
Kandidatuppsats i datalogi
Bachelor Thesis in Computer Science

Genome visualization tool for
general use, Input Generated
Genome Browser
Danilo Catalan Canales

Handledare: Lars Arvestad
Examinator: Marc Hellmuth
Inlämningsdatum: January 2, 2024

Abstract

This study presents the development of a gene visualization
tool called Input Generated Gene Browser aimed at
providing a user friendly gene browser. The tool addresses
the limitations of some gene browsers by letting users input
their own data for visualization. The focus of the tool is on
visualizing genomes, which represents the presence of
multiple genes on the same chromosome. The tool utilizes
pillars and tracks, where pillars represent homologous genes
and tracks represent genome segments. The visualization
algorithms employed in the tool allow for the analysis of
gene order and synteny. The implementation of the tool
utilizes the React framework and Next.js, with deployment
facilitated by Vercel. The results demonstrate the successful
creation of a gene browser with user friendly features for
visualizing genetic information. The tool would offer
flexibility and usability for bioinformatics and scientists to
take advantage of.

Sammanfattning

Denna studie presenterar utvecklingen av ett
genvisualiseringsverktyg som kallas Input Generated Gene
Browser. Detta verktyg syftar till att vara ett
användarvänligt visualiseringsverktyg. Studien pekar ut
begränsningar hos vissa genvisualiseringsverktyg genom att
erbjuda användare möjligheten att kunna mata in sina egna
data för visualisering. Verktyget fokuserar på att visualisera
genomisk synteni, vilket innebär närvaron av flera gener på
samma kromosom utan behov av information om relativ
order eller avstånd. Verktyget använder så kallade “pillars”
och “tracks”, där “pillars” representerar homologa gener och
“tracks” representerar genomsegment.
Visualiseringsverktyget möjliggör analys av genordning och
synteni. Implementeringen av verktyget använder sig av
React och Next.js samt Vercel som ger möjlighet att
framställa webbsidan för visualiseringsverktyget. Resultatet
visar att det har skapats en lyckad “genome browser” med
användarvänliga funktioner för visualisering av genetisk
information. Verktyget erbjuder flexibilitet och
användbarhet som forskare och bioinformatiker kan använda
sig av.

Contents

1 Introduction 6
1.1 Background 6
1.2 Problem Description 7
1.3 Aim . 7
1.4 Delimitations 8
1.5 Outline . 8

2 Theory 9
2.1 Synteny . 9
2.2 Homologs 10

2.2.1 Paralogs, whole genome duplication
& Ohnologs 10

2.3 Data structure 10
2.3.1 Pillar & order file 11

2.4 React Framework, Next.js and Vercel 13
2.5 Visualization Algorithms 15

2.5.1 Ordering by order file 15
2.5.2 Displaying without order file 16
2.5.3 Hex coloring 17

3 Method 18
3.1 Web Application 18
3.2 Layout design 18
3.3 Data management 21

3.3.1 Test Data 22
3.4 Styling the output 22
3.5 Study Limitations 22

4 Results 23
4.1 User input 23
4.2 Gene browser 25

4.2.1 Filter features & information display . 26

4.3 React Development 27
4.4 Design changes 28

5 Conclusion 29
5.1 Discussion 29
5.2 Evaluation 29

1 Introduction

Gene browsers today offer the ability to visualize genetic
information, but they often lack compatibility with data
from other sources, which could be an important feature
missing in some of the gene browsers.

1.1 Background

Bioinformatics involves using computer technology to
handle biological data. By organizing and visualizing genes,
scientists can potentially improve our comprehension of
biological data. [1].

Gene browsers are a type of software that helps visualize
sequences of genetic information in a relevant manner to
the user. Such software could have a number of
applications to assist the user analyze different strains of
genetic information [2].

A gene browser created by Byrne and Wolfe [3] focuses on
facilitating visual comparison and computational analysis of
synteny relationships in yeast. It is called yeast gene
order browser, or YGOB, and it’s based on a
homologous set of genes that have been collected for their
respective sequence similarity and synteny. Homologous
genes are kept in a matrix called pillars. YGOB examines
consequences due to an event called whole genome
duplication, or WGD, by visualizing genomes of species
pre- and post-WGD. Whole genome duplication implies that
a gene copies and attaches itself to the genome. Pre-WGD
refers to species that existed before undergoing a
whole-genome duplication (WGD) event, while Post-WGD
refers to species that have undergone a WGD event in their

evolutionary history.

