
Kandidatuppsats i datalogi
Bachelor Thesis in Computer Science

Isomorphism testing of level-1 networks
in linear time using the AHU algorithm.
Isomorfitestning av level-1 nätverk i linjär tid med hjälp av AHU algoritmen.

Anton Alfonsson

Handledare: Marc Hellmuth
Examinator: Lars Arvestad
Inlämningsdatum: August 29, 2024

1

Abstract

The graph isomorphism problem is a fascinating problem due it being a well known
problem in NP for which we do not know if it belongs to either P or the class of NP-
complete problems. There do however exist polynomial time algorithms for checking
isomorphism of certain subsets of graphs. One of those subsets is rooted trees, where
the AHU algorithm for checking isomorphism of rooted trees has a linear runtime. The
subset of level-1 networks is a bit more complex than that of rooted trees. They can
very roughly be described as rooted trees where branches are allowed to merge together
again creating cyclic blocks in the network, but only in such a way that those blocks
do not overlap. This paper presents a linear time complexity method for transforming
a level-1 network into a labeled rooted tree. The transformation is done in such a way
that two of these trees are isomorphic if and only the networks they were created from
are isomorphic. This way the problem of checking for isomorphism of level-1 networks
is reduced to that of checking for isomorphism of their corresponding labeled rooted
trees, which can be done in linear time with the AHU algorithm.

Sammanfattning

Grafisomorfiproblemet är ett fascinerande problem då det känt tillhör NP men inte
är känt att tillhöra varken P eller de NP-fullständiga problemen. Om man inför be-
gränsningar på vilken typ av grafer som ska undersökas så existerar dock algoritmer
med polynomiell körtid för att avgöra om graferna isomorfa. En sådan begränsad typ
av grafer är rotade träd, för vilka AHU algoritmen kan avgöra om två rotade träd är
isomorfa i linjärtid. En något mer komplex typ av grafer är level-1 nätverk. Dessa
kan slarvigt beskrivas som rotade träd där grenar tillåts växa ihop igen så att cykliska
block uppstår i nätverket, men bara på ett sådant sätt att dessa block inte överlappar.
Denna uppsats presenterar en linjärtidsmetod för att transformera ett level-1 nätverk
till ett uppmärkt rotat träd. Transformationen görs på ett sådant sätt att två av
dessa träd är isomorfa om och endast om nätverken de skapades ifrån är isomorfa. På
detta sätt reduceras problemet att avgöra om två level-1 nätverk är isomorfa till att
avgöra om två uppmärkta rotade träd är ismorfa, vilket kan göras i linjärtid med AHU
algoritmen.

2

Contents

Abstract . 2
Sammanfattning . 2

1 Introduction 4
1.1 Graph isomorphism problem . 4
1.2 The AHU algorithm . 4
1.3 Level-1 networks . 6
1.4 Isomorphism checking of level-1 networks and planar graphs 6
1.5 Goal of this paper . 7
1.6 Outline . 7

2 Preliminaries 8
2.1 DAGs and Level-1 networks . 8
2.2 The AHU algorithm . 11

3 Isomorphism checking of level-1 networks in linear time. 12
3.1 Untangling a level-1 network . 12
3.2 Time complexity of solution . 26

4 Conclusion 30

3

1 Introduction

1.1 Graph isomorphism problem
The graph isomorphism problem is of theoretical interest due to it being one of few
problems in NP that is not known to belong to either P or the class of NP-complete
problems, while also having practical applications in for example bio chemistry [1,
2]. Roughly speaking the graph isomorphism problem is the problem of determining
whether two different graphs have the same underlying structure, and two graphs have
the same structure if it is possible to move the nodes around in one of the graphs to
make it look like the other graph without adding or removing any edges.

While the complexity class of the graph isomorphism problem is not known, there
exists polynomial time algorithms for determining if two graphs are isomorphic if you
restrict the class of input graphs to some subset of graphs such as rooted trees [3] or
planar graphs [4].

1.2 The AHU algorithm
When the graph isomorphism problem is restricted to rooted trees as the input graphs,
a linear time algorithm has been known since 1974. The AHU algorithm is an algorithm
for determining if two rooted trees are isomorphic that was first introduced in [3] as
an example application for lexicographical sorting. The algorithm is named after its
creators Aho, Hopcraft and Ullman. A formal proof of the correctness and linear
runtime of the algorithm can be found in [5]. For an in depth explanation of how and
why the algorithm works the reader is encouraged to look at [6], but here follows a
rough overview.

For two rooted trees of height h, every vertex is first marked with it’s level such that
the roots are the only vertices with level h, their children have level h− 1 and so on.
Since the vertices on the final level can not have any children, level 0 will be filled
with nothing but leaves. All leaves in the trees are given the same initial label "()",
an empty tuple. The algorithm then checks one level at a time in both trees and make
sure the multiset of labels in both trees are equal. In practice this is usually done with
lexicographically sorted lists instead of multisets, though it has been shown in [7] that
products of prime numbers can instead be used while retaining linear time complexity.
For level 0 the algorithm just checks if the trees have an equal number of leaves on
that level and then moves on to the next level.

4

On level 1 any non-leaf vertex is given an initial label determined by the labels of
it’s children, such that if a vertex v has children c1, c2, ..., cn lexicographically ordered
based on their labels l1, l2, ..., ln, then v has initial label (l1, l2, ..., ln). If the initial
labels are the same on this level in both trees, the initial labels are compressed using a
compression function such that whichever initial label on the level is the lowest (with
regard to lexicographical ordering) corresponds to the compressed label (0), the second
to lowest initial label corresponds to the compressed label (1) and so on. Every vertex
on the level is then assigned the compressed label that corresponds to its initial label.
The process then repeats for the next level, using the compressed labels of the children
to create the initial labels for the new level. This process continues until either two
levels have non-equal multisets of labels, in which case the trees are not isomorphic, or
until the roots have been assigned the same labels, in which case the trees are isomor-
phic. While the compression step might seem counter intuitive or overly complicated,
it’s necessary to achieve linear runtime in the algorithm.

At the end of the section in [3] where the algorithm is introduced the authors also note
that it can be applied to labeled trees by appending the label of each vertex to the
tuples assigned to the vertices during the runtime of the algorithm.

Figure 1.1: A graph where the vertices of each level are marked with the initial labels
they get assigned during runtime of the AHU algorithm when implemented
with lexicographically sorted lists. Next to the graph is shown which com-
pressed label that corresponds to each initial label at every level.

5

1.3 Level-1 networks
While rooted trees are a commonly occurring type of graph, sometimes more general
types of networks are needed. An example is when using phylogenetic trees to model
evolutionary history, but evolutionary events such as horizontal gene transfer and
hybridisation can’t be modelled without allowing some nodes in the graph to have more
than one parent [8]. To solve this it’s instead better to use a phylogenetic network [9].
While some literature restricts the term phylogenetic network to only include so-called
binary networks (e.g. [9] and [10]), in this paper we will not impose this restriction,
any results will however still generalize to binary phylogenetic networks as well.

In [9] they also introduce a classification of phylogenetic networks based on the max-
imum number of nodes with more than one parent (called hybrid nodes) that exist
within any biconnected component or block of the network. A network is called a
level-k1 network based on this number. So a rooted tree has zero hybrid vertices and
is a level-0 network, while a network where every biconnected component contains at
most one hybrid-vertex is a level-1 network. Level-1 networks are useful in biology,
and modelling your data such that the level of the networks will be restricted to level-1
allows the use of effective software tools for inferring a network from the data [11].

1.4 Isomorphism checking of level-1 networks and
planar graphs

In [4] the authors show that it’s possible to create a linear time algorithm to check
for isomorphism of planar graphs. It has also been shown in [10] that binary level-
1 networks are always (outer) planar. Therefore, any algorithm that can check for
isomorphism of planar graphs could also be used to check for isomorphism of binary
level-1 networks.
To demonstrate that it’s possible for all all level-1 networks to check for isomorphism
in linear time, one approach would be to show that all level-1 networks are planar and
not just binary ones. However, in this paper this approach will not be used. One of
the main reasons for this is that the linear time algorithm for isomorphism checking in
[4] is, in the authors’ own words, "mostly theoretical, demonstrating existence rather
than providing a practical algorithm" due to a large constant factor in the running
time. A more practical quadratic time algorithm for isomorphism testing of planar
graphs is given in [12].

