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Abstract

This thesis project examines if the double descent phenomenon is exhibited by deep
neural networks for a regression problem. The phenomenon was first observed by
Nakkiran and others [1] for a classification problem. Three experiments are conducted
by training different sized feedforward neural networks for long periods (thousands of
iterations). Additionally, we investigate if model complexity increases over training
time by estimating a complexity measure called Effective Model Complexity. The
complexity measure is estimated by averaging over multiple initializations of models
and over multiple training data sets.

The results show that double descent is not exhibited by feedforward neural networks
for a regression problem. Furthermore, the results show that model complexity in-
creases over training time.

Sammanfattning

Denna avhandling undersöker om fenomenet "double descent" uppvisas av djupa neu-
rala nätverk för ett regressionsproblem. Fenomenet observerades först av Nakkiran
med flera [1] för ett klassificeringsproblem. Tre experiment utförs genom att träna
frammåtmatande neurala nätverk av olika storlekar under långa perioder (tusentals
iterationer). Dessutom undersöker vi om modell-komplexitet ökar med träningsti-
den genom att uppskatta ett komplexitetsmått kallat "Effective Model Complexity".
Komplexitetsmåttet uppskattas genom att ta medelvärdet över flera initialiseringar av
modeller och över flera träningsdatamängder.

Resultaten visar att "double descent" inte uppvisas av frammåtmatande neurala nätverk
för ett regressionsproblem. Vidare visar resultaten att modell-komplexitet ökar med
träningstiden.
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1 Introduction

In machine learning and statistics, we generally expect models to follow a "standard"
bias-variance trade-off curve. This means that as we increase the complexity of a
model, we expect to see it perform better on unseen data. At some point, it reaches
an optimal fit, after which it starts to perform increasingly worse on unseen data.
However, for models like deep neural networks, it has been observed that after some
threshold, the error starts to decrease again, hence the name "double descent." This
has been observed in [1].

Overall, there is an idea of what happens during this threshold, but since neural net-
works are essentially "black boxes," it remains elusive why this double descent occurs.
Furthermore, the paper [1] only demonstrates this phenomenon for classification prob-
lems. It shows that the phenomenon can occur when varying the size (width and
depth) of a model as well as the training time. This leads us to what this project
will cover. We are interested in investigating whether this double descent phenomenon
also occurs for regression problems. Therefore, we aim to perform similar analyses as
in the paper but on a regression problem using a feedforward network, incorporating
generalizations such as skip connections inspired by residual blocks [2].

As stated before, the bias-variance trade-off happens over varying model complex-
ity. Nakkiran and others [1] show that double descent happens over training time.
Moreover, Nakkiran and others [1] are not alone in showing some sort of bias-variance
trade-off over training time. There is a general suggestion that training time increases
model complexity. This is not something that has been rigorously shown, and thus
it is something we would like to investigate in this project. For this, we will define a
complexity measure called Effective Model Complexity, loosely defined as the largest
sample size n for which the expected training error is approximately zero, and inves-
tigate if this measure increases over training time.

We expect that the outcome of this project can inform us about the existence of the
double descent phenomenon in regression models, as well as the possible causes of such
behavior. The motivation for this is the importance of understanding the models we
are training. Since the aspiration is to later use these models in the real world, we
need to be able to understand them to trust them. This is especially important for
applications in medicine and fields where people’s lives could be greatly affected.
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2 Preliminaries and Methods

To understand the problem of double descent we first have to understand all of the
components possibly exhibiting the behaviour. Before we go further into neural net-
works we need look at the base of the problem that we are trying to solve. As well as
how neural networks go about to solve the problem.

2.1 Solving the regression problem

2.1.1 Regression
The goal of machine learning is to approximate some unknown point-target rule. This
rule we describe as some true function f∗. Since our problem is a regression problem
the function will be a mapping from some variables x = (x1, ..., xd), where d is the
number of features, to some continuous target variables y defined in some intervals
I. We will restrict ourselves to working with one target variable and thus y will be
restricted to the interval (a, b).

As a first assumption we say that we have some true function f∗ describing the rela-
tionship between x and y. We will also assume that we have some irreducible error
ϵ that can not be modeled. This irreducible error ϵ can for example be noise when
gathering data or possibly some rounding error. We now have that y can be written
as

y = f∗(x) + ϵ. (2.1)

Our goal has now been reduced down to approximating f∗(x) with a parametric fam-
ily f̂(x;θ) where θ are the parameters (A parametric family is essentially some model
that depends on parameters θ).

Now, we already have a way of approximating functions without neural networks.
This can be done with different kinds of regression, polynomial regression, exponential
regression et cetera. But to do this we need to have some sort of understanding of
the true function we are trying to model beforehand. If we, for example, have one
dimensional points x and targets y and know that the true underlying function is
an exponential one, we can use f̂(x;θ) = αeβx as our parametric family and find
parameters θ = (α, β) that best fit the data. The reason for using neural networks is
that we want to model the true underlying function without knowing anything about
it beforehand.
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2.1.2 Optimizing the model
Now that we have a regression problem, we want to find some solution to it. What we
will do is define a cost function which will tell us how good our model fits some data.
Then we can optimize the model using the cost function.

In the case of linear regression the cost function is mean squared error. In this case
the cost function is convex and there exists methods that guarantee the finding of a
global minimum. However, for neural networks most of the problems are non-convex
and finding a global minimum is not guaranteed. This means that the methods we
will use to optimize, can most likely end up in a local minimum of the cost function.

Now, a cost function J(θ) can be seen as a function that says how good some param-
eters are at modeling a data set. Sometimes the cost function J(θ) will be called the
loss function. When we refer to it as a loss function we are talking about it in some
arbitrary calculation. So in an arbitrary calculation we will refer to the value of the
loss function as the training loss, test loss or sometimes error loss. But as a general
function we call it a cost function.

Our optimization method will look something like, taking data points, feeding them
into the model, which gives us some prediction. Then we can compare the target vari-
ables the model has given us to the true target variables from the data set. We use
the cost function for this comparison. The information we get from the comparison
can then be used to update the model parameters in some optimal way. This process
is then repeated many times until some stopping criterion is met (this will be covered
later).

The method that will be used for updating the model parameters in an optimal way
will be what is called gradient descent.

2.1.3 Gradient descent
Optimization will in our case be minimizing some function F that depends on param-
eters θ. This will be done by varying θ. The parameters that give us the optimal
value will be denoted by θ∗ = argmin

θ
F (θ).

We begin with an example. In the two dimensional case take the function F (θ) =
θ21 + θ22. We call this a positively-definite function since it has one minimum which is
the global minimum and lies at the point θ∗ = (0, 0). Taking any other point θ which
is not θ∗ we want to somehow update θ and reach the minimum θ∗. For this specific
(convex) case it is just a matter of finding the roots of the derivative for the minimum.
But, as we remember, the cost function for neural networks is rarely such that this
can be done. This means that an iterative method has to be used.

The gradient ∇θF (θ) of a function at a point θ tells us the direction of most increase,



meaning that −∇θF (θ) will give us the direction of most decrease. For some ϵ, called
the learning rate, and θ ̸= θ∗ we have that

F (θ − ϵ∇θF (θ)) < F (θ).

