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Abstract

Graph coloring is one of the most common and studied problems in computer
science. It has applications in many di�erent areas, such as for scheduling,
compiler optimizations, and biological networks, but being NP-Hard means that
optimal solutions are often too computationally expensive to use in practice, and
in turn that many instances require the use of heuristics. This thesis examines
a heuristic based on the modular decomposition of a graph, a way to split the
graph into well-structured subgraphs called modules, where some parts can be
colored optimally in linear time, and some parts require other heuristics. As we
will show, this strategy of coloring with the modular decomposition was found to
give an increase in performance for one of the tested heuristics, and no increase
for the others.

Sammanfattning

Graf färgning är ett av de vanligaste och mest efterforskade problemen
i datavetenskapen. Det har många användningsområden, till exempel för
schemaläggning och kompilatoroptimeringar, men eftersom problemet är NP-
fullständigt så är optimala lösningar oftast för långsamma för att använda i prak-
tiken. Detta innebär att många applikationer behöver använda sig av heuristiker
istället. Den här uppsatsen undersöker en heuristik baserad på en grafs "modu-
lar decomposition". Det är ett sätt att dela upp en graf i subgrafer ,"modules",
där vissa modules har en speciell struktur som låter dem färgas optimalt i linjär
tid, medan andra kräver heuristiker. Denna metod gav bättre färgningar i kom-
bination med en av de testade heuristikerna, och ingen skillnad för de andra.
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1 Introduction

In this thesis, we investigate a new heuristic for coloring graphs using the
modular decomposition of a graph, that is used alongside other traditional
graph coloring heuristics.
The modular decomposition of a graph describes the structure of the graph,
by recursively splitting it into distinct modules. A module is a set of vertices
in a graph, which share a common neighbourhood of vertices among vertices
outside of the module. Modules also form a hierarchy, which means that
modules can be further subdivided into smaller modules. This representation
of a graph can be described with a rooted tree, where every vertex has one
of three possible labels describing how its child modules can be combined to
form the graph induced by its parent module. There are 3 speci�c types of
modules, series, parallel, and prime, which are de�ned later.
Modular decomposition allows for coloring of graphs in linear time with the
minimum required colors if all of the modules are either series or parallel [13].
However, if any of the vertices are prime then optimal graph coloring is in
general NP-Hard [8]. The question examined here, is if one can still utilize the
modular decomposition, where graph coloring heuristics are only applied on
the prime modules. The modular decomposition might still color some parts
of the graph optimally, and the structure it provides might provide a hint
for how to apply the heuristics on the prime parts, improving performance
for other heuristics.
In section 2 all of the required terminology and de�nitions are provided, and
is split into two parts, subsection 2.1 has de�nitions that might be familiar
to most people that have worked with graphs, and subsection 2.2 provide
the de�nitions that are more speci�c to this thesis.
section 3 introduces the algorithm that forms the basis for the new coloring
heuristics. This base algorithm is combined with a regular graph coloring
heuristic and a strategy to create a new heuristic.
In section 4 so are the graph coloring heuristics used described.
The combination strategies are described in section 5. They determine how
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the heuristics are applied, and how the structure of the modular decompo-
sition is utilised.
In section 6 so are the test graphs and benchmarking methods described.
The data used is both from standard DIMACS benchmarks [3], and custom
generated data.
Finally, the way the data is evaluated and the results are presented in sec-
tion 7, respectively section 8

2 De�nitions

2.1 Graph basics

The de�nitions used here are based on the de�nitions in [16].

De�nition 2.1 (Graph). A graph G = (V,E) is a tuple, where V is the set
of vertices, and E is a set of unordered pairs of distinct vertices in V .

De�nition 2.2 (Neighbour). For a graph G = (V,E), we say that v ∈ V is
adjacent to u ∈ V if (v, u) ∈ E.
The neighbourhood NG(v) of a vertex v ∈ V in a graph G = (V,E), is the
set of vertices that are adjacent to v, that is NG(v) = {u : (u, v) ∈ E}. If
u ∈ NG(v), we also say that u and v are neighbours.

De�nition 2.3 (Degree). The degree of a vertex v ∈ V in a graph G =
(V,E), denoted by deg(v), is the number of neighbours of v in G, that is
deg(v) = |NG(v)|.

Theorem 2.1 (Handshake lemma). [16] For a graph G = (V,E), the sum of
the degrees of every vertex twice is the number of edges, that is

∑
v∈V deg(v) =

2|E|.

The handshake lemma gets its name from interpreting the vertices as indi-
viduals, and edges between 2 persons represent that they shook hands. It
says that if we ask every person how many other persons they have shook
hands with, then the total sum is twice the total number of handshakes.
This can intuitively be derived by noting that as every handshake involves
two people, so is that handshake going to be counted twice when we ask the
people involved.
The handshake lemma is a useful when analyzing the runtime for the di�erent
graph coloring algorithms, which is done later in section 4.

De�nition 2.4 (Subgraph). A subgraph S = (V ′, E ′) of a graph G = (V,E),
is a graph such that V ′ ⊆ V , E ′ ⊆ E.
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In many cases, one is interested in some parts of the graph, and one of the
most common ways to decompose a graph is through the induced subgraph.

De�nition 2.5 (Induced Subgraph). For a graph G = (V,E), the induced
subgraph G[X] for X ⊆ V , is the subgraph (X, {(u, v) : (u, v) ∈ E, u ∈
X, v ∈ X}).

In other words, an induced subgraph is a graph constructed by including a
subset of the original graphs vertices, and all edges between these vertices in
the original graph.
Another common operation, is the graph complement.

De�nition 2.6 (Graph Complement). The graph compliment G of a graph
G = (V,E) is the graph (V, {(u, v) : u ̸= v, u ∈ V, v ∈ V, (u, v) /∈ E}).

In other words, the graph complement of a graph is a graph that contains
the same vertices as the original graph, but the vertices are adjacent only if
they where not adjacent in the original graph.
Two common operations, and especially relevant for the modular decompo-
sition further down, is the disjoint union and graph join.

De�nition 2.7 (Disjoint Union). The disjoint union
⋃

iGi for graphs
G1 · · ·Gn = (V1, E1) · · · (Vn, En) where

⋂
Vi = ∅ , is the graph G =

(
⋃

Vi,
⋃

Ei).

De�nition 2.8 (Graph Join). The graph join ∇Gi for graphs G1 · · ·Gn =
(V1, E1) · · · (Vn, En) where

⋂
i Vi = ∅, is the graph G = ({

⋃
Vi,

⋃
Ei ∪

{(u, v) : u ∈ Vk, v ∈ Vj, k ̸= j})

The disjoint union is the most simple way to combine graphs, and forms a
new graph that just contains the original graphs and nothing more. The
graph join is similar, in that it produces a new graph with all of edges and
vertices from the original graphs, but also for every vertex in an input graph
adds a new edge to all the vertices in the other input graphs.

De�nition 2.9 (Path). A path p in graph G = (V,E) is a sequence of vertices
p = (v1 · · · vi), such that (vj, vj+1) ∈ E for 1 ≤ j ≤ i − 1 and vj ̸= vk for
1 ≤ j, k ≤ i with j ̸= k.

One of the original applications of graph theory was to describe di�erent
ways to walk on bridges in Königsberg, so the concept of a path has been
central for a long time. A path is a sequence vertices, so that the next
vertex in the sequence is connected to the previous by an edge, and so that
vertices are not repeated. One can then imagine "walking" between vertices
by moving on edges connecting them.
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De�nition 2.10 (Connected Graph). A graph G = (V,E) is connected, if
there exists a path between any two vertices in the graph. Otherwise, we say
that a graph is disconnected.

De�nition 2.11 (Cycle). A sequence of vertices (v1, · · · , vi, v1) for a graph
G = (V,E) is a cycle if (v1, · · · , vi) is a path, and (vi, v1) ∈ E.