The aim here is to provide a practical linear time algorithm that works for all level-1
networks, thus avoiding the reliance on planarity arguments.

1In the original paper they refer to it as a level-f network.

6

1.5 Goal of this paper
In this paper the goal is to introduce a practical algorithm for checking isomorphism of
level-1 networks with a linear time bound. That is, for two level-1 networksN = (V,E),
and N ′ = (V ′, E′), the runtime of the algorithm is in O(|V | + |E|). To achieve this
goal, a method of converting a level-1 network N into a rooted labeled tree TN is
given such that N is isomorphic to a network N ′ if and only if TN is isomorphic to
TN ′ . I will then show that the size of TN is bounded linearly by the size of N and
the construction can be done in linear time. This makes it so that the problem of
checking isomorphism of two level-1 networks is reduced to the problem of checking
isomorphism of their corresponding labeled trees, which can be done in linear time
with the AHU algorithm.

1.6 Outline
Here follows a brief description of the organization of this paper. Section 2 states
the definitions needed for the rest of the paper. It contains definitions for directed
graphs, networks, and isomorphism of graphs and labeled networks. In section 3 the
correctness and time complexity bound of the algorithm is shown. It first presents
the method for converting a level-1 network N into it’s corresponding labeled tree
(TN , tN). That is then followed by proofs that two output trees are isomorphic if
and only if the input networks are isomorphic. Proofs are also given that the size of
the output trees are linearly bound by the size of the input networks and that the
transformation can be done in linear time. In section 4 the results and possible ideas
for future investigation are discussed.

7

2 Preliminaries

In this chapter we will introduce the concepts of DAGs, level-1 networks, rooted trees
and the AHU algorithm.

2.1 DAGs and Level-1 networks
A directed graph G = (V,E) consists of a vertex set V (G) := V and an edge set
E(G) := E ⊆ V ×V \{(v, v) : v ∈ V }. Every directed graph G also has a corresponding
undirected graph G′ = (V,E′) where E′ = {{u, v} ⊆ V | (u, v) ∈ E}. For the rest of
this paper the word graph is used to mean directed graph unless otherwise specified.

For an edge (u, v) ∈ E in a graph G = (V,E), the vertex u is called the tail of the
edge and v is called the head of the edge. Both u and v are said to be incident with
(u, v). The degree of a vertex v ∈ V , degG(v) is the number of edges e ∈ E such that
v is incident with e. The indegree of a vertex v ∈ V , indegG(v) is the number of edges
e ∈ E where v is the head of e, and the outdegree of v, outdegG(v), is the number of
edges e ∈ E where v is the tail of e. The subscript G is dropped when it’s clear from
context in what graph the degree is counted.

A path P = v0 ⇝ vn in a graph G = (V,E) is a sequence of vertices v0, v1, v2, ..., vn ∈ V
such that (vi, vi+1) ∈ E for every i ∈ {0, 1, 2, ..., n−1}, and for j, k ∈ {0, 1, 2, ..., n−1},
if j ̸= k then vj ̸= vk, and vj ̸= vn for j ̸= 0. The last condition allows for the final
vertex and the first vertex to be the same, but no other repeats of vertices are allowed.
A path v0, v1, ...vn has length n. A cycle is a path v ⇝ v of length at least 2. A graph
without cycles is called acyclic. For every vertex there is a trivial path v ⇝ v from v
to v of length zero. For a path P = v0, v1, ..., vn, the path P ′ = vi, vi+1, ..., vi+k such
that i+ k ≤ n and i ≥ 0 is a subpath of P .

Subgraph

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

For a graph G = (V,E) and a subset X ⊆ V of the vertex set, the induced subgraph
G[X] = (X,E′) is the graph with vertex set X and edge set E′ = {(u, v) ∈ E | u ∈
X and v ∈ X}.

8

Connectedness

A graph G = (V,E) is connected if for every pair of vertices u, v ∈ V there is a
path u ⇝ v in the corresponding undirected graph G′. The graph is biconnected
if it’s connected and, for every set X = V \ {v} where v is some vertex in V , the
induced subgraph G[X] is connected. Graphs with only a single vertex are considered
biconnected.
A connected component (also referred to as just a component) C = (V ′, E′) of a graph
G is an inclusion-maximal connected induced subgraph G[V ′]. That is, it is connected
and for any set V ′′ such that V ′ ⊂ V ′′ ⊆ V , the induced subgraph G[V ′′] is not
connected.
A biconnected component B = (V ′, E′) is an inclusion-maximal biconnected induced
subgraph. A biconnected component is also called a block. A block with more than
one edge is called a non-trivial block.

Network

A DAG is a directed acyclic graph. A Network N is a DAG N = (V,E) with a vertex
ρ ∈ V called the root such that indeg(ρ) = 0, and no other vertex has indegree zero.
In a network, a vertex v is called a tree-vertex if indeg(v) = 1 and outdeg(v) > 0,
a hybrid-vertex if indeg(v) > 1, and a leaf if outdeg(v) = 0.1 If a network has no
hybrid-vertices it’s called a rooted tree.
In a network N = (V,E), if there is an edge (u, v) ∈ E, then u is called a parent of v,
and v is a child of u.
If for vertices u, v ∈ V there is a path u⇝ v then u is called an ancestor of v, and v is
a descendant of u. If it’s neither the case that u is an ancestor of v nor v is a ancestor
of u, then u and v are incomparable.

Lemma 2.1. For a network N = (V,E) with root ρ, for every vertex v ∈ V there is
a path ρ⇝ v.

Proof. Since ρ is the only vertex with indegree 0 in N , it must either be the case that
v = ρ (in which case we know that we have the trivial path ρ⇝ ρ) or v has a parent
u in N . We then know that either u = ρ or u will also have parent w in N . This
argument can then be repeated for w, but since N is acyclic no vertex can be a parent
to one of it’s ancestors, so repeating will eventually encounter a vertex whose parent
is ρ since N is finite.

Lemma 2.2. Every block B in a network N has a unique vertex ρB such that ρB is
the only vertex in B with indegB(ρB) = 0.

For a proof of this, refer to Lemma 8 in [13].

Corollary 2.3. Every block B in a network N is a network.

Proof. Since N is a DAG and every block B is a subgraph of N , it follows that every
block B is a DAG, and since every block has a unique root ρB it also follows that
every block B is a network.
1Note that a hybrid-vertex can be a leaf.

9

Level-1 Networks

A Level-k network is a network N = (V,E) such that every block B in N contains at
most k hybrid-vertices distinct from ρB . In particular, a level-1 network is a network
N such that every non-trivial block B in N contains at most one hybrid-vertex ηB
distinct from ρB . Here follows some properties of non-trivial blocks in level-1 networks
that will be used for the proofs in this paper. There will be extensive references to
[13] for proofs of these properties.

Lemma 2.4. For a level-1 network N with distinct non-trivial blocks B and B′, if
there is a vertex v ∈ V (N) such that v ∈ V (B) and v ∈ V (B′), then v ∈ {ρB , ρB′}.

For a proof of this refer to lemma 9 in [13].

Lemma 2.5. Every non-trivial block B in a level-1 network N contains exactly one
hybrid-vertex ηB distinct from ρB.

Proof.
In a non-trivial block B there must be some vertex v ∈ V (B) such that outdegB(v) = 0,
otherwise B would contain a directed cycle. From the section defining directed acyclic
graphs in [13] we can see that these vertices with outdegree zero in B will be hybrid
vertices. From the definition of a level-1 network we have that a non-trivial block
B in a level-1 network can have at most one hybrid-vertex distinct from ρB , and
we just noted that every non-trivial block B must have at least one hybrid-vertex v
with outdegB(v) = 0. Since outdegB(ρB) ̸= 0 this means that we have exactly one
hybrid-vertex distinct from ρB in B.

For a non-trivial block B in a level-1 network N , the vertex ηB will be referred to as
its designated hybrid or unique hybrid.

Lemma 2.6. For distinct non-trivial blocks B and B′ in a level-1 network N , the
designated hybrids ηB and ηB′ are distinct.

Proof. From lemma 2.4 we get that if we have some network N with non-trivial blocks
B and B′ and some vertex v ∈ V (N) such that v = ηB = ηB′ , then it must also be
the case that v = ρB or v = ρB′ . But since ηB ̸= ρB and ηB′ ̸= ρB′ this is impossible.
So we can’t have distinct non-trivial blocks B and B′ in N that share the same vertex
as their designated hybrids.