Consequently, for any starting point θ we can calculate the gradient ∇θF (θ) and a
new point

θ′ = θ − ϵ∇θF (θ) (2.2)

which should in theory give us a point lower in value than for θ. Doing this iteratively
we should get that our final θ′ will be an approximation of θ∗.

2.1.4 Cost function and maximum likelihood
Previously we have mentioned a cost function as a means of evaluating how a model,
with some specific parameters, performs on some data. Now we will go further into
detail about the cost function and how it is derived. We will give two ways of inter-
pretation.

Earlier it was said that the goal is to estimate some sort of true function f∗. This
can also be though of as finding a distribution for the model that best fits the data’s
generating distribution. Thus, there exists two distributions, the real data generating
distribution pdata(x), which can be estimated with p̂data(x), and the model distribu-
tion pmodel(x;θ). Somehow we want to get the model distribution pmodel(x;θ) as close
to our estimate of the real one p̂data(x). Using something called information theory
we can quantify the (dis)similarity of two distributions and then use this to minimize
the distance between them.

We refer the reader to chapter 3 in [3] for more details on information theory. However,
the important thing to take away from information theory is that it gives us the ability
to quantify a distance between two distributions.

Using information theory we can define the information of an event, namely self infor-
mation.

Definition 2.1.1 (Self information). Let X ∼ P be a random variable. We define self
information of an event X = x as

I(x) = − logP (x). (2.3)

Now, self information only gives us information about a single event. However, we
would like to define something that quantifies information for an entire probability
distribution, namely the Shannon entropy.

Definition 2.1.2 (Shannon entropy). Let X ∼ P be a random variable. We define
the Shannon entropy as



H(X) = EX∼P [I(x)] = −EX∼P [logP (x)]. (2.4)

Furthermore, we can define a measure for quantifying the difference in information
between two distributions.

Definition 2.1.3 (Kullback-Leibler divergence). Let X ∼ P and X ∼ Q be two
distributions over a random variable. We define the Kullback-Leibler (KL) divergence
as

DKL(P∥Q) = EX∼P

[
log

P (x)

Q(x)

]
= EX∼P [logP (x)− logQ(x)]. (2.5)

Then, using the KL divergence we can define cross entropy (The reason for this defi-
nition will be clear later).

Definition 2.1.4 (Cross-entropy). Let X ∼ P and X ∼ Q be two distributions over
a random variable. We define the cross-entropy divergence as

H(P,Q) = H(P ) +DKL(P∥Q) = −EX∼P [logQ(x)]. (2.6)

With all of these definitions we recall that our goal was to make pmodel as close to
p̂data. Now we have a way of do so. Using the KL divergence we can measure the
similarity (distance) in information between these two distributions and then minimize
it somehow. Thus, using the KL divergence with P = p̂data and Q = pmodel we get
that

DKL(p̂data∥pmodel) = EX∼p̂data
[log p̂data(x)− log pmodel(x;θ)]. (2.7)

So, we have reduced the problem down to minimizing the KL divergence. Furthermore,
if we look at equation 2.7 we see that minimizing cross entropy with respect to θ leads
to minimization of the KL divergence, since in equation 2.6 H(P ) is just a constant
independent of θ. Therefore we can further reduce our problem to minimizing the
cross entropy between the estimated data distribution and the model distribution

H(p̂data, pmodel) = −EX∼p̂data
[log pmodel(x;θ)]. (2.8)

At this point it might not be entirely clear why we use cross entropy or what it means to
minimize it. Another way of getting to the same answer is to use maximum likelihood.
We begin by looking at the definition for maximum likelihood.

Definition 2.1.5 (Maximum likelihood). Let X = {x(1),x(2), . . . ,x(n)} be a random
sample of size n from our data distribution pdata(X) and let pmodel(X; θ) be a paramet-
ric family of probability distributions over the same space. The maximum likelihood
estimator for θ is

θML = argmax
θ

pmodel(X;θ) = argmax
θ

n∏
i=1

pmodel(x
(i);θ). (2.9)



Using this definition and using the log likelihood instead of the regular likelihood we
can simplify the problem. This can be done since taking the logarithm of a function
does not change the optimization problem. Conveniently we get that

θML = argmax
θ

log

(
n∏

i=1

pmodel(x
(i);θ)

)
= argmax

θ

n∑
i=1

log pmodel(x
(i);θ). (2.10)

Dividing by n we finally get that

θML = argmax
θ

EX∼p̂data
[log pmodel(x;θ)] . (2.11)

Instead of maximizing the term in equation 2.11 we can take the negation of it and
then change the problem to a minimization one. So we want to minimize

−EX∼p̂data
[log pmodel(x;θ)] (2.12)

which we see from equation 2.8 corresponds to minimizing the cross-entropy between
the data and model distributions.

Now since, our data consists of points and targets, the model and data distributions
are conditional as in p̂data(y |x) and pmodel(y |x;θ). According to [4] (page 133) the
maximum likelihood estimator can be generalized to this conditional case.

Consequently we have that our neural network will be trained using maximum like-
lihood. Which we saw comes down to minimizing the negative log-likelihood. Or as
we also saw, minimizing the cross-entropy between the training data and our model
distribution. Finally we say that the cost function is given by

J(θ) = −EX,Y∼p̂data
[log pmodel(y |x;θ)] . (2.13)

For our case of regression we will assume that our model is normally distributed, so
pmodel(y |x;θ) ∼ N(y; f̂(x;θ), σ2). This gives us that

J(θ) = −EX,Y∼p̂data

[
log

1

σ
√
2π

e
− 1

2

(
y−f̂(x;θ)

σ

)2
]

= −EX,Y∼p̂data

[
log

(
1

σ
√
2π

)
− 1

2

(
(y − f̂(x;θ))2

σ2

)]

=
1

2
EX,Y∼p̂data

[
(y − f̂(x;θ))2

]
+ constants.

Here the constants are from the variance of the distribution and these we will assume
are fixed. Toghether with the factor 1

2 the constants can be dismissed since they do
not change the minimization problem. Thus we get that the cost function reduces
down to the mean squared error



J(θ) =
1

n

n∑
i=1

(y(i) − f̂(x(i);θ))2. (2.14)

2.2 Feedforward neural networks
To this point we have only been looking at the shell of our machine learning algorithm
and now we will look at what will be under the shell.

Earlier we talked about a parametric family of functions f̂(x;θ) that will be used to
estimate the true function f∗. We will see that neural networks are precisely this
parametric family of functions.

2.2.1 What is a neural network?
The major motivation for using neural networks is that a large enough network with
a non-linear activation function can model any function. Or, at least, model the data
(that represents the function) to a high precision.

We will here only introduce the basic feedforward neural networks where information
flows forward from an input, through layers and in the end an output is given. The
body of our neural network will be something called a multi-layer perceptron (MLP).
It will consist of so called hidden layers, together with an output layer. The hidden
layers are simply put, a general linear transformation and translation. This linear
transformation together with a translation is sometimes called an affine transforma-
tion. lastly, between hidden layers, information is activated by an activation function.