A cycle is very similar to a regular path except that we allow, and require,
that the �rst and last vertex are the same. A cycle can be seen as a way to
walk in a circle.

De�nition 2.12 (Tree). [15] A tree is a connected graph with no cycles.

De�nition 2.13 (Rooted Tree). [15] A rooted tree is a graph vertex pair,
(G, v), such that G = (V,E) is a tree, and v ∈ V . The vertex v is called the
root of the tree.

Trees have a number of useful properties. Among them is that between any
two vertices so is there always an unique path [15]. This in combination with
an origin, the root, gives a natural way to describe rooted trees in terms of
a parent-child structure, described below.

De�nition 2.14 (Child Vertex). [15] For a rooted tree ((V,E), v), a vertex
v1 ∈ V is considered a child of vertex v2 ∈ V , if the unique path from v1 to v

starts with v1, v2. v2 is also called the parent of v1 if v1 is a child of v2.

De�nition 2.15 (Graph Coloring). A graph coloring σ for a graph G = (V,E)
is a map from V to C, where C is a set of colors. We say that σ is a k coloring
if |C| ≤ k.

De�nition 2.16 (Proper Coloring). A graph coloring σ for a graphG = (V,E)
is a proper coloring, if no neighbours share the same color, that is (u, v) ∈ E
implies that σ(u) ̸= σ(v)

De�nition 2.17 (Partial Coloring). [9] A partial graph coloring σ for a graph
G = (V,E) is a map from P ⊂ V to C, where C is a set of colors, such that
for every vertex in P no neighbours share the same color, that is u ∈ P, v ∈
P, (u, v) ∈ E implies that σ(u) ̸= σ(v).

De�nition 2.18 (Improper Coloring). [9] An improper graph coloring σ for a
graph G = (V,E) is a map from V to C, where C is a set of colors, allowing
for clashes in coloring, that is neighbours can share the same color.

De�nition 2.19 (Chromatic Number). The chromatic number of a graph
G = (V,E), denoted by χ(G), is the least number of colors needed to color the
graph with a proper coloring.

4



The central problem in this thesis, is to �nd e�cient algorithms for properly
coloring a given graph.
Creating a proper coloring for a graph is easy, one could for example assign
to every vertex a unique color. Finding an optimal coloring however, i.e. a
proper coloring using the fewest possible number of colors, is NP-Hard [8].
For this purpose, di�erent heuristics, algorithms providing a proper coloring
with few but not necessarily optimal number of colors, have to be used.
A particular type of graph for which an optimal coloring can easily be de-
termined are so-called complete graphs.

De�nition 2.20 (Complete Graph). A graph K = (V,E) is complete if every
vertex v ∈ V is adjacent to every other vertex, that is, (u, v) ∈ E ⇐⇒ v ̸= u.
We also call the graph Kn the complete graph that has n vertices.

As every vertex is adjacent to every other vertex in a complete graph, so
must a proper coloring assign every vertex a unique color, which in turn is
an optimal coloring.

2.2 Graph modules and cographs

De�nition 2.21 (Cograph). [2] A graph G is a cograph if G = K1, or G is
the disjoint union G =

⋃
· iGi of cographs Gi, or G is a join G = ▽iGi of

cographs Gi.

De�nition 2.22 (Graph Module). [4] Let G = (V,E) be an arbitrary graph.
A non-empty vertex set M ⊆ V is a module of G if, for all x, y ∈ M it holds
that (NG(x) \M = NG(y) \M). A module M is strong if it does not overlap
with any other module M ′, i.e, if M ∩M ′ ∈ {M,M ′, ∅}.

Now we have su�cient terminology to describe the most central concept, the
modular decomposition.

De�nition 2.23 (Modular Decomposition). [13] The modular decomposition
MD for a graph G = (V,E), is the set of all strong modules of the graph.

The modular decomposition of a graph has a number of useful properties.
The modular decomposition of a graph forms a hierarchy, meaning that
strong modules can be partitioned into other strong modules. This hierarchy
of modules has a natural representation as a tree, the modular decomposition
tree.
This tree describes the structure of the modular decomposition of the original
graph. Every vertex in the tree represents a strong module, with the root
being the strong module containing all vertices. This tree also describes how
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the induced subgraph of the module can be constructed from the induced
subgraphs of its children, except for prime vertices.

De�nition 2.24 (Modular Decomposition Tree). [7] The modular decompo-
sition tree (T̃ , t̃) of a graph G = (V,E),is a rooted vertex labeled tree, such
that every vertex is associated with a strong module X in G. A vertex in the
tree with associated strong module M is a child to the vertex with associated
strong module M ′ if and only if, M ⊂M ′ and there is no other strong module
M ′′ so that M ⊂ M ′′ ⊂ M ′. Every vertex with associated module X also has
a label distinguishing 3 cases:

1. Parallel: G[X] is disconnected.

2. Series: G[X] is disconnected.

3. Prime: G[X] and G[X] is connected.

The root of the tree must also have V as the associated strong module, and all
strong modules also have to be a part of the tree.

The modular decomposition of a graph and its corresponding modular de-
composition tree is unique [5]. This also means that we can de�ne a unique
child-parent structure for the strong modules of a graph.

De�nition 2.25 (Child Module). A strong module M is a child module to
another strong module M ′ for a graph G = (V,E), if the vertex with associated
module M is a child to the vertex with associated module M ′ in the modular
decomposition tree for G.

Note, a label being series in modular decomposition tree with associated
module X means that the induced subgraph G[X] can be constructed
through graph join on the induced subgraphs of its children associated mod-
ules, and it being parallel means thatG[X] can be constructed through graph
union on the induced subgraphs of its childrens associated modules [13].
A single vertex is a strong module, meaning that all the leafs of the tree
are associated with a strong module containing a single vertex. This means
that a modular decomposition without prime modules is a cograph, as it is
recursively constructed by graph join and graph union on K1.

2.3 Example

Let us consider how the modular decomposition can be constructed from a
graph. We start with the initial graph in Figure 1.
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Figure 1: Initial graph

We can construct the modular decomposition, by recursively dividing up
the graph into strong modules. We start then to look for the largest strong
modules, that partition all of the vertices. We can see that {1, 2, 3, 4, 5} and
{6, 7} are 2 modules, as they share a common neighbourhood. However,
by examining other possible modules we see that {1, 2, 3, 4, 5, 6} is also a
module. As {1, 2, 3, 4, 5, 6} ∩ {6, 7} = {7}, we can conclude that neither
{1, 2, 3, 4, 5, 6} nor {6, 7} is a strong module. By examining the other pos-
sible modules, we can then see that the largest strong modules partitioning
all of the vertices are {1, 2, 3, 4, 5}, {6}, {7}. This gives the partition shown
in Figure 2. The edges between the modules have been removed for clarity,
but their internal edges are preserved.
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Module 2Module 1 Module 3

1

2

3

4 6 75

Figure 2: Top child modules identi�ed

From this we continue to further subdivide the strong modules into smaller
strong modules. From "Module 1" we can see that the single node 5 forms a
module {5}, and that the whole of {1, 2, 3, 4} forms another strong module.
This gives the subdivision depicted in Figure 3

Module 3

Module 1

Module 5Module 4 Module 2

1

2

3

4

6 75

Figure 3: Modules divided recursively
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Now, the question is whether or not Module 4 can be divided into further
submodules. But we quickly realise that the only strong submodules of Mod-
ule 4 would be the trivial modules {1}, {2}, {3} and {4}, and that no larger
strong submodules of module 4 exists. We then have all the information
needed to construct the modular decomposition tree. We �rst start by con-
structing the tree structure, and then assign labels. The unlabeled tree is
depicted in Figure 4

root

6 Module 1 7

5 Module 5

1 2 3 4

Figure 4: Unlabeled modular decomposition tree

Here the modules only containing a single vertex have been replaced by just
that vertex, to improve clarity. From this the tree structure of the modular
decomposition can be seen, but it is not yet labeled. We can add the labels by
looking at the induced subgraph of the vertices in the module. If that induced
subgraph can be constructed by disjoint union on the induced subgraphs of
its submodules, we know that it is parallel, and if we can construct it by
graph join on the induced subgraphs of its submodules, it is series. If none
of these are the case, then the module is prime. By using this method
we arrive at the complete modular decomposition tree that can be seen in
Figure 5
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root
series