Even though there are several genome browsers, I will use
YGOB as reference as it misses the feature of having user
input to their browser. I will also be using their database as
input reference for this project.

1.2 Problem Description

While gene browsers today offer valuable visualization
capabilities for genetic information, their limited
compatibility hampers their widespread usability. This issue
prevents researchers and users from efficiently accessing and
utilizing these tools for various genetic analysis tasks.
Ensuring general compatibility for gene browsers is
necessary to enable broader access and utilization of these
tools by researchers and scientists from diverse disciplines.
It would allow for more efficient and refined workflows, as
researchers could seamlessly integrate gene browsers into
their existing computational pipelines. Overall, improving
compatibility for general use in gene browsers is essential for
enhancing their usability and empowering researchers to
explore and analyze genetic information more effectively.

1.3 Aim

The aim of this thesis is to create a gene browser, similar to
Byrne and Wolfe’s Yeast Gene Order Browser, where the key
feature of the browser is for the user to provide data to be
visualized. This is to benefit a broader use when it comes to
visualizing data which could be made by independent users.

1.4 Delimitations

This study will focus on creating a usable gene browser along
with two key features. The genome browser will display genes
provided by the user and their gene order. The two features
will be for the user to decide the length of the tracks displayed
and order the genes after a focused gene. Most of the user
experience and visual design will be kept as simple as possible
to make it easy to use, maintain a clear focus on visualizing
the gene data and overall optimize the user experience.

1.5 Outline

This study contains four sections. Section 2 will present
necessary theory required to comprehend the visualization
aspects of the browser, including the structure of user input
and the components utilized to create the gene browser.
Section 3 will discuss the approach of different components
and some design choices. The last section will talk about
the final result in addition to discussing positive and
possible negative outcomes of the created gene browser.

2 Theory

In this chapter I will discuss further on the theory behind what
will be visualized, data structures and the reasoning behind
it. Lastly, I will briefly explain what React and Vercel is.

2.1 Synteny

Synteny is an important concept due to the context it
provides for the visualization tool. Gene synteny is
defined as the presence of two or more genes on the same
chromosome of a given species, where no information of
relative order or distance between them is necessary [4]. It’s
specifically talked about in this manner for bioinformatics,
but the term is used slightly differently in genomics where it
refers to the conservation of the gene order and
organization within a single genome.

Figure 1: Each line represents a chromosome and each dot separates a region. a) Genes
a,b and c are syntenic since they are present in the same chromosome however genes e
and d are not. b) Genes a/a1, b/b1 and c/c1 are syntenic in both species A and B.

As can be observed in Figure 1 synteny does not necessarily
imply order, but what is important is the synteny
relationship shared among species. Synteny relationship is
when two species share synteny between genes , as shown in

figure 1 b). In Figure 1 we can observe the different synteny
types that will be visualized in the browser that is to be
created.

2.2 Homologs

Homologs are genes that share a common ancestor. These
gene sequences can be related in two ways. Firstly, when a
species splits into two different species through speciation,
the related gene sequences are called orthologs. Secondly,
gene duplication occurs when a segment, the entire gene,
chromosome or genomes duplicates and integrates into the
chromosome, resulting in duplicated gene sequences known
as paralogs.

2.2.1 Paralogs, whole genome duplication & Ohnologs

When a gene has been duplicated, the resulting two copies
are called paralogs. Whole genome duplication replicates
the complete genetic information [5]. Through evolution,
whole genome duplication has played an important role
when it comes to the development of organisms.
Ohnologs represent the paralogous genes as a result from
WGD. Ohnlogs, as well as paralogs, can provide a genetic
basis for rapid evolutionary change by creating redundancy
in the genome, allowing for genetic innovations and
functional variety.

2.3 Data structure

The study bases its algorithms on the YGOB data structure,
therefore, I will first go through the pillar data originally
used in YGOB before talking about the input format that is
used in this study.
The pillar file from YGOB contains a matrix where the rows

are homologous genes shared among the species and the
columns represent the species. The homologous genes on
the rows are represented by a unique identifier, also called
accessions, to the species. The pillar’s assignment is to
store homology across the different species. The gene
occupies the slot for each species if it has it and if it doesn’t
it stays vacant [3], as shown in Table 1. The columns are
called tracks and the rows are called pillars.