Let x be a data point in the data set which will be the input to our MLP. Let y be the
the target variable or output and h(i) the vector at hidden layer i. Starting from the
input layer, the vector x is fed into the first hidden layer where it undergoes a linear
transformation and translation h(1) = W (1)x+ b(1) by a matrix W and vector b. The
vector in the first hidden layer h(1) is then activated by an activation function g and
we get the output of the hidden layer as z(1) = g(h(1)). This is then fed into the next
layer where the process is repeated. This process is iterated for some m > 0 number
of hidden layers until the output layer where we get the output. The output is again
an affine transformation to one variable y = W (m+1)z(m) + b(m+1), however this layer
lacks an activation by g.

Regarding the activation function g, there is no unique choice, rather it is a group of
non-linear functions that we can choose from. This will be further investigated later.

With neural networks comes quite some jargon. Sometimes we may refer to matrices
W (i) as weights and vectors b(i) as biases. The procedure or process of calculating an
output is called forward propagation. In addition, sometimes a hidden layer can be



seen as a collection of di number of units. A unit is sometimes also called a neuron.
We say that di gives us the dimension of the hidden layer i. The calculations that
would happen in each unit j ∈ 1, ..., di of a hidden layer i would be

j = 1 : h
(i)
1 = W

(i)
1 z(i−1) + b

(i)
1

j = 2 : h
(i)
2 = W

(i)
2 z(i−1) + b

(i)
2

...

j = di : h
(i)
di

= W
(i)
di

z(i−1) + b
(i)
di

where W
(i)
j is the j’th row of matrix W (i) and b

(i)
j the j’th element of vector b(i).

Lastly, we say that a unit is "active" if it produces a non-zero (and non-negative)
value after the activation function. Thus, a unit with value zero after the application
of ReLU is "non-active". The process of turning a non-active unit active is called
activating the unit.

The thought behind this type of network is that affine transformations are useful for
translations, rotations, reflections et cetera. However, the linear transformations lack
the ability to model non-linearites. Since we want to be able to model non-linearites,
an activation function is applied after the affine transformation.

The output layer will be different depending on if the problem is a regression or clas-
sification problem. As we saw above, in the case of regression the output layer will
be an affine transformation from the previous layer to one target variable y (you can
have multiple targets but as one might remember we restricted ourselves to one target
variable).

This is the basic feedforward neural network. An illustration of a neural networks is
given in figure 2.1.

2.2.2 Activation function
As earlier said, activation functions enable the modeling of non-linearities. There are
several common activation functions that one can use. In our case we will use Rectified
Linear Unit (ReLU) as an activation function. It is defined for some input h as

g(h) = max{0, h}.

As we see, ReLU sets all negative values to zero and keeps positive values as they are.
In the case of vectors it is applied element-wise.

Looking at the ReLU function we see that it has a very simple derivative, either one or
zero (if one sets the derivative equal to one at x = 0). In turn this gives the network
a gradient that is quite simple to calculate.



Figure 2.1: This is the general body of an MLP. Both figures represent the same MLP.
In the upper figure each circle represents a neuron whereas in the lower one
a circle represents a whole hidden layer. The x-values are the inputs, the
h-values the hidden units and y is the target value. In the figure below we
see how each next layer is calculated from a previous one. The function g
is the activation function and preceding layers are calculated using a linear
transformation by W (i) and translation by b(i).



Compared to a sigmoid activation function, defined as

σ(h) =
eh

1 + eh
,

ReLU also has the nice property of not saturating as much. For the sigmoidal function
we see that for values |h| > 4 the function is roughly zero or one. This means that on
most of the domain the sigmoidal function has essentially zero-valued gradients. Now,
gradients with good values (large enough) means a more stable and efficient training
procedure since the training procedure can continue. Looking at the update of gradi-
ent descent, gradients equal or close to zero means a small update of the parameters
and thus a procedure that has halted.

As with the sigmoid function, ReLU has the same "zero gradient" problem for values h
less than zero. However this is not considered a saturation case since half the domain
of ReLU still gives a unit derivative which overall contributes to a stable gradient.
If we can keep most data points with postive values then saturation should not be
a problem. However, if a hidden layer produces an output consisting of all negative
values then the gradient will be zero. This means that gradient descent stops learning.
This can be solved by altering ReLU such that no zero gradient exist, for example
using a Parametric Rectified Linear Unit (PReLU), defined as

g(h) =

{
h if h ≥ 0

αh if h < 0

where α ∈ R>0. Another solution for this problem will be seen in section 2.3.1 (Batch
normalization).

2.2.3 Architecture
Looking at the introduction of neural networks in section 2.2.1 one can see the many
ways of structuring a neural network. We refer to the structure of a network as ar-
chitecture. We will focus on two specific parameters of architecture, the amount of
hidden layers a network has and the dimension of each hidden layer.

The universal approximation theorem tells us that any function can be modeled us-
ing a neural network with only one hidden layer. But dependent on the complexity
(non-linearity and so on) of the function, the number of units in this one hidden layer
can be ten or ten million. This is where the motivation for more hidden layers comes
in. It has been shown by [5] that a deeper network with piece-wise linear activation
units may need considerably fewer units (in total) compared to a network with only
one hidden layer.

The main reason for this considerable difference is due to folding of the input space.
Folding can best be described by a small example. Assume that we have a network



with one input, one output, two hidden layers and we use ReLU as an activation func-
tion. In the first layer we have some d number of units. Thus the function produced by
this layer will be one with d linear regions. Further, the second layer gives rise to some
function and what essentially happens in forward propagation is that this function is
superimposed with each of the linear regions. This can be seen as we are folding the
input space in the first layer, then applying some function on top of that and lastly
unfolding. This is illustrated in figure 2.2. If we have multiple (more than two) hidden
layers in a row then we can see it as a chain of folds. Essentially what happens is that
the function is built up in a way where firstly, the network produces the "simplest"
version of the function. Then for each fold it builds more details on top of that simple
function. See it as we are constructing a house, where we first lay the groundwork,
then build up the body of the house with walls and such and lastly add decorations,
et cetera.

Additionally, looking at pictures of feedforward networks one will notice that networks
have a specific shape (there are some exceptions). First the dimension is increased as
we go along hidden layers and then decreased. This is tied to what we described as
folding. As we explained with this successively build up of a function for each layer
that is added we would like a finer precision. This is accomplished by making the
hidden layers larger (wider). Then we usually have one or a few target variable(s)
and thus the dimension of the hidden layers needs to eventually shrink and match the
dimension of the output unit.

2.3 Extending the standard MLP
There are some simple improvements that one can make to a MLP that can improve
the performance. Meaning that we find a better minimum faster and that the training
procedure is more stable.

2.3.1 Batch normalization
As we saw it is desired to have multiple hidden layers. But due to the multiplicative
structure of the network a problem with data points h being shifted and rescaled can
occur.

Later we will see that forward propagation will be carried out for the so called mini-
batches of vectors. So in each hidden layer i (step of forward propagation) we will
have a small batch of n′ number of vectors Bi = {h(i,1),h(i,2), ...,h(i,n′)} with n′ << n
where n is the total number of samples in the training set. This shifting and rescaling
problem can then be solved by normalizing each of these batches. This is done by
batch normalization which we now define.