Since every non-trivial block in a level-1 network must have a designated hybrid and
two blocks can not share the same designated hybrid we get the following corollary.

Corollary 2.7. The number of non-trivial blocks B in a level-1 network N = (V,E)
will be bound by |V |.

We define the inner vertices B0 of a block B in a level-1 network as B0 = V (B) \
{ρB , ηB}.

10

Isomorphism and labeled networks

Two networks N = (V,E) and N ′ = (V ′, E′) with roots ρ and ρ′ are isomorphic,
written N ≃ N ′, if there is a bijection ϕ : V → V ′ such that:

• ϕ(ρ) = ρ′.

• (u, v) ∈ E if and only if (ϕ(u), ϕ(v)) ∈ E′.

A labeled network (N, t) is a network N = (V,E) with a function t : V → L for
some label set L. Two labeled networks (N, t) and (N ′, t′) with roots ρ and ρ′ are
isomorphic, (N, t) ≃ (N ′, t′), if there is a bijection ϕ : V → V ′ such that:

• ϕ(ρ) = ρ′.

• (u, v) ∈ E if and only if (ϕ(u), ϕ(v)) ∈ E′.

• t(v) = t′(ϕ(v)) for all v ∈ V .

The notation N ≃ϕ N ′ means that N is isomorphic to N ′ and the function ϕ is a
bijection that fulfills the criteria listed above. We then say that ϕ is an isomorphism.

2.2 The AHU algorithm
As was mentioned in the introduction, the AHU algorithm [3] takes two (possibly
labeled) rooted trees as input and then outputs whether or not the trees are isomorphic.
For two rooted trees T and T ′ the algorithm runs in O(n) where n = |V (T)| = |V (T ′)|
[5][7].

11

3 Isomorphism checking of level-1
networks in linear time.

This chapter contains two sections. In the first section a method for creating a labeled
tree (TN , tN) from a level-1 network N is given such that (TN , tN) ≃ (TN ′ , tN ′) if and
only if N ≃ N ′. The second section is devoted to proving that the method given in
the first section can be implemented with linear runtime.

3.1 Untangling a level-1 network
To recall, the AHU algorithm for isomorphism testing takes two, possibly labeled,
rooted trees as input. A rooted tree is a network with no hybrid-vertices. The goal of
this section is to introduce a method to transform a level-1 network N into a labeled
tree (TN , tN), such that for two networks N and N ′ we have that (TN , tN) ≃ (TN ′ , tN ′)
if and only if N ≃ N ′. This will reduce the testing of whether two level-1 networks
are isomorphic to testing whether two labeled trees are isomorphic, which can be done
in linear time with the AHU algorithm. We also want the size of V (TN) to be in
O(V (N)) to preserve linear run time with regards to the size of the network N .
We will use a label set L = {s, p, h, ⋆}. The s label will represent the position of the
source ρB in a block B, the p label will denote the position of a parent to the hybrid
ηB in a block B, the label h denotes the position of the hybrid ηB and the label ⋆ is
given to the original vertices in the network.

For every block B in the network N , let childB denote the children of ρB that are in
B and do the following:

• Step 1 - Expand ρB :

– Remove the edges (ρB , c) for all c ∈ childB .

– Add a vertex wB with label tB(wB) = s.

– Add the edges (wB , c) for all c ∈ childB .

– Add the edge (ρB , wB).

• Step 2 - Move ηB :

– Remove the edges (u, ηB) and collect all such u in the set PB .

– Add a new vertex vhB with label tB(vhB) = h and the edges (wB , v
h
B) and

(vhB , ηB).

12

• Step 3 - Mark parents to hybrid:

– For every u ∈ PB , add a new vertex vuB with label tB(vuB) = p and a new
edge (u, vuB).

• Step 4 - For every vertex v in B, if v have not received a label, assign tB(v) = ⋆.

The network obtained from B, with the application of Step i together with the re-
spective previous steps will be denoted (T iB), where i ∈ {1, 2, 3, 4}. We also define
T iB−ρ := T iB [V (B)\{ρB}], that is T iB without the root ρB . We say that TB := T 4

B and
TB−ρ := T 4

B−ρ.

The network obtained by applying Step 1-4 to every non-trivial block B in a level-1
network N is called TN . We define the labeling function tN (v) = tB(v) if v is in some
subtree TB , and otherwise tN (v) = ⋆.

Figures 3.1 - 3.4 contain a visual example showing how a non-trivial block is changed
by these steps.

Figure 3.1: A zoomed in picture showing part of a level-1 network N with a non-
trivial block B. The vertices that are part of B are marked as circles and
the remaining parts of the network are abstracted as sub networks Ti.

13

Figure 3.2: The network T 1
B obtained by applying Step 1 to B. The green color denotes

the label s

14

Figure 3.3: The network T 2
B obtained by applying Step 2 to T 1

B . The red color denotes
the label h and the set P is being tracked.

15

Figure 3.4: The network T 3
B obtained by applying Step 3 to T 2

B . The blue color denotes
the label p.

16

The rest of this section will be devoted to showing that for two level-1 networks N
and N ′, we have that N ≃ N ′ if and only if (TN , tN) ≃ (TN ′ , tN ′).

Lemma 3.1. (TB , tB) ≃ (TB′ , tB′) if and only if (TB−ρ, tB) ≃ (TB′−ρ, tB′).

Proof. For any isomorphism ϕ such that (TB , tB) ≃ϕ (TB′ , tB′) it must be the case
that ϕ(wB) = wB′ since tB(wB) = s = tB′(wB′) and no other vertex in either tree has
label s. So ϕ(ρB) = ρB′ since ρB is the only parent of wB . Removing ρB from TB and
ϕ(ρB) from TB′ creates two new isomorphic graphs and these are exactly the graphs
(TB−ρ, tB) and (TB′−ρ, tB′). Likewise if (TB−ρ, tB) ≃ϕ (TB′−ρ, tB′) then ϕ(wB) = wB′ ,
so adding a parent vertex (with label ⋆) to wB in TB−ρ and to ϕ(wB) in TB′−ρ will
create the two isomorphic trees (TB , tB) and (TB′ , tB′).

Lemma 3.2. For every non-trivial block B in N , B ≃ T 1
B−ρ.

Proof. Let us define a function ϕ : V (B) → V (T 1
B−ρ) such that ϕ(ρB) = wB and for

all v ∈ V , if v ̸= ρB then ϕ(v) = v. Applying Step 1 to B makes it so that there is an
edge (wB , v) = (ϕ(ρB), ϕ(v)) in T 1

B−ρ if and only if there is an edge (ρB , v) in B. For
all u, v ∈ V (T 1

B−ρ) \ {wB} the edges (u, v) are unchanged after applying Step 1, so it
must be the case that B ≃ϕ T 1

B−ρ.

By looking at Step 1-4 above it’s clear that none of the inner vertices of B are removed
and none of the edges between inner vertices are changed. So we have the following
observation.

Observation 3.3. For every non-trivial block B in N and its inner vertices u, v ∈ B0,
we have that (u, v) ∈ E(B) if and only if (u, v) ∈ E(TB) if and only if (u, v) ∈ E(TB−ρ).

Lemma 3.4. Let N be a level-1 network and B be a non-trivial block in N. Then both
(TB , tB) and (TB−ρ, tB) are labeled trees.

Proof. Let B be a non-trivial block in the level-1 network N . Then B is a connected
rooted DAG with root ρB . After step 1, T 1

B is still a connected rooted DAG with
unique root ρB and thus T 1

B is a network. In step 2, all edges (u, ηB) are removed
and the vertices u are saved in a set PB . By [13] Lemma 7, all the parents of ηB are
located in B so for all edges (u, ηB), all u are in B. The only edges added in Step 2
are (wB , v

h
B) and (vhB , ηB), since these are the only edges in T 2

B where vhB and ηB are
incident no cycles are introduced. We also have that there’s a path ρB ⇝ u for every
u in PB , and a path ρB ⇝ ηB , so all of T 2

B is connected. So T 2
B remains acyclic and is

a network with root ρB . In step 3, a vertex vu is introduced for every vertex u ∈ PB .
An edge (u, vu) is then introduced for every vertex vu, making sure the graph is still
connected. Since every vertex vu is a leaf, these edges do not introduce any cycles. So
T 3
B is still a connected DAG with ρB as a unique root and is therefore a network.