- - - g1 g1 g1
g2 - - - g2 - - -
g3 - - - - - - g3

Table 1: The table displays how the pillars and tracks work. Every row is a pillar which
holds a gene identifier and displays a gene across the different columns. The columns are
the tracks representing the species. If the species doesn’t have the gene it is left blank,
represented by the three hyphens.

2.3.1 Pillar & order file

There should be two types of input for the browser: A pillar
input and an order input. For every species, or track, there
should be one order file input with their respective species
name as file name to match with the track from the pillar
input.
The pillar file for the pillar input should resemble the pillar file
from YGOB, but distinct itself in the first row. The first row
should hold the name of every species to tell the algorithm
which species is in what track, or column, as shown in Table
2. The remaining rows represent a pillar, as shown in Table
1.

Species 1 Species 2 Species 3 Species N
- - - gene 1 - - - gene 1

gene 2 - - - gene 2 - - -
gene N gene N gene N gene N

Table 2: An example showing how a pillar file should look like. First row is the name of
each species. The following rows display the genes one at a time. If the species has the
gene it will be displayed in the same row. If it doesn’t have the gene it will be replaced by
three hyphens.

The order file should contain the gene order for the species,
accompanied by additional information about each gene.
This information is limited to three different slots. The first
slot is the name of the gene identifier, the second tells us
which gene assembly identifier (chromosome, scaffold
or contig) it’s has and the third tells about the gene
orientation, as shown in Table 3.

Gene Name
Chromosome,
Scaffold or Contig
Name

Orientation
(W=Watson,
C=Crick)

Table 3: The table shows how the information should be placed on a order file for every
gene.

Chromosomes are a type of structure made of DNA that
carries genetic information. A chromosome is sequenced and
assembled into chromosome assemblies. The assemblies are
made up of smaller sequences called contigs and supporting
structures called scaffolds. A contig is a contiguous DNA
sequence which is assembled from smaller DNA fragments, or
reads, obtained during DNA sequencing. Scaffolds support
the assembly by organizing and connecting contigs to create
higher-level representations of genomes. Both contigs and
scaffolds are essential to form a genome assembly.
In DNA sequencing the orientation refers to the direction or
alignment of DNA strands. The two orientations are
forward orientation, also called Watson Orientation

or sense, and reverse orientation, also called Crick
Orientation or antisense. These two strands are
complementary DNA strands that make up the double helix
structure [6].

Gene 1 Chr 1 W
Gene 2 Chr 1 C
Gene 3 Chr 2 —

Table 4: An example showing how an order file could look like. First column is the name
of the gene, the second column is which section of the DNA the gene is positioned and
the last column tells us the orientation.

The order file should have the same structure as Table 4.
The genes should be placed in order and each column should
be filled out respectively and if the information isn’t available
it should be filled out by three hyphens.

2.4 React Framework, Next.js and Vercel

Next.js is an open-source framework for building server-side
rendered and statically generated React applications. It’s
built upon React and Node.js, which is an open-source and
server-side runtime environment. React is a JavaScript
library used for building user interfaces in web
applications. It has a component-based structure, which
allows for reusable UI components and building
sophisticated user interfaces. Some of the key features that
will be used for the study are components and hooks.
React applications are made up of components, which are
self-contained and reusable. Components have their own
states and properties which allow them to manage and pass
along data. Hooks allow the use of different features from
the react components. It provides a way to handle states,
timed methods and side effects.
I will use Next.js to facilitate the process of making the
gene order browser. Since Next.js is built upon React, I can

utilize its library to create and reutilize components to avoid
redundancy. By using components the browser could also
store user data on the client side of the application to
reduce unnecessary calls and storing data in a server.
Next.js also facilitates in making the application available to
the public by using Vercel.
Vercel is a cloud platform that aids in deploying web
applications, with focus on React dependent projects,
aiming to make deployment as easy as possible. This is
done by connecting Vercel directly to a repository,
specifically a repository created with GitHub. Since GitHub
and Vercel have an affiliation they allow for deployment
directly from the GitHub account to Vercel.