Module 1
parallel 6 7

Module 5
prime 5

1 2 3 4

Figure 5: Complete modular decomposition tree

3 General coloring algorithm

Algorithm 1 will form the baseline for our heuristics, and is described in
[13]. It provides an optimal coloring given that the graph is a cograph, that
is when all modules in the modular decomposition tree is either series or
parallel. It does however not provide a way to color the prime modules.
This thesis examines multiple di�erent ways these prime modules can be
colored, split into 2 parts, a heuristic used, and a coloring strategy.
Algorithm 1 starts by �rst assigning to every vertex a unique color, and
then colors the modules recursively, starting at the root. The vertices in the
children of a module are colored before the module itself is colored. How a
module is colored depends on which type it is, series, parallel, and prime.
A module X being series in the modular decomposition tree of a graph G
means, as stated earlier, that the induced subgraph G[X] can be constructed
through graph join on the induced subgraph of the associated module of X ′s
children in the modular decomposition. This means that every child module
is completely connected to the other children, most importantly meaning
that no child modules can share a color among the other child modules.
Assuming that the children have an optimal coloring so is their join also an
optimal coloring, as no fewer colors can be used. Having initially given every
vertex a unique color, we can also guarantee that this join will not introduce
any clashes. This case is therefore "omitted" from the algorithm, keeping
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the current coloring is all that needs to be done.
A module X being parallel in the modular decomposition tree of a graph G
means that the induced subgraph G[X] can be constructed through disjoint
union on the induced subgraph of the associated modules of X ′s children.
This in particular means that the induced subgraph of the child modules
have no edges between each other. Therefore, the induced subgraphs of the
child modules can use the same set of colors. The children are therefore
recolored to use the same smallest set of colors, which assuming that the
children are optimally colored is the colors used by the module with the
most number of colors.
The last case is when the module is prime. Coloring this module is in the
general case NP-Hard. Here we examine how this prime module can be
colored, replacing line 12 with a graph coloring heuristic. The question is
whether or not the performance is improved when applying this heuristic
locally on these prime module compared to applying this heuristic on the
whole graph.

Algorithm 1 Modularly-minimal coloring a graph G with MD tree (T, t).

Require: Graph G and MD tree (T̃ , t̃)
1 Initialize a coloring σ s.t. all v ∈ V (G) have di�erent colors
2 for all u ∈ V 0(T ) in post order do
3 if u is parallel then
4 G ← {G(w) : w ∈ child(u)}
5 G∗ ← argmaxw∈child(v) |χ(G(w))|
6 S ← σ(V (G∗))
7 for H ∈ G \ {G∗} do
8 randomly choose an injective map ϕ : σ(H)→ S
9 for all x ∈ H do

10 σ(x)← ϕ(σ(x))
11 else if u is prime then

12 Construct a modularly-minimal coloring of G(u) with colors contained in σ(G(u)) and adjust σ
accordingly

Algorithm 1 is therefore used in combination with a graph coloring heuristic.
The heuristics tested in combination with Algorithm 1 is described below,
in section 4.
To distinguish the di�erent ways the graph is colored, a strategy is also
de�ned below, in section 5. The strategy describes how the heuristic is
used, and two have already been described here, applying it locally on the
prime modules, or applying it on the whole graph, not utilising the modular
decomposition at all. Every way a graph is colored here can therefore be
described by specifying which heuristic and which strategy is used.
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3.1 Modular decomposition

The modular decomposition implementation used is [10]. It implements the
algorithm described in [11].
This algorithm computes the modular decomposition tree by �rst creating a
"pseudo-modular decomposition tree". This pseudo-modular decomposition
tree is similar to the modular decomposition tree, the di�erence being that
modules of the associated vertices does not need to be strong. The regular
modular decomposition tree can then be constructed from this by trimming
it down, joining super�uous children to their parents.
This pseudo-modular decomposition tree is in turn constructed by selecting
a vertex v from the graph, and partitioning the vertices in the graph with
modules that are either {v}, or the largest not overlapping modules not
containing v. From this partition, we can construct base pseudo modular
decomposition. We then recursively add to this tree, by doing the same
procedure for the parts in this partition, and combine their trees.

4 Heuristics

A graph coloring heuristic is an algorithm for coloring a graph, that does not
necessarily give an optimal coloring, but uses various methods to approxi-
mate a good coloring.
In this section, the di�erent heuristics used to color the graphs is described,
while section 5 describe how they are applied.

4.1 Greedy

The classic greedy coloring algorithm. It traverses all of the vertices in the
graph in an arbitrary order, and for every vertex assigns the �rst colored
not shared amongst its neighbours. Assigning the �rst available color can
trivially be done by for every color checking whether or not the vertex has
a neighbour with that color, and using it if it is not the case. This method
does however have a worst case runtime of O(|C||NG(v)|) = O(|V |2).
A more e�cient way to do this assignment is with the function
get �rst color, which uses a map called used from colors to Booleans, see
Algorithm 2.
When coloring v, we �rst examine the neighbours of v, if a neighbor has a
color c, index c in used is set to true, which correspond line 2-4 in Algo-
rithm 2.
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After having iterated through every neighbour, we step through used, and
use the �rst color that is not set to true. A maximal deg(v) of vertices can be
set to true through this process, which means that �nding the �rst available
color from used this way is at most |deg(v)|+1 steps. This part correspond
to lines 5-8.
Then, we reset the used map by going through all of the neighbours the
same way and setting the index of used to false instead, so that the next
time when calling get �rst color, used maps all colors to false. This part
are the �nal lines 9-12.
The whole process of get �rst color is therefore O(|deg(v)| + |deg(v)| +
|deg(v)|) = O(|deg(v)|). Using the handshake lemma, we can conclude that
calling get �rst color on all vertices has a total runtime of O(|E|). used
however needs enough space to contain every color, which in the worst case
is |V | number of colors, which means that the total runtime is O(|V |+ |E|).

Algorithm 2 get �rst color

Require: Graph G = (V,E)
Require: vertex v ∈ V
Require: partial coloring σ
Require: used← map from colors to Booleans, with all values initially set to false
1 ReturnV alue← NULL
2 for all u ∈ NG(v) do
3 if u is colored in σ then

4 used(σ(u))← true
5 for all c ∈ σ do

6 if used(c) = false then
7 ReturnV alue← c
8 break

9 for all u ∈ NG(v) do
10 if u is colored in σ then

11 used(σ(u))← false
12 return ReturnV alue

Algorithm 3 Greedy

Require: Graph G = (V,E)
1 V ′ ← List containing all v ∈ V in any order
2 C ← List of possible colors {1 · · · |V |}
3 σ ← Initial empty partial coloring
4 used← map from colors in C to Booleans, initialised so all values are false
5 for all v ∈ V do

6 update σ so that σ(v) = get �rst color(G, v, σ, used)

4.1.1 Example

Here we give an example for how get �rst color is executed. We have the
partially colored graph in Figure 6, and want to color the vertex 1 with get

�rst color.
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1

2

3

4 5

     

 false  false  false  false  false 

Figure 6: Partially colored graph

Here we can see our used map to the right. At the start of every call to get
�rst color so is every color maped to false. Now we go over every neighbour
of 1, that is 2,3 and 4, and update the map so that their respective colors is
set to true. This gives the state depicted in Figure 7.

1

2

3

4 5

     

 true  true  false  true  false 

Figure 7: Used map updated
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Now we step through the map from the leftmost column to the right, and
examine whether or not the current column maps the color to a "false" value.
If it does, we have found the �rst available color, and assign it to the vertex
we want to color. In this case the �rst available color is yellow. After having
determined the �rst available color so is the used map reset so all colors map
to false again, and appropriate for further application of get �rst color.
The vertex is now colored using get �rst color, and we arrive at the state
in Figure 8.