The indegree of all the original vertices in B distinct from ηB remain unchanged, and
all the added vertices wB , vhB and vuB for every u ∈ PB have indegree 1. So the only
vertex that can have an indegree greater than 1 in B is ηB . But ηB has only one edge

17

where it’s the head, (vhB , ηB), so it has indegree 1. So there are no hybrid-vertices in
T 3
B and it is therefore a tree.

In step 4, any vertex v in V (T 3
B) that has not already received a label is given the

label tB(v) = ⋆, so all v in V (T 3
B) have a label in L and tB is therefore a valid labeling

function. No changes are made to the vertices or edges in step 4 so T 4
B is still a tree

and (TB , tB) is a labeled tree.

We have that wB is the only child of ρB and ρB is the only parent of wB in TB .
So removing ρB from TB will make it so that wB is the only vertex with indegree
zero in the graph. So TB [V (TB) \ {ρ}] will be a rooted tree with root wB . Since
V (TB−ρ) ⊂ V (TB) and tB(v) is defined for all v ∈ V (TB) we have that (TB−ρ, tB) also
is a labeled tree.

Lemma 3.5. For distinct non-trivial blocks B and B′ in a level-1 network N, the trees
TB−ρ and T ′

B−ρ are vertex disjoint.

Proof. Let B and B′ be distinct non-trivial blocks in the network N . If B and B′ were
vertex-disjoint, then every vertex in TB was either a vertex in B or it got added to TB
during it’s construction, and any vertex added during construction is not added into
any other trees TB′′ , in particular not into TB′ . So TB and TB′ will be vertex disjoint
if B and B′ are vertex disjoint. Since V (TB−ρ) ⊂ V (TB) and V (TB′−ρ) ⊂ V (TB′),
TB−ρ and TB′−ρ will also be vertex-disjoint if B and B′ are vertex-disjoint.

We have from lemma 2.4 that if there is a vertex v such that v is in B and v is in
B′, then v = ρB or v = ρB′ . From this it follows that they can’t share two or more
vertices, cause then ρB would be in B′ and ρB′ would be in B and ρB ̸= ρB′ , so we
would have non-trivial paths ρB ⇝ ρB′ and ρB′ ⇝ ρB so N would not be a network
since it has a cycle. So if B and B′ are not vertex-disjoint, we can without loss of
generality assume that they share a single vertex ρB .

By construction ρB is not in TB−ρ. As in the case when B and B′ were vertex-disjoint,
every vertex in TB−ρ was either already in B (and therefore not in B′ since the blocks
only shared ρB and ρB is not in TB−ρ) or it got added to TB−ρ during construction
and is therefore not in TB′−ρ. Likewise every vertex in TB′ was either in B′ (and
therefore not in TB−ρ since the the blocks only share ρB which is not in TB−ρ), or it
got added to TB′−ρ during construction and is therefore not in TB−ρ. So for distinct
non-trivial blocks B and B′, the trees TB−ρ and TB′−ρ are vertex disjoint.

Lemma 3.6. For different non-trivial blocks B and B′ in a level-1 network N , if there
is a vertex v such that v ∈ V (TB) and v ∈ V (TB′), then tB(v) = tB(v

′) = ⋆.

Proof. For a level-1 network N with distinct non-trivial blocks B and B′ we have that
TB−ρ and TB′−ρ are vertex disjoint. So if there is a vertex v such that v ∈ V (TB) and
v ∈ V (TB′) then v = ρB or v = ρB′ . So we have either v ∈ B or v ∈ B′, both of which
imply that v ∈ V (N). For a non-trivial block B in N and a vertex u ∈ V (TB), we can
see from step 1-4 that tB(u) ∈ L \ {⋆} only if u /∈ V (N), since the labels s, p, h are

18

only assigned to vertices that get added to the tree TB during construction. So since
v ∈ V (N), we have that tB(v) = tB′(v) = ⋆.

Lemma 3.7. For a level-1 network N , (TN , tN) is a labeled tree.

Proof. To recall, a labeled tree (T, t) is a connected DAG T with no hybrids and a
unique root ρ, and a labeling function t such that t(v) is defined for all v in V (T).

From lemma 3.6 we have that for blocks B and B′ in N , if tB(v) and tB′(v) are both
defined for a vertex v, then tB(v) = tB′(v). Every vertex u ∈ V (N) is either in one
more non-trivial blocks B, and therefore has a label tN (u) = tB(u), or it is not in
any non-trivial block and therefore gets assigned tN (u) = ⋆, so tN is a valid labeling
function since each vertex u gets assigned exactly one label tN (u).

From [13] lemma 11 we have that for a hybrid vertex η and a block B in a network N ,
if η and one of it’s parents are contained in B, then all of it’s parents are contained in
B and η ̸= ρB . From this it follows that every hybrid-vertex in a level-1 network N
is the designated hybrid ηB of some non-trivial block B. Since every non-trivial block
B is replaced by a tree (hybrid-free network) TB , there are no hybrids in TN .

We have from lemma 2.1 that for every vertex v ∈ V (N), there is a path P v = ρ⇝ v in
N . For every non-trivial block B in N , the path P v either traverses no edges contained
in B or it includes a subpath contained in B. If P v traverses no edges contained in B,
then the path P v is unchanged when you replace B with TB in N .

If the path P v contained a subpath SvB contained in B, then SvB is either of the form
ρB ⇝ ηB or ρB ⇝ u for some u ∈ B0. In every tree TB , there is by construction a
path ρB ⇝ ηB = ρB , v

h
B , ηB , so if the path SvB was of the form ρB ⇝ ηB , then there

will be a path P vB = ρ ⇝ v in N after you replace B with TB , where P vB is the path
obtained by replacing SvB in P v with the subpath ρB , vhB , ηB .

If SvB is of the form ρB ⇝ u for some u ∈ B0, then SB will start along an edge (ρB , c)
for some child of ρB in B and the remaining edges that SB follow will be of the form
(ui, uj) where ui, uj ∈ B0. Since all the edges (ui, uj) remain unchanged in TB , we
only need to show that there is still a path ρB ⇝ c in TB to show that there will be
a path ρ ⇝ v in N after replacing B with TB . By construction there will be a path
ρB ⇝ c in TB along the edges (ρB , wB), (wB , c). So there will be a path P vB = ρ⇝ v
in N after replacing B with TB , where P vB is the path obtained by replacing the first
two vertices ρB , c in the subpath SvB with the sequence ρB , wB , c.

So changing any non-trivial blocks B for the tree TB in N does not affect the existence
of a path ρ ⇝ v for any vertex v in V (N). So if there is a path ρ ⇝ v in N , then
there will be a path ρ ⇝ v in TN . And since N was a level-1 network, it had a path
pv = ρ ⇝ v for every v ∈ V (N), and therefore TN will also have a path pv for every
v ∈ V (N).

Now for the vertices u ∈ V (TN) \ V (N). Each of these vertices are in some subgraph

19

TB . Since there is a path P1 = ρ ⇝ ρB for each TB in TN , we just need to note that
TB is a connected network with unique source ρB to know that there will be a path
P2 = ρB ⇝ u, and therefore appending the paths P1, P2 will yield a path ρ⇝ u in TN .
So TN will have a path ρ⇝ v for every v ∈ V (TN), and therefore TN is connected.

Since TN is connected with a unique root, every vertex except the root ρ has indegree
at least 1, and since TB has no hybrids, those vertices have indegree exactly 1, so there
are |V (TN)|−1 edges in TN . The number of edges compared to the number of vertices
together with the fact that TN is connected implies that TN is a tree. So (TN , tN) is
labeled tree.

Lemma 3.8. Let N be a level-1 network and B and B′ be non-trivial blocks in N . If
B ≃ B′, then (TB , tB) ≃ (TB′ , tB′).

Proof. Let us assume that we have a level-1 network N with non-trivial blocks B and
B′, such that B ≃ϕ B′ for some function ϕ. It must then be the case that ϕ(ρB) = ρB′

since these are the only vertices with indegree equal to 0 in their respective blocks. It
must also be the case that ϕ(ηB) = ηB′ since these are the only vertices with more
than one parent in their respective blocks.

Let us extend ϕ to ϕ1 : V (T 1
B) → V (T 1

B′) by defining ϕ1(v) = ϕ(v) for v ∈ V (B)
and ϕ1(wB) = wB′ . It should be clear that ϕ1 is a bijective function from V (T 1

B) to
V (T 1

B′). Note that all of the following is true:

• There is an edge (wB , c) in T 1
B if and only if there is an edge (ρB , c) in B.