2.5 Visualization Algorithms

In this section I will discus definitions and algorithms which
will explain how the data is used for the visualization.

As mentioned in section 2.3, the pillar file is described as a
matrix where each column is a species and rows are
homologous genes shared among the species. I will denote
the pillar matrix P, where the total amount of rows and
columns are M and N, respectively. Users will be able to
select which species, or columns, they would like to display.
The chosen species would create a subset matrix of P,
which I will denote P’. Since the algorithm will only display
a section of the homologous genes, or a certain amount of
rows, the user will be able to choose the maximum rows
that they would like to display for each species creating a
new subset D of the chosen species with rows before and
after the focused gene. I will denote this constant b.
Lastly, the user will be able to choose the species and gene
which I will denote s and g respectively. The focused gene
and species are represented by indices that indicates a
specific column and row of the chosen species matrix, more
on these different user selections on section 3.2.

2.5.1 Ordering by order file

The order relies on the order file input by the user, which I will
denote O. The algorithm matches gene names with those in
order file O and collect their indices. These collected indices
will be used to order the rows of the sectioned matrix of the
selected species in an ascending order. When the section has
been successfully ordered the algorithm will display them as
a new matrix D’. The genes of the ordered gene matrix get
colored and then displayed. The genes get colored the same

if they are placed in the same gene assembly identifier in
their respective species, mentioned in section 2.3.1. In other
words, if a gene in species A is in chromosome 4 and a gene
in species B is also in chromosome 4 they will be colored the
same.

Algorithm 1 Order

1: P’ is a matrix of chosen species.
2: O the order file for the focused species
3: s is the focused species index, indicating the column of matrix P’
4: g is the focused gene index, indicating the row of the matrix P’
5: b is max amount of homologous genes on display.
6: if g is smaller than b/2 then
7: Collect all rows from 0 to b from P into a new matrix array D
8: else
9: Collect all rows from g − b/2 to g + b/2 into a new matrix array D

10: end if
11: Organise rows of D based on O indices and return a new organized matrix D’
12: for each column (species gene set) c ∈ D’ do
13: if focused species then
14: highlight species name
15: end if
16: for each gene ∈ c do
17: if new assembly identifier then
18: store color to assembly identifier
19: end if
20: Color gene depending on gene assembly component identifier or if

focused gene
21: Display gene at species c
22: end for
23: end for

2.5.2 Displaying without order file

If no order file is input for the focused species, the
algorithm will not order the homologous genes or color after
an identifier, however, it will instead color the genes the
same if they are in the same row in matrix D, highlighting
the homologous genes between the species.

Algorithm 2 Without order

1: P’ is a matrix of chosen species.
2: s is the focused species index, indicating the column of matrix P’
3: g is the focused gene index, indicating the row of the matrix P’
4: b is max amount of homologous genes on display.
5: if g is smaller than b/2 then
6: Collect all rows from 0 to b from P into a new matrix array D
7: else
8: Collect all rows from g − b/2 to g + b/2 into a new matrix array D
9: end if

10: for each column (species gene set) c ∈ D do
11: if focused species then
12: highlight species name
13: end if
14: for each gene ∈ c do
15: if new row then
16: Store color to specific row
17: end if
18: Color gene depending on row index in D or if focused gene
19: Display gene at species c
20: end for
21: end for

2.5.3 Hex coloring

To differentiate genes visually, I used random hexadecimal
colors for homologous genes. Hexadecimal is a base-16
number system, using six letters and numbers (0-9, A-F).
Genes contained in the same chromosome, scaffold or
contig share the same color. Otherwise, genes are colored
based on their pillar. Every new genome assembly
component identifier, like chromosome 3 or contig 1c123f,
would generate a new color and reserve it for that specific
identifier.

3 Method

In this Chapter we will discuss more in depth about the
approach and design decisions to get to the final browser
application.

3.1 Web Application

The development of the web app followed a systematic
process involving several steps. First by focusing on creating
the design without any functionality. Once the design was
implemented , the next part involved adding functionality
and ensuring compatibility with the necessary data. Finally,
the gene components were restyled to enhance visual
comprehension of the data. Throughout the development
process the project was regularly updated in a github
repository [7].