1

2

3

4 5

     

 false  false  false  false  false 

Figure 8: Vertex 1 colored, Used map reset

4.2 Dsatur

Dsatur is an algorithm that is similar to Greedy, in the sense that it traverses
every vertex, and assigns to each of them the �rst available color. The
di�erence is mostly in how this traversal is constructed. In greedy, this
traversal is an arbitrary order, but for Dsatur this traversal is constructed
in a speci�c way, by using the saturation degree.

De�nition 4.1 (Saturation degree). [9] The saturation degree sat(v) for a
vertex v ∈ V for a graph G = (V,E) and a partial coloring σ from P ⊂ V to
the set of colors C, is the number of unique colors among its colored neighbours,
that is sat(v) = |{c : c = σ(u), u ∈ NG(v), u ∈ P}|.

The vertices are colored one at a time, until all of the vertices are colored.
At every step of the iteration, we identify the vertex that has the highest
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saturation degree, and if there are ties we choose the vertex among them
with the highest degree, and an arbitrary vertex is chosen among the ties
of there are ties remaining. This also means that the �rst vertex colored is
the vertex with the highest degree, as the saturation degree of every vertex
is zero at the start of the algorithm. This step corresponds to line 4 in
Algorithm 4.
We then color this vertex with the �rst available color, and update the partial
color accordingly, which means that the saturation degree for its neighbours
are changed, this step being line 5.
Dsatur being a well studied algorithm also means that it has some variations
in the literature, and this presentation is based on [9].

Algorithm 4 Dsatur

Require: Graph G = (V,E)
1 C ← List of possible colors {1 · · · |V |}
2 σ ← Initial empty partial coloring
3 while There exists uncolored vertices in V do

4 v ← uncolored vertex in V , such that sat(v) is minimal. In case of ties, choose the v that also
minimizes deg(v) for the subgraph of G induced by the uncolored vertices. Remaining ties are broken
by choosing an arbitrary vertex among the ties.

5 σ ← updated coloring where σ(v) is the �rst available color in regards to C.

When analyzing the runtime for Dsatur, we can begin by stating that
assigning the �rst available color can be done just as in greedy with
get �rst color, giving us at least O(|V |+ |E|) runtime.
Determining which nodes has the highest saturation degree can be done with
a priority queue. First we initialise it by setting the saturation degree for all
vertices to zero. With the priority queue, we can then get the vertex with
the highest saturation degree in constant time. After having colored it, we
update the saturation degree for its neighbours, which implies the removal
of that neighbour from the list, and then adding it back with the updated
saturation degree. With appropriate data structures, the initialization can
be done in O(|V |log(|V |), and removing and inserting an element can be
done in O(log(|V |)) time. As this insertion is done for every neighbour, so
can we again use the handshake lemma and see that the total runtime for
updating neighbours this way is O(|E|log(|V |)). This gives a total runtime
of O(|V | + |E| + |V |log(|V |) + |E|log(|V |)) = O((|V | + |E|)log(|V |)). A
more thorough description of this implementation can be found in [9].

4.3 Recursive largest �rst

Recursive largest �rst is more complicated than both Greedy and Dsatur,
and subsequently has a higher runtime.
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The idea behind Recursive largest �rst, is to create a partition of the vertices
of the graph, where the vertices in the di�erent parts are all non-adjacent to
each other. This ensures that all the vertices in a given part can share the
same color. This partition is constructed one part at a time.
Vertices are added one at a time when creating a part in the partition. Doing
the partition "largest �rst" means that we want to add the vertices with
the highest degree �rst. We only consider the degrees from the subgraph
induced by the vertices that are adjacent to the current part. This is similar
to Dsatur, in that we want to color the currently "most restricted" vertices
�rst.
A part in the partition is therefore created by �rst adding the vertex with
the highest degree among the vertices in the induced subgraph of vertices not
currently in a partition. Having added it to this part, we then consider that
vertex assigned, meaning that the induced subgraph of vertices not currently
in a partition is updated. We also add the neighbours of this vertex, that
have not been assigned to a part, to a list of vertices that contains the
vertices adjacent to the current part. These steps corresponds lines 6-8 in
Algorithm 5
After having added the initial vertex, we now add vertices that are non-
adjacent to all of the vertices in the current part, which corresponds to
lines 9-16. We do this similarly to when adding the initial vertex. We
identify the vertex among the unpartitioned vertices that has the highest
number of neighbours in the list of vertices that are adjacent to the current
part, choosing the vertex with the highest degree in the induced sugraph
of unpartitioned vertices in case of ties. We add this vertex to the current
part, its neighbours that are unassigned to the list of adjacent vertices, and
remove it from the unassigned vertices. We continue this process until no
more vertices can be added, that is the there are no more unpartitioned
vertices that are not adjacent to the current part.
At this point, if there are still vertices to assign, we repeat by creating
another part the same way, going back to line 6. If all vertices have been
assigned, so can we assign every part in the partition a unique color, and
then color every vertex in that part with the assigned color.
This presentation of the algorithm is based on [9].
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Algorithm 5 Recursive largest �rst (RLF)

Require: Graph G = (V,E)
1 Partition← {}
2 C ← List of possible colors {1 · · · |V |}
3 M ← {}
4 S ← V
5 while |S| > 0 do
6 v ← the vertex maximizing deg(v) for G[S]
7 M ← {v}
8 Adj ← NG[S](v)
9 while TRUE do

10 Candidates ← S \Adj
11 if |Candidates| = 0 then
12 break

13 u ← the u ∈ Candidates maximizing deg(u) in G[Adj ∪ {u}], ties broken by the u maximizing
deg(u) in G[S]. Remaining ties are broken by choosing an arbitrary vertex among the ties.

14 M ←M ∪ {u}
15 Adj ← Adj ∪NG[S](u)
16 S ← S \ {u}
17 Partition ← Partition ∪ {M}
18 Assign consecutive colors from C to the partitions in Partitions, and then color every vertex in that

partition with that color.

Analyzing the runtime, we can see that the adding vertices to a part in the
partition and the number of partitions is at most O(|V |). The runtime is
therefore dependant on how these vertices are chosen, and how to ensure
that the partitions do not have any overlapping vertices.
We can ensure that no adjacent vertices are added to the current part, by
keeping the current possible candidates in a hash map, and whenever we add
a vertex to the current part remove its neighbours from the current candi-
dates. Doing this is, with the handshake lemma, O(|E|) when all vertices
has been added, leading to at least a O(|V |+ |E|) runtime.
We can also ensure that the vertex added is the vertex with the highest de-
gree among the non-adjacent vertices by recalculating the respective degrees
for the uncolored vertices, in both the subgraph induced by the unpartitioned
vertices and the vertices adjacent to the current part, which can be done in
O(|E|) time every time a vertex is added, which is done |V | times. The algo-
rithm can therefore be implemented in O((|V ||E|)+ |V |+ |E|) = O(|V ||E|)
time [9].