• There is an edge (ϕ(ρB), ϕ(c)) in B′ if and only if there is an edge (ρB , c) in B.

• There is an edge (wB′ , ϕ(c)) in T 1
B′ if and only if there is an edge (ϕ(ρB′), ϕ(c))

in B′.

Therefore, there is an edge (wB , c) in T 1
B if and only if there is an edge (ϕ1(wB), ϕ

1(c))
in T 1

B′ . We also know that the only edge to which ρB is incident in T 1
B is the edge

(ρB , wB) and the only edge to which ϕ1(ρB) = ρB′ is incident in T 1
B′ is the edge

(ρB′ , wB′) = (ϕ1(ρB), ϕ
1(wB)). It’s also the case that wB has no other parent in T 1

B

and wB′ has no other parent in T 1
B′ .

For vertices u, v ∈ V (B) \ {ρB}, any edges (u, v) are unchanged in T 1
B and the same

is true for non-root vertices and their incident edges in B′. This means that there
is an edge (w1, w2) in T 1

B if and only if there is an edge (ϕ1(w1), ϕ
1(w2)) in T 1

B′ , so
T 1
B ≃ϕ1 T 1

B′ .

Now let us extend ϕ1 to ϕ2 : V (T 2
B) → V (T 2

B′) in the following way. For v ∈ V (T 1
B)

we define ϕ2(v) = ϕ1(v), and ϕ2(vhB) = vhB′ . This way ϕ2 is defined for all vertices in
T 2
B and is a bijection from V (T 2

B) to V (T 2
B′).

Note that all of the following is true:

20

• An edge in T 1
B is removed when creating T 2

B if and only if it’s on the form (u, ηB)
for some u ∈ V (T 1

B).

• There is an edge (u, ηB) in V (T 1
B) if and only if there is an edge (ϕ1(u), ϕ1(ηB)) =

(ϕ1(u), ηB′) in V (T 1
B′).

• An edge in T 1
B is removed when creating T 2

B if and only if it’s on the form (v, ηB′)
for some v ∈ V (T 1

B).

Therefore, an edge (u, ηB) for some u ∈ V (T 1
B) is removed from T 1

B when creating T 2
B

if and only if the edge (ϕ2(u), ϕ2(ηB)) is removed from T 1
B′ when creating T 2

B′ .

We know that the only edges added to T 1
B when constructing T 2

B are the edges (wB , vhB)
and (vhB , ηB). Likewise the only edges added to T 1

B′ when constructing T 2
B are the edges

(wB′ , vhB′) = (ϕ2(wB), ϕ
2(vhB′)) and (vhB′ , ηB′) = (ϕ2(vhB), ϕ

2(ηB)).

The edges mentioned above are the only edges added and removed when constructing
T 2
B from T 1

B and T 2
B′ from T 1

B′ . So we have that there is an edge (u, v) in T 2
B if and

only if there is an edge (ϕ2(u), ϕ2(v)) in T 2
B′ and therefore T 2

B ≃ϕ2 T 2
B′ .

Let us now once again extend ϕ2 to ϕ3 : V (T 3
B) → V (T 3

B′). We noted above that
for u ∈ V (T 1

B) there is an edge (u, ηB) in V (T 1
B) if and only if there is an edge

(ϕ1(u), ϕ1(ηB)) in V (T 1
B′), so u ∈ PB if and only if ϕ1(u) ∈ PB′ . We define ϕ3 as

follows:

• For v ∈ V (T 2
B) we make it so ϕ3(v) = ϕ2(v).

• Every vertex v in T 3
B added during step 3 has exactly one parent pv. We make it

so that ϕ3(v) = u where u is the vertex added during step 3 of the construction
of T 3

B′ that has ϕ2(pv) as its parent.

Since there is a vertex u ∈ PB if and only if ϕ1(u) ∈ PB′ , we know that for every
vertex v ∈ PB both v and ϕ3(v) will have a child added to them during step 3 of the
construction of their respective trees, and these are the only vertices added during step
3, so ϕ3 is a well-defined bijection from V (T 3

B) to V (T 3
B′). It’s also clear that an edge

(u, v) is added to T 3
B during step 3 if and only if a corresponding edge (ϕ3(u), ϕ3(v))

is added in T 3
B′ . So it must be the case that T 3

B ≃ϕ3 T 3
B′ .

No changes are made to the edges or vertices of T 3
B and T 3

B′ during step 4, so TB ≃ϕ3

TB′ . Now note that for all v ∈ V (B), tB(v) = ⋆, for all vertices wB added during step
1 we have tB(wB) = s, for all vertices vhB added during step 2 we have tB(vhB) = h,
and finally for all vertices vuB added during step 3 we have tB(vuB) = p.
This gives us that (T 1

B , tB) ≃ϕ1 (T 1
B′ , tB′), (T 2

B , tB) ≃ϕ2 (T 2
B′ , tB′) and (T 3

B , tB) ≃ϕ3

(T 3
B′ , tB′). So (TB , tB) ≃ϕ3 (TB′ , tB′)

Lemma 3.9. Let N be a level-1 and B and B′ be non-trivial blocks in N . If (TB , tB) ≃
(TB′ , tB′), then B ≃ B′.

21

Proof. Let N be a level-1 network with non-trivial blocks B and B′ and assume that
(TB , tB) ≃ (TB′ , tB′). By lemma 3.1 we have that (TB−ρ, tB) ≃ϕ (TB′−ρ, tB′) for some
function ϕ. Since there is a bijection ϕ from V (TB−ρ) to V (TB′−ρ), there are an equal
number of vertices in the two trees, and since it’s a labeled isomorphism, there are an
equal number of vertices with each label in each tree. Let us perform the following
procedure on both trees.

In labeled tree (TB−ρ, tB) do the following:

• Step I: remove p labeled vertices:
– For every vertex v ∈ V (TB−ρ) such that tB(v) = p, put it’s parent u into a

set QB.
– For every u, v ∈ V (TB−ρ) remove any edges (u, v) such that tB(v) = p, and

remove those vertices v.

• Step II: Move ηB:
– Remove the edges (vhB, ηB) and (wB, v

h
B), and remove the vertex vhB.

– For every vertex in u ∈ QB, add an edge (u, ηB).

The network obtained from (TB−ρ, tB) with the application of step (i) together with
respective previous steps will be denoted Bi where i ∈ {I, II}.

We note that v ∈ QB if and only if ϕ(v) ∈ QB′ , since an edge (v, u) such that tB(u) = p
is in E(TB−ρ) if and only if (ϕ(v), ϕ(u)) ∈ E(TB′−ρ).

Let V = V (TB−ρ) and V ′ = V (TB′−ρ), then BI = TB−ρ[V \QB] and B′
I = TB′−ρ[V

′ \
Q′
B].

So we know that TB−ρ ≃ϕ TB′−ρ and a vertex v ∈ V (TB−ρ) is in QB if and only if
ϕ(v) ∈ QB′ . This gives us that a vertex v is removed from TB−ρ in BI if and only if
ϕ(v) is removed from TB′−ρ in BI , and all edges to which u is incident are removed in
BI if and only if all edges to which ϕ(u) is incident are removed in BI . So we have that
BI ≃ψ BI where ψ : V (BI)→ V (B′

I) and for every v ∈ V (BI) we have ψ(v) = ϕ(v).

Next we note that TB−ρ and TB′−ρ both only have one vertex with label h and one
with label s, and these vertices are also in BI and B′

I . So it must be the case that
ψ(wB) = wB′ and ψ(vhB) = vhB′ . We also note that the vertices ηB and ηB′ both have
label ⋆ and are therefore not removed from their respective trees during step I. Due to
the construction of TB−ρ there are exactly two edges where vhB is incident, those are
(wBv

h
B) and (vhB , ηB). Similarly vhB′ is incident in the edges (wB′ , vhB′) and (vhB′ , ηB′).

These edges are also left intact in BI and B′
I . So a vertex v ∈ V (TB−ρ) or an edge

(u1, u2) ∈ E(TB−ρ) is removed from BI when constructing BII if and only if the vertex
ψ(v) or the edge (ψ(u1), ψ(u2)) is removed in B′

I when constructing B′
II .

