

[16] Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Syst Biol. 2003 Oct;52(5):696-704. DOI:
10.1080/10635150390235520

[17] Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler
A, Lanfear R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic In-
ference in the Genomic Era. Mol Biol Evol. 2020 May 1;37(5):1530-1534. DOI:
10.1093/molbev/msaa015

[18] Kannan, Sampath K., Eugene L. Lawler, Tandy J. Warnow, Determining the Evolu-
tionary Tree Using Experiments, Journal of Algorithms, Volume 21, Issue 1, 1996,
Pages 26-50. DOI: 10.1006/jagm.1996.0035

[19] Khan MA, Elias I, Sjölund E, Nylander K, Guimera RV, Schobesberger R,
Schmitzberger P, Lagergren J, Arvestad L. Fastphylo: fast tools for phylogenetics.
BMC Bioinformatics. 2013 Nov 20;14:334. DOI: 10.1186/1471-2105-14-334

[20] Kolekar P, Kale M, Kulkarni-Kale U. Alignment-free distance measure based on re-
turn time distribution for sequence analysis: applications to clustering, molecu-
lar phylogeny and subtyping. Mol Phylogenet Evol. 2012 Nov;65(2):510-22. DOI:
10.1016/j.ympev.2012.07.003. Epub 2012 Jul 20. PMID: 22820020

[21] Shuying Li, Dennis K. Pearl and Hani Doss (2000) Phylogenetic Tree Construction
Using Markov Chain Monte Carlo, Journal of the American Statistical Association,
95:450, 493-508, DOI: 10.1080/01621459.2000.10474227

[22] Lin, Yu, Fei, Hu Tang, Jijun and Moret, Bernard, M.E. Maximum Likelihood Phylo-
genetic Reconstruction from High-Resolution Whole-Genome Data and a Tree of 68
Eukaryotes. Biocomputing 2013: 285-296. DOI: 10.1142/9789814447973_0028

[23] Lin, Y., Rajan, V., Moret, B.M.E. (2011). A Metric for Phylogenetic Trees Based on
Matching. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and
Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_21

31

[24] Ly-Trong, Nhan, Suha Naser-Khdour, Robert Lanfear, Bui Quang Minh, AliSim: A
Fast and Versatile Phylogenetic Sequence Simulator for the Genomic Era, Molecular
Biology and Evolution, Volume 39, Issue 5, May 2022, msac092. DOI: 10.1093/mol-
bev/msac092

[25] Mihaescu, R., Levy, D. & Pachter, L. Why Neighbor-Joining Works. Algorithmica 54,
1–24 (2009).DOI: 10.1007/s00453-007-9116-4

[26] Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster
J, Lee S, Twardziok SO, Kanitz A, Wilm A, Holtgrewe M, Rahmann S, Nahnsen S,
Köster J. Sustainable data analysis with Snakemake. F1000Res. 2021 Jan 18;10:33.
DOI: 10.12688/f1000research.29032.2

[27] Pardi, F., Gascuel, O. Distance-based methods in phylogenetics. Richard M. Kliman.
Ency- clopedia of Evolutionary Biology, Elsevier, pp.458-465, 2016, 1st Edition, 978-
0-12-800426-5. lirmm- 01386569

[28] Pardi, F., Guillemot, S. and Gascuel, O. Robustness of Phylogenetic Inference
Based on Minimum Evolution. Bull. Math. Biol. 72, 1820–1839 (2010). DOI:
10.1007/s11538-010-9510-y

[29] Price, Morgan N., Paramvir S. Dehal, Adam P. Arkin, FastTree: Computing Large Min-
imum Evolution Trees with Profiles instead of a Distance Matrix, Molecular Biology
and Evolution, Volume 26, Issue 7, July 2009, Pages 1641–1650, DOI: 10.1093/mol-
bev/msp077

[30] Robinson, D. F. and Foulds, L.R. Comparison of phylogenetic trees. Molecular Biology
and Evolution, 26(7):1641-50, 1981.

[31] Saitou, N, and Nei, M. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406-25. DOI: 10.1093/oxford-
journals.molbev.a040454

[32] Steel, Mike and Penny, David. Distributions of Tree Comparison Metrics–
Some New Results. June 1993 Systematic Biology 42(2):126-141.
DOI:10.1093/sysbio/42.2.126

[33] Studier, J. A.; Keppler, K. J. (November 1988). "A note on the neighbor-joining
algorithm of Saitou and Nei". Molecular Biology and Evolution. 5 (6): 729–31.
DOI:10.1093/oxfordjournals.molbev.a040527

[34] Turakhia, Y., Thornlow, B., Hinrichs, A. et al. Pandemic-scale phylogenomics re-
veals the SARS-CoV-2 recombination landscape. Nature 609, 994–997 (2022). DOI:
10.1038/s41586-022-05189-9

32

[35] Van de Peer Y, Salemi M. Phylogenetic inference based on distance methods. In:
Lemey P, Salemi M, Vandamme A-M, eds. The Phylogenetic Handbook: A Practi-
cal Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd ed. Cambridge:
Cambridge University Press; 2009:142-180. DOI:10.1017/CBO9780511819049.007

[36] Weiwen, James Barbetti, Thomas Wong, Bryan Thornlow, Russ Corbett-Detig, Yatish
Turakhia, Robert Lanfear, Bui Quang Minh, DecentTree: scalable Neighbour-Joining
for the genomic era, Bioinformatics, Volume 39, Issue 9, September 2023, btad536,
DOI: 10.1093/bioinformatics/btad536

[37] Whelan, Simon and Goldman, Nick. A General Empirical Model of Protein Evolu-
tion Derived from Multiple Protein Families Using a Maximum-Likelihood Approach,
Molecular Biology and Evolution, Volume 18, Issue 5, May 2001, Pages 691–699.
DOI: 10.1093/oxfordjournals.molbev.a003851

[38] Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open
Source Software, 6(60), 3021, DOI: 10.21105/joss.03021

[39] Xi, Jing & Xie, Jin & Yoshida, Ruriko & Forcey, Stefan. (2015). Stochastic safety
radius on Neighbor-Joining method and Balanced Minimal Evolution on small trees.
DOI: 10.48550/arXiv.1507.08734

[40] Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nat Rev Genet.
2012 Mar 28;13(5):303-14. DOI: 10.1038/nrg3186. PMID: 22456349

[41] Yang S, Yang H, Grisafi P, Sanchatjate S, Fink GR, Sun Q, Hua J. The BON/CPN gene
family represses cell death and promotes cell growth in Arabidopsis. Plant J. 2006
Jan;45(2):166-79. DOI: 10.1111/j.1365-313X.2005.02585.x

33