3.2 Layout design

The web application will have two pages. One that will
handle the inputs from a user and another will display the
data provided.
The browser layout is chosen so that the user could get a
clear view of the genes as well as having filters to manipulate
the data. The filters would have the possibility to be hidden
to improve the visibility of the genes displayed.
As shown in Figure 2, I decided to put a navigation bar at
the top and a filter at the bottom. The navigation bar
routes between the different pages within the browser,
where the home-route should be where the genes are
visualized, input-route where the user would input their data
and about-route potential route where the user would find
more information about the gene order browser. To make
the design as simple as possible, I have chosen three filter

options for the user which are labeled Area Size, species
dropdown and gene dropdown. The Area Size lets the
user choose the maximum number of genes displayed on the
screen, the species dropdown allows the user to be able to
focus on specific species and gene dropdown would allow for
the user to focus on a specific gene.

Figure 2: Each line represents a chromosome and each dot separates a region. a) Genes
a,b and c are syntenic since they are present in the same chromosome however genes e
and d are not. b) Genes a/a1, b/b1 and c/c1 are syntenic in both species A and B.

In Figure 3, each row represents a species, or track, and all
homologous genes shared among the species, or pillars, are
displayed on each column. For genes that match across
species, the corresponding cells in each column would
contain the gene name. If a gene is not present in a
particular species, the corresponding cell would be left
blank. Users can slide horizontally through the browser
while the columns remain fixed, ensuring that the positional
information of the homologous genes remain intact.

Figure 3: Sketch showing species as every row and columns as homologous genes shared
among the species, shown without the filter component. White spaces between genes tell
the relative distance between two genes.

Regarding the input design, the pillar and order data can be
input separately. After the pillar file has been input the user
should be able to see what species are available to be seen.
This should be shown in the green section in Figure 4. The
user is also able to choose what species to be shown in the
browser or not, by having them marked. Once the user has
made their selection of active species, they can submit their
choices. After submitting, the user will be redirected to the
first page to view their inputted data. The order data should
be input for every species that is included in the pillar file,
however, it is not necessary if it is only to display the pillars,
as shown in Figure 3. It should be one file for every species,
with the name of the species as file name so the algorithm can
match the corresponding order file with species in the pillar
file. The species with order file available will be marked on
the species displayed on the species Selection box on Figure
4.

Figure 4: User input page showing where the different files go. The green rectangle to
the right displays the species from the pillar file.

In all designs, I have utilized different colors to differentiate
one element from another. It’s important to note that the
colors in the designs are not intended to be retained in the
final design.

3.3 Data management

As mentioned, the data will be stored in a component which
will be accessed by the whole application. Before being
visualized, the input data undergoes an algorithm depending
on which files the user provides. If the user chooses to only
input a pillar file the data would only allow for the browser
to display the selected species provided by the pillar file and
display the genes from the tracks as they are, without
adding any order relevance. However, by also adding the
order files for the species the algorithm would be able to use
the data to add additional information and relative order to
the different genes displayed. Only one pillar should be
active at a time. Any new pillar input should override the
previous and reset the order input.

3.3.1 Test Data

The test data to use for the new gene browser was extracted
from the YGOB and was manipulated to match the data
structure presented in section 2.3. The extracted data was
taken from a previous version of the YGOB, which matches
the data for the order files on section 2.3.1.

3.4 Styling the output

The data output is presented to the user in a clear and
simple manner. Depending on the availability of the pillar
file and the order file for the species, there are two
approaches. If both sources are available, the genes are
color-coded based on their corresponding chromosome,
providing information about the chromosome to which each
gene belongs. Otherwise, if there are no order files,
homologous genes are color-coded to indicate their
respective track.

3.5 Study Limitations

The gene browser is partially limited by the data input,
specifically the format outlined in section 2.3.1, Table 2. It
does not account for errors in the data, meaning that it will
only visualize data that satisfy the correct data format. The
genes in the homologous pillars should also match the genes
on the order files to be able to give correct visualization and
information.

4 Results

In this chapter we will discuss the results, comparing the
designs with the outcome, the different features and how it
compares to YGOB as reference. From this chapter onwards
the created order browser will be mentioned as IGGB which
stands for input generated gene browser.