We noted above that a vertex v ∈ QB if and only if ϕ(v) ∈ QB′ . We should also note
that during the construction of TB−ρ all vertices with label p are added as leaves, so

22

no vertex added to QB is then also removed during step I. So the edge (v, ηB) will be
added in BII if and only if the edge (ψ(v), ψ(ηB) = ηB′) is added in BII .

No vertices get added to either BII or B′
II during step II.

Combining what have now shown we get that BI ≃ψ BI , and vertices v and edges
(u1, u2) gets added or removed to BII if and only if the vertices ψ(v) and edges
(ψ(u1), ψ(u2)) gets added or removed in BII . So we have that BII ≃ BII .

Now note that in constructing BII we have undone step 3 and step 2 from the procedure
of constructing TB−ρ from B, so BII = T 1

B−ρ. Also note that from lemma 3.2 we have
T 1
B−ρ ≃ B for any non-trivial block B. So since BII ≃ B′

II , this means that B ≃ B′.
We have shown that if (TB , tB) ≃ (TB′ , tB′), then B ≃ B′.

Theorem 3.10. Let N be a level-1 network and B and B′ be non-trivial blocks in N .
Then B ≃ B′ if and only if (TB , tB) ≃ (TB′ , tB′).

Proof. This follows directly from the combination of lemmas 3.8 and 3.9.

Lemma 3.11. Let N and N ′ be level-1 networks. If N ≃ N ′, then (TN , tN) ≃
(TN ′ , tN ′).

Proof. Let N and N ′ be level-1 networks and assume that N ≃ϕ N ′ for some function
ϕ. For every non-trivial block B in N there is a corresponding non-trivial block B′ in
N ′ such that ϕ(ρB) = ρB′ and ϕ(ηB) = ηB′ .

Let us perform steps 1-4 on B in N and call the new network NB . Do the same on
B′ in N ′ and call the new network N ′

B′ . We know that no edges in N that weren’t
properly contained in B got changed when replacing B with TB through steps 1-4, so
for any vertices u, v ∈ V (N) such that u, v /∈ V (B) we know that (u, v) ∈ E(NB) if
and only if (ϕ(u), ϕ(v)) ∈ E(N ′

B′). We also know from theorem 3.10 that TB ≃ψ T ′
B

for some function ψ, so for u, v ∈ V (TB) we know that (u, v) ∈ E(NB) if and only if
(ψ(u), ψ(v)) ∈ E(N ′

B′).

In the proof of lemma 3.8 we can see that if B ≃χ B′, then TB ≃χ3 TB′ where χ3 is
such that if v ∈ V (B) then χ3(v) = χ(v). So we can without loss of generality say that
our function ψ is such that for v ∈ V (B), we have that ψ(v) = ϕ(v). So for vertices
u, v ∈ V (N) we have that (u, v) ∈ E(NB) if and only if (ϕ(u), ϕ(v)) ∈ E(N ′

B′).

Let us now extend the function ϕ to ϕ∗ : V (NB) → V (N ′
B′) such that for v ∈ V (N)

we have ϕ∗(v) = ϕ(v) and for v ∈ (V (TB) \ V (N)) we have ϕ∗(v) = ψ(v). We
then have that for any vertex v ∈ V (NB) such that both ψ(v) and ϕ(v) are defined,
ψ(u) = ϕ(u) = ϕ∗(u).

For vertices u, v ∈ V (N) we have that (u, v) ∈ E(NB) if and only if (ϕ∗(u), ϕ∗(v)) ∈
E(N ′

B′).

23

Now note that for any edge (u, v) ∈ E(NB) or (v, u) ∈ E(NB) such that u, v ∈ V (NB)
but u /∈ V (N), we have that all such vertices u got added to TB during it’s construction.
For a vertex u added to TB during it’s construction, we can see in steps 1-4 that any
edges u is incident to are properly contained in TB . So for such edges we have that
(u, v) ∈ E(NB) if and only if (ψ(u) = ϕ∗(u), ψ(v) = ϕ∗(v)) ∈ E(N ′

B′). So for all
vertices u, v ∈ V (NB) we have that (u, v) ∈ E(NB) if and only if (ϕ∗(u), ϕ∗(v)) ∈
E(N ′

B′). So NB ≃ϕ∗ N ′
B′ . If we also define a labeling function tempB such that for

v ∈ V (TB) we have tempB(v) = tB(v) and for all other vertices u we have tB(u) = ⋆,
we can note that (NB , tempB) ≃ϕ∗ (N ′

B′ , tempB′) since we know that (TB , tB) ≃ψ
(TB′ , tB) and ψ(v) = ϕ∗(v) for v ∈ V (TB).

We now have level-1 networks NB and N ′
B′ such that (NB , tempB) ≃ (N ′

B′ , tempB′)
and NB has one fewer non-trivial blocks than N . Repeating this process by applying
step 1-4 on a non-trivial block C in NB and it’s corresponding block C ′ in N ′

B′ will
then once again yield isomorphic labeled level-1 networks that we can call NC and
N ′
C′ . If we now instead define tempC such that for v ∈ V (TB) we have tempC(v) =

tB(v), for v ∈ V (TC) we have tempC(v) = tC(v), and for all other vertices u we have
tempC(u) = ⋆, then we also have (NC , tempC) ≃ (N ′

C′ , tempC′).

If we repeat this process until there are no more non-trivial blocks in the resulting
networks and we extend the temp labeling functions with the labels of all previously
replaced blocks, then when the final non-trivial blockD is processed like this we will get
(ND, tempD) = (TN , tN). It will also be the case that (ND, tempD) ≃ (ND′ , tempD′),
so (TN , tN) ≃ (TN ′ , tN ′).
We have now showed that if N ≃ N ′, then (TN , tN) ≃ (TN ′ , tN ′).

Lemma 3.12. Let N and N ′ be level-1 networks. If (TN , tN) ≃ (TN ′ , tN ′), then
N ≃ N ′.

Proof. Let N and N ′ be level-1 networks and assume that (TN , tN) ≃ϕ (TN ′ , tN ′) for
some bijection ϕ. Then for every subtree TB in TN there is a subtree TB′ in TN ′ such
that ϕ(wB) = wB′ and TB ≃ϕ TB′ when ϕ is restricted to the vertices in V (TB). From
lemma 3.10 we have that if TB ≃ TB′ then B ≃ B′. If we replace the subtree TB in TN
with the block B and call this new network TBN , and replace the subtree TB′ in TN ′

with B′ and call this new network TB
′

N ′ . Then we have that (TBN , tN) ≃ϕ (TB
′

N ′ , tN ′)
when ϕ is restricted to V (TBN). The proof for this follows below.

We first note that V (TBN) ⊆ V (TN), so ϕ : V (TBN) → V (TB
′

N ′) is still a well defined
bijection. Next we have from observation 3.3 that for u, v ∈ B0, the edge (u, v) ∈
E(TB) if and only if (u, v) ∈ E(B). Since TB ≃ϕ TB′ and B ≃ B′, this means that
for u, v ∈ B0, (u, v) ∈ E(TBN) if and only if (ϕ(u), ϕ(v)) ∈ E(TB

′

N ′). For vertices
u, v /∈ V (B), the edge (u, v) ∈ E(TBN) if and only if (ϕ(u), ϕ(v)) ∈ E(TB

′

N ′) since
TN ≃ϕ TN ′ and any edges not contained in TB (or TB′) remain unchained when TB
got replaced B (and TB′ by B′). So now we just need to make sure that (u, v) ∈ E(TBN)

if and only if (ϕ(u), ϕ(v)) ∈ E(TB
′

N ′) when either u or v is in V (B) but not in B0. This
means we have one of the following cases:

24

• u = ρB , v = ηB . There is an edge (ρB , ηB) ∈ E(TBN) if and only if there was an
edge (ρB , v

ηB
B) in TB . Since ϕ is a bijection that preserves labels and wB only

has one parent in TB it must be that ϕ(wB) = wB′ and ϕ(ρB) = ρB′ . It must
also be the case that ϕ(ηB) = ηB′ since vhB only has one child in TB , and finally
wB can have at most one child with label p in TB so ϕ(vηBB) = v

ηB′
B′ . So there’s an

edge (ϕ(ρB), ϕ(ηB)) ∈ E(TB
′

N ′) if and only if there was an edge (ϕ(ρB), ϕ(v
ηB
B))

in TB′ . And since TB ≃ϕ TB′ this means that there’s an edge (ρB , ηB) ∈ E(TBN)

if and only if there is an edge (ϕ(ρB), ϕ(ηB)) ∈ E(TB
′

N ′).