Definition 2.3.1 (Batch normalization). Let BN be the function applied in a batch
normalization layer. For an element h in a minibatch B batch normalization is defined
as



Figure 2.2: In a) we see the structure of this particular neural network. We can also
look at it like two networks, one taking points x and mapping them to
targets y and one taking points y and mapping them to targets y′. In b)
we see that three points (gray dots) are mapped to the same value (blue
dot). This value is then in c) mapped to another value in y′. In d) we see
the whole mapping x to y′. Notice how the figure of d) is taking the line
in c) and applying it on each linear segment in figure b). Essentially, the
mapping in c) has been superimposed with the mapping in b) folded two
times. Figure taken from [6] (page 42).



BN (h) = γ · h− µB
σB

+ β. (2.15)

where division by σB and multiplication by γ is done pairwise.

Here µB is the sample mean of the minibatch B given by

µB =
1

|B|
∑
h∈B

h

and σB the sample variance of the same minibatch given by

σB =
1

|B|
∑
h∈B

(µB − h)2 + ϵ.

The small constant ϵ > 0 is added to ensure that divition by zero is not attempted.

As we see in equation 2.15 each batch is normalized to zero mean and unit variance.
However, the values in g are then rescaled to have mean γ and variance β. These
parameters are learnable and have the same shape as h. The parameters γ and β
are needed for the network to find a mean and variance that works well across all
minibatches.

As explained in [7] (section 8.5.2.1) there have been applications of batch normalization
where it is inserted before the activation function and applications where it is inserted
after the activation function. In our case we will implement batch normalization
before the activation function. The motivation for this is closely tied to the problem
we encountered in section 2.2.2 when talking about ReLU not saturating. As we saw,
it is the affine transformations that impose the value shifting and rescaling which batch
normalization then inverts or at least shifts data points closer to the origin. Now, if
enough values are shifted back into the positive domain then the SGD algorithm could
in the next iteration produce a gradient that activates non-active units. Meaning that
batch normalization further decreases the chance of a possible ReLU saturation.

2.3.2 Skip connections
In a MLP, for each layer that is added, the previous space of functions is not a proper
subset of the new one. Say that for one hidden layer we get a space of functions F1.
Adding another hidden layer would result in another space of functions F2 and so on.
Since data has to pass more layers the network will lose the ability to model some
of the simpler functions. Mathematically speaking we have that F1 ̸⊂ F2 ̸⊂ F3 · · · .
We can think of it as, the set of possible functions is moving in some direction for
every hidden layer that is added. This movement occurs in some unknown direction
in function space. Since the space of functions is (very) large there is a highly small
probability that this set will move toward the true function.



Figure 2.3: In a) we have a network with a single hidden layer (turquoise and violet)
and an output layer (orange). In b) we have taken the network in a)
and added another hidden layer. Additionally we have attached a skip
connection (blue) from the input x of the "skipping block" into the output
of the block. In the skip connection an affine transformation is applied and
then summed with the output of the "skipping block". Now, if we were to
turn of the "skipping block" by enforcing a zero mapping, the network in
b) would be identical to the one in a). However, the network in b) also has
the possibility of turning off (zero mapping) the skip connection and thus
acting as a network with two hidden layers.



Take the same example of having one layer and adding another. However, this time,
as in figure 2.3 b), we impose a mechanism for skipping a layer. Then, the model is
able to skip a layer and only use one of the layers. So the network will then be able to
model the space of functions F1. However, it would also be able to ignore the skipping
mechanism and use both layers to model the space of functions F2. With the inclusion
of the skipping mechanism, whenever we add a hidden layer we are increasing the
space of functions that the network is able to model in all dimensions. Mathematically
speaking we have that F1 ⊂ F2 ⊂ F3 · · · . Theoretically, as illustrated in figure 2.4,
for every hidden layer that is added the space of possible functions should be moving
closer to the true function.

It is important to remember that the dimension of the skip connections must match
the dimension of the hidden layer where the skip connection is added. This is the rea-
son an affine transformation is applied in the skip connection, as seen in blue in figure
2.3. Additionally, it is not required that the skip connection only skips one hidden
layer.

The original application of a mechanism for skipping hidden layers was done for a
convolutional neural network called ResNet [2]. In such a network the skip connections
are implemented such that the network has to learn a "residual mapping". However,
as we see in figure 2.3, this is not needed for our case since the network can simply
learn a zero mapping.

2.4 Optimizing the neural network
Now we present how we are going to optimize the neural network.

2.4.1 Stochastic gradient decent (SGD)
As said earlier, gradient descent will be used for optimization. We recall that the goal
was to optimize

J(θ) =
1

n

n∑
i=1

(y(i) − f̂(x(i);θ))2.

For gradient descent it is needed to calculate the gradient which will be

∇θJ(θ) =
1

n

n∑
i=1

∇θ(y
(i) − f̂(x(i);θ))2.

for the cost function J(θ).

In this case n gradients need to be computed. Now, if n is large and the model has
many parameters this calculation will take a lot of time. To reduce this time we
can split our data set into so called minibatches {B1,B2, ...,Bm} each consisting of n′



Figure 2.4: The left picture shows what adding layers to a neural network most likely
will have in effect. We see that the space of functions that a network can
model is moving in some direction in function space, but in this case not in
the direction of the true function f∗. In the right picture we see the same
procedure but with a skip connection implementation. Instead of moving
the function space in one direction the function space increases in multiple
directions. What essentially happens is that the network is more likely to
move in a direction closer to the true function. Picture inspired by figures
from [7] (section 8.6.1).



samples. Thus, if we have n samples and a size n′ there will be a total of m = ⌈ n
n′ ⌉

minibatches. Consequently this is no longer an accurate estimation of the gradient,
rather a rough estimate. The estimate will be given by

gt′ =
1

n′∇θ

∑
i∈Bt′

(y(i) − f̂(x(i);θ))2.

where t′ ∈ {1, ...,m}. Using this estimated gradient the parameters are updated as

θt′+1 = θ − ϵt′gt′ .

In this way, instead of having the computational cost O(n) for each update of the
parameters it has been reduced down to O(m), for each update. Thus, instead of
computing the exact gradient and making one update of the parameters the gradient
is estimated and in the end m updates of the parameters are made. This method is
what is called minibatch stochastic gradient descent.

Another maybe surprising effect of SGD is that the stochasticity itself actually helps
the algorithm to find a better local minimum. Since the problem is in general non-
convex there may exist multiple local minima. Furthermore if one has a situation
as in figure 2.5, regular gradient descent would get stuck in minimum "M2". While
SGD would most likely jump around in the minimum and could by chance escape
this shallow minimum. However one could say that there is a possibility for SGD to
estimate the gradient in a way that would make it jump up multiple times and into
a higher local minimum. This is a possible situation but is highly unlikely since we
expect the negative gradient to be pointing "downwards".

2.4.2 Back propagation
A problem with gradient descent for neural networks is that the network is essentially
many nested functions which in turn gives complicated gradients. For example, tak-
ing a three layer MLP the final model might look something like f̂(x) = s(h(k(x))).
Finding the gradient for this can be hard. The solution for this is what we call back
propagation.

Essentially, back propagation is an application of the chain rule. The whole algorithm
for this is quite technical and it is not needed to understand double descent. Hence,
we refer to other literature for explanation. For example, section 6.5 in [4].