4.3.1 Example

An example run of the algorithm is demonstrated here. We start with the
graph Figure 9.
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6

Figure 9: Initial graph

Now, we start by constructing the �rst part in the partition. The �rst vertex
in the partition is the vertex with the highest degree among the unpartitioned
vertices. We can see that the vertex with the highest degree is vertex 4.
Now we remove it from this graph and add it to the current part, as well
as adding its neighbour to the set of adjacent vertices to the current part.
We represent vertices in the current partition with a red color, and vertices
that are adjacent to the current part with a dashed outline. We now get the
graph in Figure 10

1

2

3

4

5

6

Figure 10: One vertex has been assigned

Here we can see that the vertices that are not adjacent to the current part,
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{4}, is 1 and 6. The next vertex we add is the vertex among the unassigned
vertices not adjacent to the current part that has the highest number of
neighbors that are unassigned and adjacent to the current part. We can see
that 6 has one neighbour that is unassigned and adjacent to the current part,
while 1 has two. We therefore add 1 next and get the graph in Figure 11

1

2

3

4

5

6

Figure 11: Two vertices has been assigned

Now we can see that the only alternative left is 6, and add it to the current
part. After this step, so is all of the remaining vertices adjacent to the
current part, which means that we have to construct a new part. This part
is constructed from the unnassigned vertices, which means that we have to
remove the vertices 1, 4 and 6 before. We therefore repeat this procedure on
the graph depicted in Figure 12.
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2

3

5

Figure 12: Construct new part on the induced subraph of unassigned vertices

By repeating the previous step until all vertices have been assigned a part,
we arrive at the partition {{4, 1, 6}, {3, 5}, {2}}. Now we can assign every
part in this partition a color, and color the vertices in that part with the
same color. This gives us the �nal coloring depicted in Figure 13.

1

2

3

4

5

6

Figure 13: Final coloring

4.4 TabuCol

TabuCol is a graph coloring algorithm that unlike the previous algorithms,
does not create a coloring in a constructive fashion, but instead tries to �nd
a coloring for a speci�c number of target colors.
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TabuCol �rst forms a random improper coloring of the vertices with colors
from the allowed set, and then modi�es this coloring by looking at the vertices
that forms a clash, that is, if neighbours have the same colors. For these
vertices, every new coloring are evaluated in how many clashes they would
result in. Then the recoloring that has the lowest number of clashes, even if
the number clashes are greater than the current number of clashes, is applied.
This can however introduce cycles of recolorings. Certain recolorings might
lead into each other so that the algorithm just iterates through this cycle
every iteration, preventing it from ever reaching a better coloring. The Tabu
list is introduced to prevent this . A Tabu list is a list of vertex-color pairs
(v, u). Whenever a new vertex recoloring is made, it is added to the Tabu
list. A new vertex recoloring is only considered if it is not a part of the Tabu
list. This tabu list have a set size, so that the �rst element is removed when
a new vertex-color pair is added and the list is already full. Ties are broken
randomly in the case that multiple colorings share the same lowest increase
in clashes. These ties are broken randomly instead of arbitrarily in order to
avoid cycles in colorings.
Tabu moves are however allowed in some scenarios, speci�cally if applying
that coloring would create a better recoloring than the previous best, which
is commonly referred to as the aspiration. Whenever a new coloring is ap-
plied, the current number of clashes are calculated, if it is below the current
aspiration then the aspiration is updated to that number. A new coloring
that is on the tabu list is then allowed given that applying that coloring
would result in a new number of clashes below the current aspiration.
This process of picking a new vertex recoloring is repeated until a coloring
with zero clashes is produced, or a predetermined number of moves have been
made. As the algorithm only gets a valid coloring for a speci�c k, so must we
also have a way to utilise this algorithm to get the lowest possible coloring.
Here a similar method described in [9] is used, that is, �rst a coloring is made
with RLF, and the number of used colors is assigned to k and the resulting
coloring to σ. Then we try to color the graph with TabuCol with k − 1
allowed colors . If this results in a proper coloring, this step is repeated and
we subtract k by one, and we save the coloring to σ. If the coloring is not
proper, then the current σ is the coloring that is applied. This procedure
can be seen in Algorithm 8
TabuCol has some subtle variations, and this particular de�nition is based
on the presentation in [9]. Alternatives are for example whether or not all
possible recolorings are consider, if only the �rst coloring with a lower clash
count is considered, and if one allows vertices that do not have any clashes
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to be recolored.

Algorithm 6 Clashes

Require: Improper coloring σ
Require: Graph G = (V,E)
1 return |{(u, v) : (u, v) ∈ E, σ(u) = σ(v)}|

Algorithm 7 TabuCol

Require: Graph G = (V,E)
Require: Integer k > 0
Require: Integer MaxIt > 0
Require: Integer MaxTabu > 0
1 σ ← random improper coloring with k colors
2 CurIt← 0
3 CurrentClash = Clashes(σ,G)
4 Asp← CurrentClash− 1
5 Tabu← Empty tabu list
6 while CurrentClash > 0 and CurIt < MaxIt do
7 Reps← ∅
8 for all v ∈ V do

9 for all c ∈ σ do

10 if (v, c) /∈ Tabu or Clashes(σ,G) with (v, c) applied ≤ Asp then

11 Reps← Reps ∪ {(v, c)}
12 (v′, u′) ← where (v′, u′) ∈ Reps and Clashes(σ,G) with (v′, u′) applied is minimal, ties broken

randomly
13 Update σ so that σ(v′) = u′

14 CurrentClash← Clashes(σ,G)
15 if CurrentClash ≤ Asp then

16 Asp← CurrentClash− 1
17 Update Tabu to contain (v′, u′), and remove the oldest element if |Tabu| > MaxTabu
18 CurIt← CurIt+ 1
19 if CurrentClash = 0 then
20 break

Algorithm 8 TabuCol-lowest

Require: Graph G = (V,E)
1 k ← number of colors used by RLF applied on G.
2 σ ← the coloring of G, after applying RLF

3 while true do
4 if TabuCol applied on G with k allowed colors results in a valid coloring then

5 k ← k − 1
6 σ ← the resulting coloring for TabuCol with k allowed colors
7 else

8 break

By utilizing a large |V | × k matrix that stores how many neighbours to
v that share the color c in the (v, c) position of the matrix, looking up
the recoloring that results in the lowest number of clashes can be done by
scanning through the whole matrix, that is O(|V |k) time. Keeping this
method up to date in turn requires a step of |deg(v)| for every vertex getting
recolored. As the number of repetitions is constant, the total runtime of
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an single iteration of TabuCol can therefore be implemented in O(|V |k +
deg(v)) = O(|V |k + |V |) = O(|V |k) [9]. The initial creation of the |V | × k
matrix with appropriate entries requires iterating through every edge, giving
a runtime of (|V |k+|E|), and in turn a total runtime for TabuCol at O(|E|+
(|V |k) ·MaxIt). This does however not account for how many times one
needs to apply the whole TabuCol method to determine the lowest color that
can be achieved by it.
The worst case scenario would be that the initial k was the number of vertices
in the graph, and the lowest color achieved by repeated applications was 1.
In this case the runtime would be O((|E|+(|V |k)·MaxIt)|V |) = O(|E||V |+
(|V |2k ·MaxIt)). This is in practice often a too pessimistic analysis, as the
di�erence between the initial coloring and the coloring achieved by TabuCol
is rarely that large. It is also worth noting that the number of repetitions
needed for good results in most cases greatly outnumber the number of
vertices in the graph, meaning that this heuristic in practice exhibits the
largest runtimes.

5 Strategies

In the case where the whole graph does not contain any prime modules, so can
an optimal coloring can be obtained with Algorithm 1 in linear time [13]. We
will use di�erent strategies on how to apply the di�erent heuristics described
in section 4 in case the graph contains prime modules, these strategies are
described below. An example run of the di�erent strategies is also given in
subsection 5.4

5.1 Whole graph

In this baseline test, so is the whole graph colored using the heuristic, not
utilizing the modular decomposition at all. This strategy is used as a baseline
to compare whether or not the other strategies improves the performance for
the graph.

5.2 Whole prime coloring

With this strategy so is the whole prime module colored using the heuristic.
This modi�es the behaviour of Algorithm 1 in to ways. First, line 12 is
replaced by a call to the heuristic used with this strategy, and secondly, the
children of the prime module is not colored before it, as doing so would be

24



redundant and waste time. This also means prime modules contained within
other prime modules are not colored individually with the heuristic.
This method is the simplest combining strategy, but worth noting is that is
equivalent to coloring the whole graph using the heuristic in the case where
the root node is prime, and therefore only o�ers a possible improvement to
existing heuristics when the root in the modular decomposition is not prime.