• u = ρB , v ∈ B0. In this case there is an edge (ρB , v) ∈ E(TBN) if and only if
there was an edge (wB , v) in TB . Since TB ≃ϕ TB′ there was an edge (wB , v) in
TB if and only if there was an edge (ϕ(wB), ϕ(v)) in TB′ . We noted above that
ϕ(wB) = wB′ and ϕ(ρB) = ρB′ . So there was an edge (ϕ(wB), ϕ(v)) in TB′ if
and only if there was an edge (ϕ(ρB), ϕ(v)) in B′. This gives us that there is an
edge (ρB , v) ∈ E(TBN) if and only if there is an edge (ϕ(ρB), ϕ(v)) ∈ E(TB

′

N ′).

• u /∈ B, v = ρB . In this case there was an edge (u, ρB) ∈ E(TN) if and only if there
was an edge (ϕ(u), ϕ(ρB)) ∈ E(TN ′) and no such edges got added or removed
when replacing TB with B (or when replacing TB′ with B′). So (u, ρB) ∈ E(TBN)

if and only (ϕ(u), ϕ(ρB)) ∈ E(TB
′

N ′).

• u = ρB , v /∈ B. In this case there was an edge (ρB , v) ∈ E(TN) if and only if there
was an edge (ϕ(ρB), ϕ(v)) ∈ E(TN ′) and no such edges were added or removed
when replacing TB with B (or when replacing TB′ with B′). So (ρB , v) ∈ E(TBN)

if and only if (ϕ(ρB), ϕ(v)) ∈ E(TB
′

N ′).

• u ∈ B0, v = ηB . In this case there is an edge (u, ηB) ∈ E(TBN) if and only
if u had child c with label tB(c) = h in TB . And TB ≃ϕ TB′ , there was an
edge (u, c) ∈ E(TB) if and only if there was an edge (ϕ(u), ϕ(c)) ∈ E(TB′),
and since ϕ preserves labels it must be that tB′(ϕ(c)) = h. So there is an edge
(ϕ(u), ϕ(c)) ∈ E(TB′) if and only there is an edge (ϕ(u), ϕ(ηB)) ∈ E(TB

′

N ′). So
we have that there is an edge (u, ηB) ∈ E(TBN) if and only if there is an edge
(ϕ(u), ϕ(ηB)) ∈ E(TB

′

N ′).

• The case where u /∈ B, v = ηB is not possible, see [13] lemma 7.

Combining all of the cases above we can see that for u, v ∈ V (TBN), there is an edge
(u, v) ∈ E(TBN) if and only if there is an edge (ϕ(u), ϕ(v)) ∈ E(TB

′

N ′), so TBN ≃ϕ TB
′

N ′ .
Since no vertices got added when constructing TBN from TN (or TB

′

N ′ from T ′
N) we also

have (TBN , tN) ≃ (TB
′

N ′ , tN ′). This procedure can then be repeated by replacing another
subtree TB∗ in TBN and the corresponding subtree TB′∗ in TB

′

N ′ until all such subtrees
have been replaced, at which point we have the networks N and N ′. So we have shown
that if (TN , tN) ≃ (TN ′ , tN ′), then N ≃ N ′.

Theorem 3.13. Let N and N ′ be level-1 networks. Then N ≃ N ′ if and only if
(TN , tN) ≃ (TN ′ , tN ′).

Proof. This follows from the combination of lemma 3.11 and lemma 3.12.

25

3.2 Time complexity of solution
Here comes first a proof that the size of the output trees are linearly bounded by the
size of the input networks. Then follows a proof that the algorithm can be implemented
such that it can be performed in linear time with regard to the size of the input graph.

Theorem 3.14. For a level-1 network N , |V (TN)| ∈ O(|V (N)|).

Proof. For a non-trivial block B in N , vertices get added to a tree TB in 3 cases:

• The vertex wB gets added between ρB and all its children in B.

• The vertex vhB gets added between wB and ηB .

• A vertex vuB gets added as a leaf beneath every vertex that was a parent of ηB .

Let us assume the worst case scenario for the all three cases.

From the lemma 2.4 we get that for every vertex v ∈ V there can at most be one
non-trivial block B such that v ∈ B but v ̸= ρB . So every vertex v ∈ V can be the
child of at most one designated root ρB in N . So the first case adds a maximum of
|V | vertices.

The second case adds one vertex per non-trivial block in N . From lemma 2.7 we have
that the number of non-trivial blocks in N is bound by |V |, so the second case adds a
maximum of |V | vertices.

For the third case we once again consider the fact that for every vertex v ∈ V (N) there
is at most one non-trivial block B such that v ∈ V (B) but v ̸= ρB . So for any vertex
v in V , that vertex can be parent to at most one designated hybrid ηB in non-trivial
blocks B where v is not the designated root ρB . So there can be a maximum of |V |
edges in N of the form (u, ηB) where B is a non-trivial block in N and u ̸= ρB . Now
we consider the remaining edges for this case, those that are of the form (ρB , ηB) for
some non-trivial block B in N . We have from lemma 2.6 that distinct non-trivial
blocks can’t share designated hybrids, so every hybrid-vertex ηB can be incident to at
most one edge of the form (ρB , ηB) for some designated root ρB . So the number of
edges in N of the form (ρB , ηB) for some non-trivial block B in N is also bound by
|V |. So the third case will add a maximum of 2 · |V | vertices.

So |V (TN)| ≤ |V (N)|+ |V (N)|+ |V (N)|+ 2 · |V (N)| which is in O(|V (N)|).

Now to prove that the construction can be performed in linear time. Let’s consider
the following implementation Algorithm 1.

Lemma 3.15. When given a level-1 network N as input, Algorithm 1 correctly re-
turns the labeled tree (TN , tN)

Proof. Let N be a level-1 network given to Algorithm 1 as input.

26

Algorithm 1 Transforming a level-1 network N to a labeled tree (TN , tN).
Input: Level-1 network N = (V,E)
Output: Labeled tree (TN , tN)
1: Find all biconnected components of N using DFS and name each non-trivial bi-

connected component with a number i starting at 0. For each vertex v mark it so
that v.blocks is a list containing the numbers for all non-trivial blocks that v is
part of.

2: Create a table parents such that for every vertex v we have that parents[v] is a
list containing all vertices that have v as a child.

3: Mark all vertices v in N such that v.label = ⋆
4: Create an empty array ws and an empty array root both with length equal to the

number of non-trivial blocks in N .
5: Create a set of vertices V ∗ that is a copy of V .
6: for v ∈ V in DFS order starting at ρ do
7: for B ∈ v.blocks do
8: if roots[B] is not empty then ▷ ρB has been visited
9: if parents[v] contains roots[B] then

10: Remove roots[B] from parents[v]
11: Add ws[B] to parents[v]
12: end if
13: if Size of parents[v] is > 1 then ▷ v is the hybrid of B, ηB
14: for all u in parents[v] do
15: Create a vertex vuB and add vuB to V ∗.
16: Set parents[vuB]← [u] and vuB .label← p.
17: end for
18: Create a new vertex vhB and add vhB to V ∗.
19: Set parents[vhB]← [ws[B]] and whB .label← h.
20: Set parents[v]← [vhB]
21: end if
22: end if
23: if roots[B] is empty then ▷ v is ρB
24: Create a new vertex wB and add wB to V ∗.
25: Set parents[wB]← [v] and wB .label← s.
26: Set ws[B]← wB
27: Set roots[B]← v
28: end if
29: end for
30: end for
31: Create a network TN such that V (TN) equals V ∗ and (u, v) is and edge in E(TN)

if and only if u is in parents[v].
32: Define tN as a function such that tN (v) = v.label for each vertex v in TN
33: return (TN , tN)

27

Step 1 requires that for every non-trivial block B, we add a vertex wB with label
tN (wB) = s and ρB as its only parent. This is handled on lines 23-28 of the algorithm.
Since there are no paths from ρ to a vertex v in B that does not include ρB , it must be
the case that the first vertex in B visited with DFS starting at ρ is the vertex ρB . We
also have that roots[B] is empty when visiting a vertex v in B if and only if v is the
first vertex visited in B, since roots[B] gets assigned v on line 25 if it was empty and
can’t be changed or emptied again later. So the if-block starting at line 21 is entered
exactly once per non-trivial block B when visiting ρB . In this if-block the vertex wB
is added and it’s label set on line 24, and the parent of wB is set to ρB on line 25.