2.4.3 ADAM
We said that SGD will be used for optimization. However, a variant of SGD will
instead be used, namely ADAM.

ADAM is a short name for "adaptive moments". It implements moments and momen-
tum which in turn have some important effects on the learning procedure. Here we will



Figure 2.5: The red line represents the actual topology of the cost function, MSE
stands for mean squared error and ω is a parameter in some theoretical
model. This figure is a scenario where stochastic gradient descent (SGD)
would perform better than regular gradient descent (GD). Say that both
algorithms start near ω = 0. Then GD could probably jump over the first
local maximum (left one) but it would have a problem with the second
one (right one). Whereas, SGD when randomly jumping around could
overcome that second maximum and find a lower minimum.

briefly explain the intuition of momentum and how it solves some problems. We refer
to section 8.5 in [4] for detailed explanation of momentum and [8] for an explanation
of moments.

The word momentum is very much tied to the physical phenomenon having to do with
velocity. In regular gradient descent the algorithm does not take into account the
gradients of previous parameter updates. But with the implementation of momentum
this is exactly what is done. The effect of this is an algorithm that learns faster and
one that can slow down once a good minimum is reached. It does not overshoot the
minimum and also helps the algorithm to move in directions where the gradient is
small. Take for example a ball rolling down a hill with valleys, the steeper the hill is at
some point the more velocity the ball is going to gain. Depending on the environment,
the ball might have enough momentum to skip some small valleys but once it reaches
a big enough valley it will find the lowest point in this valley.

Additionally momentum solves an issue that SGD has with long and narrow valleys
with steep walls. This is depicted and explained in figure 2.6.

2.4.4 Initialization
The initialization of the weights and biases in the neural network can have large effects
on finding a good minimum. There are two important issues that might arise from a



Figure 2.6: The figure represents a contour plot of a convex function with two vari-
ables. The red lines indicate the path that a SGD algorithm with momen-
tum takes. The arrows depict the parameter update that a normal SGD
algorithm would do in that specific point. We see that the Hessian matrix
has small values in the x1-direction and large in the x2-direction. This
means that a SGD algorithm without moments would have to take a lot of
steps rocking back and forth in the x2-direction and slowly moving in the
x1-direction. But an algorithm with momentum would gain velocity in the
x1-direction and thus faster reach the minimum.

badly initialized network.

The first problem is one with symmetry. As an example let us look at two arbitrary
units in a arbitrary hidden layer. If we initialize both units identically, then a de-
terministic training procedure will update these units the same way. An easy way of
solving this is by initializing the parameters randomly. However, one might remember
that we will be using a stochastic (non-deterministic) algorithm for optimization. Even
if a stochastic algorithm is used, as explained in [4] (page 301) a random initialization
is still preferred. Since then, each unit would have to compute a different function
which may help the algorithm from getting stuck in an unfavorable area of the search
space.

The second problem arises if, specifically the weights are initialized to large numbers.
Since the foundation of the network is built on nested matrix multiplication, too large
weight parameters may lead to exploding values in hidden layers. This is unwanted
since computers are limited to working with a certain size of numbers.

Another issue occurs when the values of weight parameters have a large variance. This
could lead to some units dominating over others. For example say that we have two
units A and B in some layer. Unit A produces a large number and unit B produces a
value close to zero. This is due to the fact that the unit in B has small weight values



and the unit in A large weight values. When the values of A and B are added into
preceding layers the value of unit A will dominate and essentially treat value B as
zero. This means that initializing with a large variance on weight values might lead to
some units being non-active before even starting any training.

In our case the second problem will not really be an issue since we use batch nor-
malization after every affine transformation. Since in a batch normalization layer the
variance is normalized to unit variance.

For our neural network we will use a random initialization from a Gaussian with mean
zero and variance 0.1 for the sake of convenience. According to [4] (page 302) the
choice of distribution does not matter that much.

2.5 Final training procedure
Now that we have all the pieces we can finally assemble them together and define
a training procedure. A training procedure T will be a neural network as described
above and an optimization algorithm. This training procedure is then trained on a
training set S.

The first step of the procedure is to split the data into minibatches B1,B2, ...,Bm.
Then iteratively for each minibatch we forward propagate, to calculate the loss, then
backward propagate to calculate the gradient and lastly update the model parameters
according to the ADAM algorithm. An iteration over all minibatches is called an epoch.

Training will then proceeded until some stopping criterion is met. In this study, we
employ early stopping to monitor the training and validation/test errors. In early
stopping a small validation/test set is created and the loss over this set is calculated
after an epoch. Then we say that the early stopping criterion is met and stop training
whenever this validation error does not decrease for some number of epochs, say ten
or twenty. But in our double descent experiment we want to train beyond what such a
criterion would allow us to and thus we will set the stopping criterion to a specific large
number, for example, 4000 epochs. This number is somehow based on our experience
on how many epochs is needed for the network to reach the lowest test error. Then it
is just a matter of deciding on a number much larger than this.

Finally, after stopping the training procedure, we get a classifier T (S).

2.6 Model evaluation and generalization

2.6.1 Bias variance trade-off
When a machine learning model is optimized it is done so on one data set, the train-
ing data. However, it is important to consider how the model is going to perform on



Figure 2.7: The figure shows the general structure of the network that will be used in
our experiments. Each hidden layer is represented by an affine transforma-
tion a batch normalization step and a activation step ("ReLU" in figure).
We have also visualized the skip connection which is an affine transforma-
tion that is then added in the preceding layer before the activation. We
call a block with one skip connection a skipping block and the final block
that does not implement a skip connection the output block. Notice that
the output block contains a output layer which is an affine transformation
to one variable y.



Figure 2.8: The leftmost figure shows a severely underfitted model. The central figure
shows an optimal fit and the rightmost a severely overfitted model.

new unseen data. We call this validation or test data. With the cross entropy as loss
function we thus get a test error or test loss. This test error can be split into two
parts, bias (squared) and variance. Bias is how far away we expect the predictions to
be to the data and variance is how varying the predictions are expected to be. Say, for
example, that our true function is a polynomial of degree five. Then using polynomial
regression as a model we see that a linear model (polynomial of degree one) would be
biased but have low variance. If the model is a polynomial of degree five then the fit
will be optimal. A polynomial of degree higher than five will have low bias since it can
fit the training data perfectly. However, it will have higher variance than the model
of degree five. This means that there is some model that results in an optimal fit and
then there are models that could either underfit or overfit the data. See figure 2.8 for
an example of an optimal fit and two extreme over- and underfitted cases, respectively.

As we saw with the example of polynomial regression, altering the "compleixty" of a
model, changes the bias and variance. The relationship, as one can observe in figure
2.9 is that for simpler models (low complexity) the bias is high yet variance is low and
as model complexity increases bias decreases and variance increases. This is termed
as bias variance trade-off. Now, since test error is a combination of bias and variance
we have that model complexity alters the test error and results in a curve as in figure
2.9.

2.7 Model complexity for neural networks
As we saw complexity is the key player in bias variance trade-off. Complexity is also
needed for comparing different machine learning models with each other. Say we have
two different models A and B and know that A and B have the same complexity.
Then we can see how they perform on a specific task and compare them with each
other. It is inappropriate to compare models with different complexities since it can
not be decided whether it is the complexity or the model itself that causes a difference
between the models.