Algorithm 9 Whole prime coloring

Require: Graph G = (V,E)
Require: Modular decomposition tree MD of G
Require: Graph coloring heuristic H
Require: Module M in the modular decomposition
1 Initialize a coloring s.t. all v ∈ V have di�erent colors
2 if M is parallel or M is series then
3 for all Child module u of M do

4 Color the vertices in the child module with
Whole prime coloring(G,MD,H, u)

5 if M is parallel then
6 Mchild ← the child modules of M in MD
7 M ′ ← the child module in Mchild that is colored using the most number of colors
8 CM ′ ← the colors used in the coloring of M ′

9 for m ∈Mchild \ {M ′} do
10 σ ← coloring of m
11 ϕ← injective map from the colors used in σ to CM ′

12 for all v ∈ m do

13 σ(v)← ϕ(σ(v))
14 else

15 Color the vertices in M by applying the heuristic H on G[M ], using colors present in the current
coloring of M .

The whole graph G can be colored with Algorithm 9 by applying it on the
root module of the modular decomposition.
The requirement in line 15 that the coloring have to use colors already present
in the vertices of the prime module is needed because otherwise we could
introduce clashes. Algorithm 1 as well as Algorithm 9 assumes that the
children of a series module do not share colors after being colored. We can
ensure this by only using the colors available in the module being colored,
as all vertices are initially given a unique color, which means that modules
with the same parent start with a disjunct set of colors.

5.3 Quotient recoloring

De�nition 5.1 (Quotient graph). The quotient graph Q for a graph G =
(V,E) over a partition P = {P1 · · ·Pi} of the vertices V , is a graph Q =
{P, {(Pi, Pj) : j ̸= i,∃v ∈ Pi,∃u ∈ Pj((u, v) ∈ E)}}

This coloring, unlike the previous two, also attempts to colorize the prime
modules using the modular decomposition tree. Here, every prime module
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is colored just like in 'Whole prime coloring', but only if it contains under
a predetermined number of vertices. Otherwise, all of its children are col-
ored �rst, then the quotient graph for the children of the prime modules is
constructed. This quotient graph is then colored with some graph coloring
heuristic, potentially di�erent from the ones used in coloring the modules,
and then every child module with the same color in the quotient graph can
now be recolored to use the same set of colors.
The quotient graph is a graph describing whether or not parts in a vertex
partition of a graph are adjacent or not, instead of individual vertices. Two
vertex parts are adjacent in the quotient graph if there exists an edge between
any pair of vertices, where one vertex is in the �rst part, and the other vertex
is in the other part. A quotient graph where the partition is all of the original
vertices individually, is therefore isomorphic to the original graph.

Algorithm 10 Quotient coloring

Require: Graph G = (V,E)
Require: Modular decomposition tree MD of G
Require: Module M in the modular decomposition
Require: Threshold for heuristic T
Require: Graph coloring heuristic H for prime modules
Require: Graph coloring heuristic H ′ for quotient graph
1 Initialize a coloring s.t. all v ∈ V have di�erent colors
2 for all Child module u of M do

3 Color the vertices in the child module with
Quotient coloring(G,MD, u, T,H,H ′)

4 if M is parallel then
5 Mchild ← the child modules of M in MD
6 M ′ ← the child module in Mchild that is colored using the most number of colors
7 CM ′ ← the colors used in the coloring of M ′

8 for m ∈Mchild \ {M ′} do
9 σ ← coloring of m
10 ϕ← injective map from the colors used in σ to CM ′

11 for all v ∈ m do

12 σ(v)← ϕ(σ(v))
13 else if M is prime then
14 if |M | ≤ T then

15 Color the graph G[M ] with H, using colors present in the current coloring of M
16 return

17 Q← quotient graph of G[M ] where the child modules of M in MD is the partition
18 σQ ← Coloring of Q after coloring it with H ′

19 for all colors c in the coloring of Q do

20 Qc ← {m : m ∈ V (Q), σQ(m) = c}
21 m′ ← the module in Qc with the most colors
22 Cm′ ← the colors used in the coloring of m′

23 for all m ∈ Qc \ {m′} do
24 σ ← the coloring of m
25 ϕ← map from the colors used in σ to Cm′

26 for all x ∈ m do

27 σ(x)← ϕ(σ(x))

As a quotient graph can for a graph G = (V,E) be constructed in O(|V |+
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|E|) time for a partition of the vertices, we can see that the pathological worst
case for constructing the quotients, are when only one vertex is removed for
each recursion. In that case, the construction of the quotient graphs are
O(|V |2 + |E||V |). The runtime is then dependant on the properties of the
heuristic applied on the quotient graph to color it. The time for the heuristic
applied when the modules that are small enough can be seen as constant, as
the maximal size and complexity of the graph is bounded.
This notably implies that the runtime for quotient coloring is in the worst
case slower than any of the individual constructive algorithms, that is
Greedy, Dsatur and RLF.

5.4 Example

Here an example of the di�erence in how these strategies are applied is given.
We start by looking at the graph in Figure 14.
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Figure 14: Graph to color

This graph is relatively large and has a lot of edges. We can gain some insight
into its structure by looking at its modular decomposition tree, depicted in
Figure 15.

27



Module 1
prime

5 6 Module 3
prime

Module 2
parallel

1 2 3 4 7 8

Root
series

Module 4
series

Module 5
series

Module 6
parallel

9 10 11 12

Figure 15: Modular decomposition of graph

We can see from this �gure that the root node is not prime, and that it con-
tains a prime module with a nested prime module, as well cograph subgraph
in module 4 containing 4 vertices.
From this we can now apply the di�erent strategies. The case for 'Whole-
Graph' is omitted here as it just involves a regular application of a graph
coloring algorithm. The heuristic we use in combination with the strategies
is RLF.

5.4.1 Whole prime

When applying the 'Whole prime' strategy, we start with an initial coloring
where every vertex has a unique color, depicted in Figure 16.
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Figure 16: Modular decomposition of graph

When coloring the root module, we start by coloring its children �rst. Col-
oring Module 4 can be made optimally as it contains no prime modules, and
doing so we get the coloring in Figure 17.
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prime

Module 2
parallel

1 2 3 4 7 8

Root
series

Module 4
series

Module 5
series

Module 6
parallel
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Figure 17: Module 4 optimally colored

Now we color Module 1. Here we do not recurse further down into the tree,
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and instead color the whole subgraph induced by Module 1 with a graph
coloring algorithm. That is, we want to color the graph Figure 18a below.
The result of applying RLF is shown in Figure 18b.

1

2

3

4

5

6

7 8

(a) Subgraph induced by module 1
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(b) Subgraph colored with RLF

Figure 18: Coloring of Module 1 using 'Whole prime' strategy

Now all of the child modules of the root module have been colored, and the
vertices are colored as displayed in Figure 19.
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prime

Module 2
parallel
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Module 6
parallel

9 10 11 12

Figure 19: All child modules of the root module have been colored

The root module being series means that no recoloring of the child modules
have to be done, and that we have a �nished coloring, which can be seen in
Figure 20
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Figure 20: Graph colored using 'Whole prime' coloring

5.4.2 Quotient coloring

Now we color the same graph using the quotient coloring. It behaves the
same way as 'Whole prime' coloring, except for when coloring prime modules.
We therefore skip to the step where we have colored Module 4, and are about
to color Module 1, that is the state in Figure 17.
Unlike in 'Whole prime' coloring, when coloring a prime module with the
quotient strategy so are we utilising the modular decomposition to color the
prime module. We start by coloring the child modules of Module 1.
The trivial modules just retain their color, and Module 2 can be colored
optimally. Coloring Module 3 we again have to apply the prime module
case. But as Module 3 contains only trivial modules so is it is quotient graph
isomorphic to the original graph, and therefore equivalent to just applying
the heuristic directly on it. After having colored the children of Module 1
we arrive at the graph Figure 21
Note that the threshold set here for coloring prime modules of a speci�c size
directly with a heuristic is 0, as the example would otherwise be equivalent
to 'Whole prime' coloring.
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Figure 21: Children of Module 1 colored