Step 1 also requires that for every vertex v in B that is a child of ρB , we remove the
edge (ρB , v) and add the edge (wB , v). This is handled on lines 9-12. Since ρB is the
first vertex to be visited in B, roots[B] will contain ρB by the time any vertex in B
that is a child of ρB gets visited. So any vertex v in B will have the edge (ρB , v)
removed at line 10 and the edge (wB , v) added at line 11, if and only if it had ρB as
it’s parent.

So Step 1 is handled correctly.

In Step 2 and Step 3 a new vertex vhB with label tN (vhB) = h is added together with
the edges (wB , v

h
B) and (vhB , ηB) and all other edges where ηB is the head of the edge

are removed. This is handled on lines 18-20. Note once again that by the time ηB is
visited, ρB must already have been visited, so the if-statement at line 8 will be true,
and if the currently visited vertex is ηB it will have a number of parents greater than
1 and this will still be true after lines 9-12. So the if statement on line 13 will be true
if and only if the currently visited vertex is ηB .

Step 2 and Step 3 also requires for any vertex u in a non-trivial block B that if u is a
parent of ηB then a vertex vuB with label tN (vuB) = p and edge (u, vuB) are added. This
is handled on lines 13-17. As mentioned above the if-statement on line 13 will be true
if and only if the currently visited vertex is ηB , and for each parent u of ηB a vertex
vuB with label p and edge (u, vuB) is added on lines 15-16.

So step 2 and 3 is also handled correctly.

And since all vertices added are given a label, and all vertices that were already in
N at the start are given the label ⋆ at line 3, we have that Step 4 is also handled
correctly.

So the algorithm performs all changes required for Step 1-4 and these are the only
changes the algorithm makes. So Algorithm 1 correctly outputs (TN , tN) when given
a level-1 network N as input.

Theorem 3.16. For a level-1 network N = (V,E), Algorithm 1 runs in O(|V |+|E|).

Proof. Let N = (V,E) be a level-1 network.

28

Finding all biconnected components in a graph N = (V,E) can be done in O(|V |+ |E|)
with the help of DFS [14, p. 621-622]. So line 1 can be performed in linear time.
A parent table can also be setup in linear time by storing some extra information
while performing DFS. So line 2 can be performed in linear time by storing some extra
information during the DFS for line 1.
Line 3 can obviously be done in |V | steps and can therefore be done in linear time.
Line 4 can be done in linear time since the number of non-trivial blocks in N is bound
by |V |.
Line 5 can be done by simply iterating over all vertices in V , so it can be done in |V |
steps and therefore done in linear time.
Line 6-7 will iterate over each non-trivial block that each vertex is part of. From lemma
3.5 it follows that a vertex can only be part of more than one non-trivial block if it’s the
unique root of at least all but one of those non-trivial blocks, and the number of non-
trivial blocks in N in bound by |V | from corollary 2.7. Therefore there are at most |V |
pairs (u,B) where B is a non-trivial block and u ∈ V (B) but u ̸= ρB . There will also
be at most |V | pairs (ρB , B) where B is a non-trivial block. So a maximum of 2 · |V |
iterations will be started. For all code inside these loops, the following paragraphs
show that they will run in amortized linear time.
Lines 23-28 can be performed in constant time, and will only be performed once per
non-trivial block B in N . We have from corollary 2.7 that hte number of non-trivial
blocks B is bound by |V |, so lines 23-28 will contribute at most O(|V |) to the runtime.
Lines 9-12 can be run in time proportional to the number of parents of the evaluated
vertex v, since roots[B] needs to be found and removed in parents[v]. Lines 8-22 will
not be performed for a vertex v and non-trivial block B where v is the root ρB of B.
We also noted above that no vertex v will be part of more than one non-trivial block
B where v ̸= ρB . So no parent list will be iterated over more than once for this part
of the algorithm. So lines 9-12 can be done in O(|E|) steps.
Finally lines 13-21 will be performed once per hybrid-vertex ηB . Lines 15-16 can be
performed in constant time, and since two distinct non-trivial blocks can’t share their
unique hybrid, no parent list will be iterated over more than once for this part of the
algorithm. So lines 14-17 will contribute at most O(|E|) to the runtime. Lines 18-20
can be done in constant time and will be performed once per non-trivial block, and
can therefore be done in O(|V |) steps.
So lines 6-30 can be performed in O(|V |+ |E|) steps.
Since we showed in theorem 3.14 that the size of TN is linear with regards to N , line
31 can be performed in linear time.
Line 32 and 33 can performed in constant time.
So with a level-1 networks N = (V,E) as input, the run time of Algorithm 1 is in
O(|V |+ |E|).

29

4 Conclusion

The goal of this thesis was to present a practical algorithm for checking isomorphism of
level-1 networks in linear time. This was achieved by the method presented at the start
of section 3.1 to transform a level-1 network N into a labeled tree (TN , tN) wich was
proved by theorem 3.13 to be such that N ≃ N ′ if and only if (TN , tN) ≃ (TN ′ , tN ′). It
was then also showed in section 3.2 that the labeled tree (TN , tN) can be constructed
from N in linear time and that the size of TN is linear with regard to the size of
N . Since the AHU algorithm can check for isomorphism of labeled rooted trees in
linear time, one can check the isomorphism of level-1 networks by constructing their
corresponding labeled trees and then use those as input for the AHU algorithm, all of
which can be done in linear time.

One question that remains is how this algorithm performs when properly implemented.
The implementation Algorithm 1 in section 3.2 is just pseudo code to prove that the
method can be implemented in linear time, so empirical tests on how the method per-
forms when properly implemented, especially compared to the performance of existing
methods, would be a good starting point for further investigations.

30

Bibliography

[1] L. Chen, “Graph isomorphism and identification matrices: Sequential algorithms,”
Journal of Computer and System Sciences, vol. 59, no. 3, pp. 450–475, 1999.

[2] S. Fortin, “The graph isomorphism problem,” Tech. Rep. TR96-20, The University
of Alberta, 1996. https://doi.org/10.7939/R3SX64C5K.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Com-
puter Algorithms. Reading, Mass.: Addison-Wesley, 1974.

[4] J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism of planar
graphs (preliminary report),” in Proceedings of the Sixth Annual ACM Sympo-
sium on Theory of Computing, STOC ’74, (New York, NY, USA), p. 172–184,
Association for Computing Machinery, 1974.

[5] A. Lindeberg, “Isomorphism testing of rooted trees in linear time,” arXiv preprint
arXiv:2401.07636, 2024.

[6] D. M. Campbell and D. Radford, “Tree isomorphism algorithms: Speed vs. clar-
ity,” Mathematics Magazine, vol. 64, no. 4, pp. 252–261, 1991.

[7] F. Ingels, “Revisiting tree isomorphism: Ahu algorithm with primes numbers,”
arXiv preprint arXiv:2309.14441, 2023.

[8] P. Gambette, V. Berry, and C. Paul, “The structure of level-k phylogenetic net-
works,” in Combinatorial Pattern Matching (G. Kucherov and E. Ukkonen, eds.),
(Berlin, Heidelberg), pp. 289–300, Springer Berlin Heidelberg, 2009.

[9] C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung, “Computing the maximum
agreement of phylogenetic networks,” Theoretical Computer Science, vol. 335,
no. 1, pp. 93–107, 2005. Pattern Discovery in the Post Genome.

[10] V. Moulton and T. Wu, “Planar rooted phylogenetic networks,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 20, no. 2,
pp. 1289–1297, 2022.

[11] L. Knüver, M. Fischer, M. Hellmuth, and K. Wicke, “The weighted total cophe-
netic index: A novel balance index for phylogenetic networks,” 2024.

[12] J. Kukluk, L. Holder, and D. Cook, “Algorithm and experiments in testing planar
graphs for isomorphism,” J. Graph Algorithms Appl., vol. 8, pp. 313–356, 01 2004.

31

[13] M. Hellmuth, D. Schaller, and P. F. Stadler, “Clustering systems of phylogenetic
networks,” Theory in Biosciences, vol. 142, no. 4, pp. 301–358, 2023.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, Third Edition. MIT Press, 2009.

32

Matematiska institutionen

Datalogi
www.math.su.se

Beräkningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

33