Figure 2.9: This is a training curve that we expect to see. As we increase the com-
plexity we first go through a stage of underfitting where the model is still
learning the data and then a stage of overfitting where the model fits too
much to the training data.

For neural networks there is however a problem, since there is no obvious measure of
model complexity. In early stopping (chapter 7.8 figure 7.3) [4] the training time (i.e
number of epochs) serves the role of model complexity and in [1] (section 5) the model
size (width) is treated as a measure for complexity. Now, the problem is that we want
a more general measure of complexity. This is where we can define the Effective Model
Complexity (EMC).

2.7.1 Effective model complexity (EMC)
Definition 2.7.1. The Effective Model Complexity of a training procedure T with
respect to distribution D and a parameter ϵ > 0, is defined as

EMCD,ϵ(T ) := max{n | ES∼Dn [MSES(T )] ≤ ϵ} (2.16)

where MSES(T ) is the mean squared error of training procedure T on n number of
samples S = {(x0, y0), (x1, y1), ..., (xn, yn)}. Definition taken from [1].

A problem with this definition is that ϵ can vary depending on what kind of model
one uses. Thus we would sometimes want a simpler definition for EMC. From now on
we will define it as the maximal number of samples such that the model has expected
training loss (over the data distribution) roughly equal to zero.



At first glance it may seem that giving a model more data should decrease the training
error forever. However, this is not true if the model is simpler than the underlying
function it is trying to fit. This is where the intuition of EMC comes from, namely
that a model has some sort of complexity and can only fit a certain number of train-
ing samples near perfectly. As we can see in figure 2.10, after increasing the sample
size enough, the model can no longer fit all the training data perfectly, since it is not
complex enough, it is too simple.

The reason EMC is defined as an expected value over different data sets is because
data is randomly sampled and thus MSE is a random variable. This means that we
have to report it as a summary statistic of the random variable. For example if the
data set happens to consist of sample points in one simple part of the function this
will not give a representation of the complexity over the whole function, rather a rep-
resentation of that one simple part of the function.

Figure 2.10: The left graph shows a model f̂ that has been fit using the two sampled
data points marked in red. The data points have been sampled from the
true function f∗ (assume no irreducible error ϵ). Here we have a perfect
fit and the training error will always be zero for any two sampled points
from f∗. The right graph shows the same model but one that has been
fit on more data points. By increasing the number of data points we have
increased the training error.

As a further way of understanding EMC we can look at how EMC reduces down to the
order of the polynomial for polynomial regression. Take the case where we have a data
set S = {(x1, y1), ..., (xn, yn)} and a model f̂(x;β) = β1x+ β2x

2 + β3x
3 + · · ·+ βpx

p.
Here p is the order of the polynomial and n the number of data points. Fitting this
model is done by solving the system of equations



y = Xβ ⇐⇒


y1
y2
...
yn

 =


x1 x2

1 · · · xp
1

x2 x2
2 · · · xp

2
...

...
. . .

...
xn x2

n · · · xp
n

×


β1

β2

...
βp

 .

Now, there are three potential cases regarding solutions for different sizes of n and p.
We can have that n < p, n = p or n > p. For the first two we will either have an
underdeterimed system of equations or a system where we have a unique solution. For
the underdetermined system of equations we will either have infinitely many solutions
or none. For both the underdetermined and uinque solution case the solution will fit
the data such that the training loss is zero. However, when n > p we have an overde-
termined system of equations which does not have any solution. Rather we will have
to estimate a solution and so the training error will no longer be zero.

Thus the maximal number of samples for when the polynomial model has training
error zero, or the EMC of it, will be the order of the polynomial.

2.7.2 Estimating EMC.
The method for estimating EMC will firstly be averaging over multiple training sets.
Furthermore we have to take into account the fact that a training procedure contains
randomness. Thus averaging over multiple training procedures with different initial-
ization but on the same data set is needed. If we average over δ number of training sets
and initialize ι number of different networks for each training set, the total number of
classifiers will be δ · ι.

The estimation of expected training error will be as following. Assume that we have
some training sets S(1), S(2), ..., S(δ) and training procedures T (1), T (2), ..., T (ι). The
estimated expected training loss of this ensemble at training step (epoch) t will be

µ̂ =
1

δ · ι

δ∑
j=1

ι∑
k=1

MSES(j)(T (k)
t )

where MSE is the mean squared error on the given data set of the particular training
procedure.

Now, from the more relaxed definition of EMC we also have to define what it means
in our case that the expected training loss is roughly equal to zero. Assume as a
null hypothesis that the expected value of a model that has zero training error is
µerror = σnoise. The reason for choosing σnoise is that it is somehow a measure of the
training error for an optimal model. See figure 2.11 for a further explanation. We can



Figure 2.11: From the bias variance trade-off we know that a model starts to overfit at
the marked point in the figure. Assuming that at this point we have a fit
that is close to the true function f∗ (like the middle plot in figure 2.8) we
know that the MSE of the training error will roughly be equal to σnoise.
Thus, σnoise is an approximation for training error for when a model is
overfitted.

then test our test statistic µ̂ against µerror. We will use a confidence interval with a
99% confidence level for this. In the case where the null hypothesis is not rejected we
say that the model has training error roughly equal to zero.

2.8 Double descent
It has been shown [1] that the bias variance trade-off from section 2.6.1 does not show
the whole picture of how large neural networks generalize on new unseen data. Specif-
ically, for a classification problem, there is evidence that test error decreases again
after some threshold, as shown in figure 2.12. The paper [1] shows that double descent
happens epoch-wise and model-wise as shown in figure 2.12. Epoch-wise refers to a
relation between test error and training time for a fixed model. Model-wise refers to
a relation between test error and model size (depth and width) for a fixed epoch.

To test if double descent happens for regression we are going to train different sized
networks beyond what early stopping would allow. We will focus on the epoch-wise
double descent.



Figure 2.12: The figure shows the test error curve over training time for three different
models. All models are ResNet models with width parameters 3, 12 and
64. All models are trained for four thousand epochs. We see that the large
model exhibits the double descent phenomenon. The test error follows the
original bias variance trade-off curve until epoch 100 where after we see
another descent. Picture taken from [1].



For this experiment we would like the network we are going to train to overfit. When
we say overfit we really mean that the training error should be close to zero. This
is because in [1] they observed that the second descent in double descent occurs once
training error is close to zero. For overfitting to occur we need a sufficiently large
network that can fit the given training set.

To find a network that is able to do this we can increase the size of the network. This
can be done until there are indications that a larger network would not perform better.
A simple way of analyzing this is by looking at the distribution of the weight parame-
ters and monitor how they evolve throughout training, taking snapshots around every
500 epochs. Now, if many weight parameters are zero or close to zero this means that
many units are non-active. If this problem persists for a long training period this may
mean that the network is too large and many units are inactivated. Thus, a larger
network would just add redundant units.

Another way of analyzing a training procedure is by looking at how the first and sec-
ond moments of the optimization algorithm evolve over time. We expect moments to
be larger in early stages of training and then decrease to smaller values. This would
suggest that the algorithm has done some searching and found a good minimum.