4.1 User input

The user input displays clear instructions on where to add
the input to their respective parts. The design has prioritized
the size of the display window to the right of the display as
shown on Figure 5. This was to allow more room for larger
lists.

Figure 5: User input page

After the user adds the pillars, the right-hand window will
automatically display the first row containing the names of
the species. These names will be highlighted to indicate that
they have been selected to appear on the gene browser, as
shown in Figure 6.

Figure 6: User input page.

For the gene order files I chose to put an asterisk next to
the names to indicate which pillars have their gene order file
available. In Figure 7 we can see a visualization when a
pillar has an available gene order file and when species are
deselected.

Figure 7: user input with pillar files and species selection.

After the user has made their selection of species, they may
proceed with submitting their choices.

4.2 Gene browser

When entering the gene browser, users will be presented
with a visual representation of homologous genes, colored
according to their corresponding pillar. The genes are
displayed as colored boxes, accompanied by their gene
identifier and, if available, the source sequence identifier
from the order file, positioned just above the name. The
filters will show an initialized state, but more about the
filter features in section 4.2.1 and how it will affect the
browser.

Figure 8: Gene browser with pillar only file, Sbayanus is the species being focused and
gene Sbay 23.47 is being focused.

Figure 9: Gene browser with order file, Scerevisiae is the species being focused and
YIR003W is the gene in focus.

We can observe how the genes are displayed depending on
which files have been input from the user. Figure 8 shows
what the browser would look like with only the pillar file and
figure 9 shows what the browser would look like when the
order file for the different species is also added.

4.2.1 Filter features & information display

At the bottom of the window, a filter module is visible, which
has all the design features outlined in Figure 2. A latent
React hook is utilized to track changes in the filters. This
hook ensures that the pillars are regenerated and updated
accordingly. The browsers start the gene list at the focused
gene and end at the maximum allowed distance from the
focused gene.
To maximize visibility of the genome, the filter module can
be hidden by clicking the arrow located in the right corner of
the module.
When a gene is clicked in the gene browser, a small window
will appear, providing available information about the gene,
as shown in Figure 9. Additionally, the colors assigned to the
genes correspond to the ID numbers of their respective source

sequences. Any genes displayed without color, represented by
a black color, indicate pillars that lack an available gene order
file.

Figure 10: Information window and ordered genes.

4.3 React Development

React proved to be a valuable tool in the development
process, offering a dynamic workflow through the reuse of
multiple components and functions. The use of hooks
introduced latent functionality, allowing components like the
filter component to efficiently update other components in a
queue-like fashion. The useContext feature, as mentioned in
section 3.3, played a crucial role by providing easy access to
global data within necessary components, eliminating the
need for external storage. This dynamic approach to
back-end development greatly contributed to the creation of
the gene browser, enabling seamless data handling and
enhancing overall flexibility. To demonstrate the project I
linked my github account to Vercel. From Vercel I set up an
environment for the repository to go online. Finally, Vercel
built the project and launched the IGGB [8].

4.4 Design changes

During the process of making the gene browser, some changes
had to be made to the initial design. This was partly due to
time constraints and the browser becoming more advanced
than initially intended. Most notably is the feature to see
the relative distance in the chromosome segments between
homologous genes as shown in Figure 3. The design of the
file upload section displayed in Figure 4 changed from being
drag and drop to a simple file upload button. However, since
the input allowed users to add multiple files simultaneously,
all the separate files could still be added at once, simplifying
the process for users.
There were some missing elements with the design, which will
be further discussed in section 5. These elements didn’t affect
the browser directly, but could have had some effect on the
user experience. Some of these flaws include not giving the
user the possibility to write their own information columns.
This could potentially expand the information slots further to
provide more information for every gene. Which could give
more information for the browser to display.

5 Conclusion

In this chapter we’ll discuss the result and compare the YGOB
and IGGB browser to then evaluate.

5.1 Discussion

The IGGB could show promising results in terms of its user
focused design and functionality. By allowing users to
upload their own data, the IGGB offers more flexibility
compared to gene browsers with missing input features, like
YGOB. By incorporating interactive features, the browser
enables users to simplify the selection process for their own
data, creating an easy and engaging browsing experience.
Users may efficiently navigate through their data and
provide relevant information about each gene. This could
make the IGGB a capable tool with user-friendly traits
making analysis easier. Figure 7 illustrates the effective
display of gene order data availability and species selection
within the IGGB.