Now the novel step of the quotient strategy is applied. Now we want to
combine the results for the coloring of the children to a good coloring of
Module 1. The current coloring is a proper coloring, but it is not necessarily
optimal. The quotient strategy tries to improve this coloring by examining
whether or not child modules can share the same set of colors. To do this, we
�rst construct the quotient graph, where the partition is the vertices in the
child modules, that is {{6}, {5}, {1, 2, 3, 4}, {7, 8}}. This quotient graph can
be seen in Figure 22a. We then color this graph using some predetermined
heuristic, and get the result in Figure 22b

{5}

{6} Module 2

Module 3

(a) Quotient graph of the children
of module 1

{5}

{6} Module 2

Module 3

(b) Colored quotient graph

Figure 22: Quotient graph coloring

The modules that share color can not be neighbours in a proper coloring,
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which by the de�nition of a quotient graph means that there are no edges
between 2 vertices with di�erent modules of the same color. This in turn
means that they can share the same set of colors. To ensure that we can
recolor them and end with a proper coloring, so are we using the set of colors
from the module with the most number of colors for every color category.
This means that we recolor module {5} and Module 3 with beige, and Module
2 and {6} with red and green. This gives the coloring in Figure 23.
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Figure 23: All child modules of Root colored using quotient strategy

Now all of the child modules of the root module have been colored. The root
being series means that no further recoloring is done, and we can see the
�nal coloring in Figure 24
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Figure 24: Finished coloring using the quotient strategy

6 Data generation

The test sets used are graphs from the DIMACS benchmark set [3], and
graphs generated that are not prime, as outlined below.
All of the graphs from the DIMACS benchmark sets are di�cult to color,
and also have modular decomposition where the root vertex is prime. As
they are commonly used for benchmarks, they also provide known best cur-
rent colorings for the di�erent graphs. However, the modular decomposition
might provide a more e�cient way to color graphs where only some of the
vertices are in a prime module.
The algorithm for generating these graphs is described in Algorithm 12. First
an ordinary binary tree is randomly generated with a speci�ed number of
leafs , and then every vertex in this tree is given a label "series" or "parallel".
This then describes a cograph, where the leafs are the K1 bases, and a
label of "series" means that the children are joined by disjoint union and a
label of "parallel" means that the children are joined by graph join. From
this so can the corresponding graph be constructed. From this cograph, we
then randomly add edges in predetermined number of modules and with a
predetermined size.
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Algorithm 11 Construct cograph

Require: Vertex labeled tree T
1 if |V (T )| = 1 then
2 return (V (T ), ∅)
3 G← empty graph (∅, ∅)
4 for all v ∈ NT (root(T )) do
5 if Label of root(T ) is parallel then
6 G←

⋃
G,Construct cograph applied on the subtree of T with v as root

7 else if Label of root(T ) is series then
8 G← ∇G,Construct cograph applied on the subtree of T with v as root

Algorithm 12 Random disturbed cograph

Require: Percent p for series, 0 ̸= p ̸= 1.
Require: Percent pe for new edge, 0 ̸= pe ̸= 1.
Require: Total number of leafs l, 0 < l.
Require: Prime modules size ms
Require: Prime modules count mc
1 bg ← Random binary graph with leaf count equal to l
2 for all v ∈ V (bg) do
3 Randomly assign a label series, or parallel to v, so that the probability for series is p.
4 CG← Construct graph applied on bg
5 pm← All strong modules M of CG such that |M | ≥ ms, ordered in increasing order by size
6 for i in 1 in 1 · · ·mc do
7 cm← The module at index i in pm
8 for all vertex pairs (u, v) ∈ E(CG[cm]) do
9 Modify CG by adding edge (u, v) with a chance of pe
10 return CG

The cographs are disturbed in such a way that the expected number of prime
modules and size of these modules can be tuned beforehand. By only adding
edges within a module, we can guarantee that only vertices in that module
can be part of a new prime module. Assuming that the root module is not
a part of the �rst mc modules of size greater than ms, we can therefore also
ensure that the root module is not prime.
By specifying how many modules we want and their size, we can also con-
struct modular decomposition with various percentage prime modules.

7 Evaluation

There are a number of parameters that a�ect the generated graph, as Ran-
dom disturbed cograph takes as arguments the number of vertices in the
generated graph, the probability of "series" when generating a random co-
graph, and the probability for edges within a module, and �nally the number
and size of the prime modules.
The heuristics used also have some parameters that can be tuned. TabuCol
has to have a set number of iterations, and the size of the Tabu list, and the
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quotient coloring strategy requires the threshold for applying the heuristic
directly, and the heuristic used to color the quotient graph.
How all of these parameters are set is described below.

7.1 Generated data

The generated graphs are made up by creating random graphs for every com-
bination of parameters to Random disturbed cograph that get assigned
di�erent values. The parameters that get assigned di�erent values are size,
module count and series probability, with 4 possible values for graph size, 2
for module count, and 2 for series probability, resulting in a total of 16 dif-
ferent combinations of parameters. The value assigned to these parameters
are described in the subsections below.
The generated graphs can be found in this git repository [1], and are stored
in the directory "TestGraphs". This directory contains a directory for all
the di�erent combinations of parameters, and the directory name encodes
the value of these parameters. The �rst number is the number of vertices
in the graph, the second number is the series probability, and the last num-
ber the prime module count. For example, the directory "DisturbedCo-
Graph_1000_35_5" contains graphs with 1000 vertices, that where gener-
ated with a series proability of 35%, and that contain 5 prime modules. For
every combination so are 15 graphs generated, a number set so that they can
be colored in parallel e�ciently.
The value these di�erent parameters can take are described below.

7.1.1 Graph size

The number of vertices in the graphs are either 1000,750,500 and 250.

7.1.2 Module count and size

Graphs can have the same number of vertices that are within a prime mod-
ule, but the size of the individual prime modules can di�er. It could be
possible that few large prime modules have better performance when us-
ing for example the 'Whole prime' strategy compared to graphs with many
smaller prime modules. The number of modules tested are 5 prime modules
and 10 prime modules.
Ensuring that roughly the same fraction of vertices are within a prime module
therefore means that the module size depends on the size of the graph, and
the number of prime modules. The module size is set so that module size ·
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module count is half the size of the graph, meaning that roughly half of the
vertices can be expected to be a part of a prime module.

7.1.3 Module edge probability

The edge probability within modules is a constant 50%, so that all top prime
modules have roughly the same edge density.

7.1.4 Series probability

The �nal split is with series probability. A higher series probability yields a
graph with more edges, and lower a graph with fewer edges, as a graph join
in Algorithm 11 introduces new edges, whereas a graph union in the case of
a parallel label keeps the number of edges constant. The series probability
tested where 35% and 70%.

7.2 Heuristics

TabuCol contain some parameters that can be tuned. The number of iter-
ations allowed was for these test were set to 10000, making it the slowest
algorithm to apply, while still being reasonably fast. The size of the tabu
list was also set to 7, as recommended by [14].
For the quotient coloring, the threshold for the number of vertices in a prime
module to color directly with a heuristic was set to a constant 20. The heuris-
tic used to in turn color the quotient graph was set to RLF. It is reasonably
fast with good performance. The reason the same heuristic was not used to
color the quotient graph is because it would in the case of TabuCol possibly
result in very excessive computation times, as the modules can be deeply
nested.