It is important to note that in the paper [1] they use 0-1 error for the test loss.

Definition 2.8.1 (0-1 loss function). Let X×Y = {(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))}
be a data set where n is the number of samples and U = {f̂(x(1)), f̂(x(2)), ..., f̂(x(n))}
their corresponding predictors for some model M . Elements in Y and U can be of
some m number of classes c1, c2, ..., cm. We define the 0-1 loss function as

L01(Y,U) =
1

n

n∑
i=1

φ(y(i), f̂(x(i)))

where φ(y(i), f̂(x(i))) =

{
1, if y(i) = f̂(x(i))

0, otherwise
.

For the case of regression problems there is no real equivalent to the 0-1 error and so
we will have to use cross entropy (mean squared error in regression case) for the test
loss.

2.9 Data
Simulating our own data set gives us more flexibility. We can choose how simple or
complex we want our data to be. After this we can find a model that will be complex
enough to fit the data. Choosing all of these factors makes it possible for us to tune
the complexity of the data (and thus the model) to match the computational power
that we have available. Additionally using simulated data means that we do not have



to worry about running out of uncorrelated data sets for the estimation of EMC.

When talking about the complexity of data we mean how nonlinear it is. It is also
important to remember that the more non-linear a function is the more data is needed
to fully represent the function. For example, for a sinusoidal function we need more
data points than say a polynomial of order two to represent the function in the interval
[0, 5].

2.9.1 Choosing a function
If we take a trigonometric function (or a combination of them) then there are essentially
three factors that determine its degree of nonlinearity.

1. The range of the function, so the difference between the minimum and maximum
value.

2. The amount of oscillations, how frequent the bumps are.

3. How different the heights of bumps are.

So we see that trigonometric functions are good candidates for our purpose since they
give multiple aspects of non-linearity.

Additionally we would like to parameterize this function such that we can tune the
non-linearity. The parametrization should be such that only one variable is needed to
change the non-linearity. Take the function

f(c, k, x⃗) = k · [sin((c− k) · x⃗) + cos((c− k) · x⃗)] .

Setting c to some number we can increase k > c and get more frequent bumps. This
also results in increasing the range or the amplitude of the function. Increasing c will
as a whole increase the rate at which the range increased when increasing k.

Now we can use a model and then simulate a data set for it in a way that allows us to
investigate some desired property of the training procedure, for example overfitting.

2.9.2 Creating a data set
Let Xn = {x(1),x(2), ...,x(n)} be the set of n number of data points where dim(x) = 5
and each component xi ∈ x, i ∈ {1, .., 5} is sampled from a uniform distribution U[−a,a]

where a ∈ R\{0}. Let Yn = {y(1) = f(x(1))+ϵ, y(2) = f(x(2))+ϵ, ..., y(n) = f(x(n))+ϵ}
be the respective target variables given by the function

f(x = {x1, x2, x3, x4, x5})

= k · { sin[(c− k) · x1x3] + cos[(c− k) · x1x2x4] + sin[(c− k) · x2x3x5] }.



where ϵ ∼ N(0, σ2
noise) is a random variable representing the added Gaussian noise.

The variance σ2
noise is calculated such that the signal-to-noise ratio

SD(f(x))

σnoise
= rstn

where rstn = 10. This is done using a simulation where we sample roughly 25 million
points x uniformly on the range [−a, a] and calculate the standard deviation on the
respective targets f(x).

For the estimation of EMC a simplification of the data set will be made. Instead of
using all five variables the data is simplified to three variables by setting the last two
to the value of one, meaning that x = {x1, x2, x3, 1, 1}. This enables the networks
to faster learn the function which is important since we are limited by computational
power.



3 Results

For all tests using neural networks we used the PyTorch framework running on Python
3.10. The training procedure was similar to the one in this (The Training Loop)
tutorial.

3.1 Double descent experiments
To test if the epoch-wise double descent occurs in a regression problem we used five
different sized neural networks. The structures of each network are as in table 3.2.
Each model is evaluated on a test set with samples such that the ratio of training data
to test data is 70/30.

Three experiments were conducted. Each experiment was done on the same models
but on different true underlying functions. The first experiment was picked out by
trial and error such that one could observe an epoch-wise overfitting. This is since our
goal was for the model to overfit epoch-wise. Then it was a matter of training the each
network for a large number of epochs. The other two experiments were conducted
to see if increasing the complexity of the true underlying function would affect the
outcome. Furthermore, the third experiment was conducted on a smaller sample size
than the first two. The motivation was that networks on such a function would overfit
faster on a smaller sample size and potentially affect the outcome somehow.

The first experiment was conducted with parameters as in the second column in table
3.1. As we see in figure 3.1 there is a standard bias variance trade-off epoch-wise curve
for all networks except the "small" one.

For the second experiment, with parameters as in column three in table 3.1, we see in
figure 3.2 that no double descent is exhibited. Over epochs we do not see the typical
bias variance trade-off curve. However, if we look at the larger models ("large" and
"huge") we see that test error, for epochs 2000 and greater, is higher than for the
"medium" model. This could indicate a model-wise bias variance trade-off, for larger
epochs.

For the third and final experiment we increased the complexity of the function further
and reduced the sample size to 5000. See column four in table 3.1 for details. The re-
sults in 3.3 suggest a model-wise regular bias variance trade-off and no double descent
epoch-wise.
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Experiment 1 2 3

Sample size 10k 10k 5k

Noise standard
error 0.250 0.348 0.397

Minibatch size 50 50 50

LR ADAM 0.001 0.001 0.001

Betas
ADAM 0.9 and 0.99 0.9 and 0.99 0.9 and 0.99

c 2 2.7 3.5

k 2.5 3.2 3.9

a 3 2.6 2.5

Table 3.1: The setup for each experiment as described in section 3.1. Each network
was trained for 4000 epochs. The learning rate is denoted as "LR".

Network "Small" "Medium" "Large" "Huge" "Extreme"

Number of
skipping blocks 2 4 6 8 14

Number of
parameters 317 1555 5773 12527 83337

Table 3.2: Table that shows the number of skipping blocks and total number of pa-
rameters in each type of neural network.



Figure 3.1: The upper plot shows four test error curves for four different sized networks
as in table 3.2 The lower plot shows the training curve for an "extreme"
network. Experiment one.



Figure 3.2: The figure shows four test error curves for four different sized networks
as in table 3.2. The lower plot shows the training curve for an "extreme"
network. The lower plot has been limited to a maximal MSE of 12 due to
some extremely large values in the test error at certain epochs. Experiment
two.



Figure 3.3: The upper plot shows four test error curves for four different sized networks
as in table 3.2. The lower plot shows the training curve for an "extreme"
network. Experiment three.



Looking at all three results we see that the more complex a function is the larger the
optimal (one that minimizes test error) network has to be. Now, this is something
that is expected asymptotically, meaning as we increase the number of epochs to
significantly large numbers. Since for smaller number of epochs smaller models will
not have had time to fit to their maximal potential. For example looking at the upper
plot in figure 3.1 we see that for epoch 100 that the "large" model performs best
(lowest error), where as for epoch 1000 and higher the "small" model performs best.
Additionally we see that all "extreme" models overfit since the training error is roughly
zero for all models around 4000 epochs. However the test errors all indicate that once
the models have overfitted test error does not change in any significant way. This
would imply that once a model has overfitted it has found some minimum and train-
ing for longer will just mean no large updates in the optimization algorithm. This is
also seen in the moments in figure 3.4. We see that the moments for larger epochs
tends to zero.