The gene browser component of the IGGB presents users
with a visually appealing and informative representation of
homologous genes. The color-coded tracks and
accompanying gene names and source sequence identifiers
make it easier to identify and interpret the data. The filter
module at the bottom of the gene browser window offers
users the ability to customize their viewing experience by
ordering the synteny after a specific gene.

5.2 Evaluation

The comparison between the YGOB and the IGGB reveals
distinct strengths and weaknesses for each platform. While
YGOB relies on its own data for accurate synteny analysis,

IGGB allows users to manipulate and interpret their own
data within the framework of its functionalities.

One of the key strengths of the YGOB lies in its use of
carefully curated data on synteny relationships. By relying
on their own data, the YGOB ensures more accuracy and
consistency in synteny analysis by consistently updating and
revalidating their own data for public use [3]. Researchers
and users who prioritize reliability and validated data may
find YGOB to be a valuable resource. However, this
strength can also be viewed as a limitation since the
synteny analysis is restricted to the data included in YGOB.
Users who have specific genomic datasets outside the scope
of YGOB may face challenges in using its capabilities fully.

On the other hand, IGGB provides a flexible and user
focused approach to gene data analysis. The ability to
manipulate and interpret their own data within the IGGB
framework allows users to explore resemblance and
relationships specific to their research interests. This
flexibility allows for a broader range of applications and
enables users to investigate gene orders and synteny
patterns beyond the constraints of a predefined dataset. By
offering a user-friendly interface and interactive visualization
options, IGGB promotes a more exploratory and
customizable experience.

In summary, YGOB and IGGB have distinct advantages and
trade-offs. YGOB’s strength lies in its reliance on a curated
dataset, ensuring accuracy and consistency, while IGGB
empowers users to analyze their own data and interpret it
within a flexible framework. Both platforms serve different
user needs and research contexts, highlighting the

importance of understanding the strengths and limitations
of each approach.
Future advancements could involve integrating the strengths
of both platforms, combining curated datasets with user
driven analysis capabilities, to provide a comprehensive gene
browser solution for the scientific community.

References

[1] David Adams. “Definition and use of Bioinformatics”. In: (). url: https:
//www.genome.gov/genetics-glossary/Bioinformatics.

[2] Sanjida H Rangwala and Anatoliy Kuznetsov et al. “Accessing NCBI data using
the NCBI Sequence Viewer and Genome Data Viewer (GDV)”. In: (2021 jan),
pp. 159–169.

[3] Kevin P. Byrne and Kenneth H. Wolfe. “The Yeast Gene Order Browser:
Combining curated homology and syntenic context reveals gene fate in
polyploid species”. In: Genome Res (October 2005). doi:
10.1101/gr.3672305.

[4] N. Stein. “Synteny (Syntenic Genes)”. In: Brenner’s Encyclopedia of Genetics
(Second Edition). Ed. by Stanley Maloy and Kelly Hughes. Second Edition.
San Diego: Academic Press, 2013, pp. 623–626. isbn: 978-0-08-096156-9.
doi: https://doi.org/10.1016/B978-0-12-374984-0.01508-4. url:
https : / / www . sciencedirect . com / science / article / pii /
B9780123749840015084.

[5] Homologs, Orthologs, and Paralogs. [Online; accessed 2023-08-04]. Dec.
2022. url: https://bio.libretexts.org/Bookshelves/Microbiology/
Microbiology_(Boundless)/07%3A_Microbial_Genetics/7.13%3A_
Bioinformatics/7.13C%3A_Homologs_Orthologs_and_Paralogs.

[6] Giudicelli V. and Lefranc M.P. Ontology for Immunogenetics:
IMGT-ONTOLOGY Bioinformatics. 1999.

[7] Danilo Catalan Canales. Open source github repository. Jan. 2022. url:
https://github.com/DCatCan/IGGB.

[8] Danilo Catalan Canales. Working website for the IGGB. Jan. 2023. url:
https://iggb-dcatcan.vercel.app/.

Matematiska institutionen

Datalogi
www.math.su.se

Beräkningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