7.3 Code

The code used to generate the graphs, and the code used to evaluate the
di�erent colorings can be found at [1].
The graph coloring is implemented in python 3.10, in "ModularColoring.py".
It depends on networkx [6] and ModularDecomposition [10]. The script is
invoked as

python3 ModularColoring.py <input-file>

Here, <input-�le> is interpreted as a path to a �le containing the graph to
color, encoded as a networkx adjacency list [12].
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The script colors the graph described in the �le with a every combination of
heuristic described in section 4, and for every strategy de�ned in section 5.
The result is printed on stdout, formatted as comma separated lines suitable
for a csv �le. The �rst value is the name of the input �le, the second
value is the modular decomposition label for the root vertex in the modular
decomposition. 1 Means parallel, 0 series and p prime. The third column
is the name of the heuristic tested, the fourth column is the name of the
strategy used, the �fth column is the number of colors used in the coloring,
and the last column is the amount of time the coloring took in seconds.

8 Results

The following �gures contain the averaged performance for coloring the
graphs in the respective test sets. All graphs are colored with all combi-
nations of heuristic and strategy. A �gure is also provided that displays the
total average between all disturbed cographs, as well as the performance on
DIMACS graphs.

8.1 Interpreting the �gures

The result for the di�erent categories are displayed grouped by their graph
size, except for DIMACS and the table containing the averaged result. These
groups in turn divide the result into separate groups depending on the num-
ber of modules in the graph, and the series probability. This means that
each �gure contains the result for 4 di�erent graph categories.
Two �gures are displayed for each category, one displaying the number of
colors used for a given heuristic, and the other displaying the time in mil-
liseconds it took for that heuristic to color the graphs. The heuristics are
displayed on the x-axis, and the time/colors used are displayed on the y-axis.
Time is displayed on a logarithmic y-axis, because of the large di�erence in
time taken for di�erent combinations of heuristic and strategy. The strat-
egy used in the coloring is represented by the color of the staple for a given
heuristic. The result displayed is the averaged color count/time for every
graph in the category.
This means, that to determine the average colors used for RLF on graphs
with 1000 vertices that contain 10 prime modules and with 35% series prob-
ability using the 'Whole prime' strategy, one would look at the blue staple
in the third column in the upper left facet in Figure 25a.
For the DIMACS graphs so are only the "quotient" and "whole graph" strat-
egy displayed, as all of the graphs have a prime root module so is the "whole
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graph" strategy the same as the "whole prime" strategy.
When interpreting the runtime for the di�erent algorithms, note that sys-
tem load may vary between di�erent runs, and that because of the long
runtime for some test sets so are the tests not repeated to ensure statistical
signi�cance. The time should therefore be seen as a rough estimate.
The implementation and the tested graphs can be accessed as a git repository
at [1].

8.2 Results
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(a) Coloring results (b) Runtime

Figure 25: Result for generated graphs with 1000 vertices. Graph coloring algorithm is on the x-axis, color/time
is on the y-axis, staple colors represent the di�erent strategies. Result faceted by Module size and series
probability.
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(a) Coloring results (b) Runtime

Figure 26: Result for generated graphs with 750 vertices. Graph coloring algorithm is on the x-axis, color/time
is on the y-axis, staple colors represent the di�erent strategies. Result faceted by Module size and series
probability.
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(a) Coloring results (b) Runtime

Figure 27: Result for generated graphs with 500 vertices. Graph coloring algorithm is on the x-axis, color/time
is on the y-axis, staple colors represent the di�erent strategies. Result faceted by Module size and series
probability.
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(a) Coloring results (b) Runtime

Figure 28: Result for generated graphs with 250 vertices. Graph coloring algorithm is on the x-axis, color/time
is on the y-axis, staple colors represent the di�erent strategies. Result faceted by Module size and series
probability.
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(a) Coloring results (b) Runtime

Figure 29: Result for the DIMACS graphs. Graph coloring algorithm is on the x-axis, color/time is on the
y-axis, staple colors represent the di�erent strategies.
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(a) Coloring results (b) Runtime

Figure 30: Combined results for all generated graphs. Graph coloring algorithm is on the x-axis, color/time is
on the y-axis, staple colors represent the di�erent strategies.
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8.3 Discussion

Something that we can see from the tables, most easily from Figure 30,
is that applying a heuristic locally on prime modules, that is using the
'WholePrime' strategy, does not signi�cantly a�ect the resulting number
of colors for RLF,Greedy and Dsatur. It does however seem to give a mi-
nor improvement for TabuCol. In situations where one would consider using
TabuCol with its comparably larger execution time in the �rst place, so could
it be reasonable to use the modular decomposition for increased performance.
We can see that the number of colors used for DSatur and RLF was for
these graphs mostly the same independent of used strategy, and TabuCol
had slightly better performance compared to those two. Greedy was by far
the worst performing with signi�cantly worse results than all the others in
all cases, but it also has signi�cantly faster runtime.
Looking at the di�erence between series probability of 35% versus 70%, it
seems like the relative improvement when using TabuCol instead of another
coloring heuristic is very slightly better for the sparser graphs with 35% series
probability. There also does not seem to be any direct di�erence with the
number of prime modules in the resulting number of colors used by TabuCol.
The result for the quotient strategy is always comparable to the performance
of RLF. It can be seen to outperform pure RLF very slightly for some com-
binations, such as in Figure 29. It also exhibits a much larger runtime, most
notable for the same DIMACS test set in Figure 29. The potential decrease
in colors most likely does not compensate for the increased runtime however,
even with a more optimized implementation.
Looking at the time taken to color the graphs, we can see that the modular
decomposition might have a use in decreasing the execution time. We can
see that for DSatur and RLF so is the 'WholePrime' strategy almost always
faster than coloring the 'WholeGraph' strategy, by a signi�cant amount.
This di�erence seems to be a�ected by both series probability and the num-
ber of graph modules, as well as the graph size. A higher series probability
gives a bigger di�erence in performance for 'WholeGraph' and 'WholePrime'
in most cases, and more modules gives an even bigger di�erence. The only
situations where 'WholeGraph' was faster were for RLF on the smaller graphs
with 250 vertices.
Graph coloring heuristics with execution time that does not scale linearly
with the number of edges/vertices could theoretically see a speedup when
applied on smaller subgraphs instead of the whole graph, given that com-
bining the results is in linear time, which is the case for the 'WholePrime'
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strategy. Both DSatur and RLF does not scale linearly with the number of
edges, whereas TabuCol and Greedy does, which could explain why these
heuristics does not see the same bene�t, and instead take longer time to
execute. The more vertices and the more edges a graph has the larger this
di�erence would be , which would explain why the di�erence is higher for
70% series probability, and why it can even take longer in the case of RLF
on graphs with 250 vertices, the overhead of creating the subgraphs is not
yet compensated by the speedup from applying on smaller graphs.
Whether or not it is worth it in practice to use the modular decomposition
for a speedup in execution time depends on the ability to implement the
modular decomposition tree in linear time, and if the added computations
can be compensated by large/dense enough graphs.
Another possible advantage with the modular decomposition is that it could
allow for more easily implemented parallelised coloring algorithms. As the
child modules of a module in the modular decomposition tree creates a par-
tition of the parent module, so can the di�erent parts of the modular decom-
position tree be colored in parallel without causing race conditions, which
could compensate for the increased runtime when for example using TabuCol
with the 'WholePrime' strategy.

9 Conclusion

Using the modular decomposition did not signi�cantly improve the perfor-
mance of the tested heuristics, except in the case for TabuCol. This does
show that performance bene�t can vary from heuristics to heuristic, but the
total di�erence is also most likely relatively small. The modular decompo-
sition coloring does however show some potential in improving the runtime
for di�erent coloring heuristics, and combined with parallelised coloring of
prime modules might lead to larger improvements when examining colors
relative to time taken.
The coloring was mostly improved when using TabuCol, and it is possible
that other similar algorithms could see an improvement as well. It is also
possible that there are other ways to utilise the modular decomposition when
coloring prime modules other than the quotient strategy.
Another area worth investigating is �nding examples of real-world graphs
that have modular decomposition without a prime root module. The pa-
rameters set for the generated graphs might be di�erent from graphs en-
countered in real-world use cases, and could exhibit di�erent properties that
make them more/less suitable for these coloring methods.
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