As mentioned in section 2.8 in the original study of double descent [1] they used cross
entropy to train the model yet 0-1 error to evaluate it. As we saw in definition 2.8.1,
the 0-1 error is the ratio of correct classifications on a test set. Whereas cross entropy
gives more information than the fact that the prediction was the right class or not.
Cross entropy gives a probability distribution over all the classes. Meaning, if we are
predicting two classes "cat" and "dog" cross entropy could give us more information
about the classification. Something like Pr(dog) = 0.8 and Pr(cat) = 0.2 while the
0-1 error would just say if the classification is correct or not.

Now all three experiments above suggest that double descent does not occur for a
regression problem when evaluating the model using cross entropy as loss. However,
further developing the discussion above, this could either mean that double descent
does not occur for regression problems or that double descent does not occur when
evaluating the model using cross entropy.

Theoretically double descent does not make sense for regression when using cross en-
tropy for evaluation. It would be quite strange that a models training error would
constantly be decreasing and that at some point of overfitting it would stop overfitting
and start to generalize better. The only scenario that seems plausible is something
like we see in figure 3.5. However, the chances of such a scenario are highly unlikely.

3.2 EMC estimation
For the estimation of EMC we used a setup as in table 3.3. For each sample size
we trained five networks, each on ten different data sets S. Thus, averaging over 50
different training procedures for the estimation.

The results in figure 3.6 suggest that EMC increases over epochs. Furthermore, again



Figure 3.4: The figure shows the norm of the first and second moments over epochs
for the training of "extreme" networks in experiments one to three. The
"norm" is the mean Frobenius norm of tensors associated with the first
and second moments.



Figure 3.5: This is scenario where the training error is low since the model is overfitted.
But the test error is also low since the overfited model happens to also fit
the test data quite well. The model has to make this sort of fit without
knowing the test data.

Figure 3.6: The figure shows the plot for EMC n (y-axis) over epochs (x-axis). The
number n in EMC is as in definition 2.7.1.



Network LR Betas ADAM Epochs a c k Minibatch size

"Small" 0.1 0.9 and 0.999 120 1.5 2 2.8 20

Table 3.3: Setup for training procedures for the estimation of EMC. The learning rate
is denoted as "LR".

looking at figure 3.6 one can see that the bottom axis starts at around 50 epochs. This
is due to the fact that it takes some time for a neural network to reach zero training
error.

EMC is a solid definition, theoretically, while practically, some problems occur. The
obvious one is that it is hard to estimate, especially for more complex problems that
require larger models and larger data sets. Furthermore, as we said, neural networks
can not reach close to zero training error for early epochs (For more difficult problems
this number could be quite large). Thus we can not estimate EMC for these regions
making the definition limited.

Another downside is something that happens when the model is sufficiently large.
When estimating EMC the training is done on different sample sizes and then it is
decided when training error is no longer close to zero. This is where a problem occurs.
Since for smaller sample sizes a larger learning rate is needed to find a proper minimum
than when training on a larger sample size. See figures 3.7 and 3.8 for more clarity. A
solution to this would be decreasing the learning rate as we increase sample size. But
the problem is that changing the learning rate changes the training procedure. This
can not be done since the estimation of the complexity should be performed with a
fixed training procedure as described in section 2.5.

3.3 Evaluation
The results for the experiments on double descent are mostly limited in the sense that
we are restricted by computational power. In the original double descent paper the
phenomenon was exhibited by a neural network with close to thirty million parameters.
Comparing this to the number of samples used (60k) the difference is huge compared
to our experiments. It may be so that the networks used in our experiments are just
not large enough for us to see a double descent.

As we saw in definition 2.7.1 for EMC, there exists a parameter ϵ that needs to be
decided. As we saw in section 2.7.2, using some intuitive argument we can find a
candidate σnoise for ϵ. However, it is not appropriate to set ϵ = σnoise and instead
we used a statistical test (using σnoise) to evaluate when expected training error for a
model is roughly equal to zero. This way of deciding when a model has zero training
error is more rigorous than arbitrarily deciding on some value for ϵ.



Figure 3.7: This is a simplified figure where the parameter w somehow represents the
parameters of a neural network as a whole. If we look at the left figure, for
a smaller sample size a small change in some parameters does not affect
the training loss that much since we have so many weights. As we see
in figure 3.8 we could probably alter multiple units and this would barely
affect the training loss. So for smaller sample sizes we will have a flatter
surface. Now, looking at the right figure, for a larger sample size, changing
a couple of weights will affect the error loss more, since the loss is relying
on more samples modeled by less wights in comparison to the case with a
smaller sample size.



Figure 3.8: The red dots in the figure represent data points in some theoretical train-
ing set. In the figure we see that for a larger sample size a), changing
some parameters of our model (blue line) alters the loss (MSE) more than
changing the same parameters but on a smaller sample size b). Thus, for
a smaller sample size there are more parameters that can be alerted such
that the training loss is barley affected.



4 Conclusion

The goal of this thesis was to investigate if the double descent phenomenon presented
by Nakkiran and others in [1] for classification problems occurs for a regression prob-
lem. Additionally, we desired to investigate how training time for feedforward neural
networks alters the model complexity by defining and estimating a complexity measure
called Effective Model Complexity (EMC). The main methods used for this were the
following.

1. Training a neural network with skip connections and batch normalization using
the ADAM algorithm.

2. Estimating EMC for a neural network using averaging over an ensemble of train-
ing procedures. Repeating this process for different sample sizes. Then evalu-
ating that each ensemble has reached a sufficiently low training error using a
statistical test.

The results from estimating EMC suggests that it does increase over training time.
Thus giving us some evidence that model complexity for neural networks increases
over training time.

For double descent the results showed that the phenomenon is not exhibited by feed-
forward neural networks for a regression problem.

Finally, it remains elusive why double descent happens for classification problems and
further studies need to be performed. This thesis also reminds us about the concerns
raised in the introduction. The difficulty of trusting a machine learning model that one
might not fully understand the works of. The future thus holds many studies about
understanding machine learning and artificial intelligence.

4.1 Future directions
As we saw with EMC it is theoretically a good definition but is hard to estimate.
The techniques used in this study may be too simple and thus further studies need
to be performed to find alternative approaches to estimate EMC. The key aspect is
determining when a training procedure has reached zero training error.

EMC is not the only way to quantify and measure complexity for neural networks.
It would thus be an intriguing aspect if and how different measures align with our
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observations that training time tends to increase model complexity.

Lastly, the field of deep learning for regression is quite new and unexplored. It differs
from the case of classification problems and thus everything we know about classifica-
tion problems may not be applicable to regression problems. Meaning, just like with
the double descent phenomenon, research on other phenomena exhibited by neural
networks on classification problems need to be performed. For example

• The stability of a model against noise.

• Transfer learning.

• Attacks on machine learning algorithms and on defenses against such attacks.

And many more!
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