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Abstract

In computer graphics in general, and in video game development specifically, achieving
realistic and interactive water simulation is a significant challenge. The computational
complexity and hardware constraints make real-time, physically-based fluid dynamics
difficult to implement. This thesis investigates the techniques used to simulate water
in video games, focusing on shallow water bodies. It explores the historical evolution
of fluid animation, modern commercial implementations, and surveys how realism is
balanced with computational efficiency. By analyzing the current methods used in
computer graphics to simulate water in real-time video game environments, this study
aims to identify the challenges and advantages surrounding the different methods. A
practical implementation is conducted using the Unity game engine, demonstrating
the application of selected techniques. The findings highlight the trade-offs between
perceived realism and performance, offering insights into creating visually convincing
water simulations under the constraints of current gaming technology.

Sammanfattning

Inom datagrafik i allmdnhet, och inom utveckling av datorspel i synnerhet, dr det
en utmaning att uppna realistisk, interaktiv vattensimulering. Den berdkningsmdssiga
kompleziteten och hdardvarubegrinsningarna gor det svart att implementera fysikaliskt
baserad vitskedynamik ¢ realtid. Denna uppsats dmnar att undersoka de tekniker som
anvdnds for att simulera vatten i datorspel med fokus pd grunda vattenmiljoer. Den ut-
forskar den historiska utvecklingen av vitskeanimation, moderna kommersiella imple-
menteringar och undersoker hur realism balanseras med berdkningseffektivitet. Genom
att analysera de nuvarande metoderna som anvands inom datagrafik for att simulera
vatten i realtidsmiljoer i datorspel, syftar denna studie till att identifiera de utmaningar
och férdelar som dar forknippade med de olika metoderna. En praktisk implementa-
tion genomférs med hjdlp av Unity-spelmotorn, ddr tillimpningen av utvalda tekniker
demonstreras. Resultaten belyser de kompromisser som gdors mellan upplevd realism
och prestanda, och ger insikter i hur man kan skapa visuellt dvertygande vattensimu-
leringar inom ramen for den nuvarande spelteknologins begrinsningar.
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1 Introduction

The behavior of fluids, including water, is chaotic. Any change to the water will ripple
out onto itself, creating a chain of cause and effect that echoes out through the body,
causing waves, ripples, droplets and perhaps separation of the body into many more
bodies, a fine mist, or being poured into another container. The very nature of this
phenomena, since it is so adaptable to change, makes it complex to simulate. Every
part of the water affects the next, and the surface of the water can be divided in one
instant and be rejoined in the next.

Simulating complex physical phenomena like water flow is a complicated problem. The
governing equations of the motion of fluids have been widely studied in modern science,
but analytic solutions are only available for very specific configurations [12]. Physically
based water simulation requires the use of numerical methods to solve systems of partial
differential equations, and these methods are computationally costly [5]. The restraints
of hardware and software therefore directly impacts the resolution of the simulation.
By writing more efficient code, time and memory complexity can be reduced, larger
datasets can be computed, and a higher resolution can be achieved. A method also
needs to be stable and accurate, as to properly mimic the phenomena it seeks to
imitate and not diverge from the solution. However, when creating a virtual world for
a video game the most important aspect of the simulation is not the accuracy of the
simulation but whether the simulation appears to be accurate. Therefore, different
aspects of the water can be simulated differently, creating an illusion of water rather
than a physically correct model.

Video games have the unique restrictions that any simulation must take place under
a fixed window of time, since the game is updated in "real-time". The difference be-
tween real-time rendering and pre-rendered graphics is the time of which the rendering
process takes [37]. To achieve a photo-realistic effect the minimum rendering speed is
24 frames per second [37]. Anything that is rendered in more than this is considered
pre-rendered graphics. A scene in a game can contain numerous different objects that
need to be simulated and rendered at the same time, some pre-rendered and some
rendered in real-time. Given the fixed frame rate, a simulation algorithm must main-
tain stability across diverse scenarios to ensure a consistent and reliable experience for
players.

To render a simulation algorithm suitable for video games, the algorithm therefore
needs to be stable and cost-effective in computation. Another aspect is low memory
consumption, as it directly influences computational complexity.



1.1 Problem Statement

This essay aims to survey the different methods to simulate water, specifically shallow
bodies of water, in video games. The essay aims to answer what the potential draw-
backs are and what the positive aspects for the different methods are, answering these
questions:

e How are fluid dynamics applied in video games for shallow bodies of water?
e What are the challenges in simulating water in a video game environment?
e What are the techniques used for water simulation?

e How can one implement a water simulation with available methods and tech-
niques?

The main source for this essay is the book "Fluid Simulation for Computer Graphics
2nd Edition" by Robert Bridson [5]. Various different papers on simulating water in
computer graphics have been used to research the application of techniques in video
games, as well as contemporary news sources. Furthermore, to research and inquire
how to implement the methods, a fluid simulation is implemented in Unity game
engine with code written in C#. It is common for developers to implement their
simulations in game engines, where many companies implement their own internal
game engine. The most common game engine available for download are Unity and
Unreal engine. While it’s possible to perform the computation for the simulation in
parts or even fully leveraging the parallelisation opportunity of the Graphics Processing
Unit, "GPU" (via compute shaders written in High Level Shading Language, "HLSL"),
this was deemed beyond the scope of this thesis. A light-weight graphics shader was
written and simulated in HLSL to illustrate a cost efficient non-physically based fluid
simulation.

This thesis is organized as follows. In Section 2, we give a brief historical overview
of fluid animation and the current techniques used for simulating shallow bodies of
water. In Section 3 we investigate the current techniques used for simulating shallow
bodies of water in more detail. In Section 4, we implement a selection of the current
techniques in a game engine. Finally, in section 5, we give concluding remarks.



2 Simulating Fluids in Video Games

2.1 A Historical Overview of Fluid Animation

In order simulate a physical phenomenon, such as fluid motion, it is important to start
with an appropriate mathematical model. Modern fluid dynamics describing incom-
pressible flow are based on the partial differential equations written in the mid 1800-s
by Claude-Louis Navier and George Gabriel Stokes known as the as the incompressible
Navier-Stokes equations:
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where @ is the velocity field with three components (u,v,w), p is the density of the
fluid (for water, p =~ 1000%), p is pressure force per unit area, v is viscosity and F
is the force acted on the fluid [5]. Equation 2.1 is called the momentum equation,
and describes how a fluid accelerates from forces acting on it. The equation is derived
from applying Newtons second law, F = ma; the force is equal to the mass times
the acceleration, to fluid motion. On the left-hand side the first two terms make up
an advection equation; how the velocity field @ moves. The following terms describe
the forces acting on the fluid. The third term is the gradient of the pressure field.
The forth term determines how much or little the fluid acts force on itself due to its
viscosity. Lastly on the right hand side are the body forces acting on the fluid, such
as gravity. Equation 2.2 is called the incompressibility condition and states that
the divergence of the velocity field must be zero. This means that for any point in the
velocity field the inflow to that point must be equal to the outflow; there cannot be
a point in which the fluid collapses on itself or generates more fluid from itself. The
two equations combined describe the nature of incompressible flow, and serve as the
mathematical model for a fluid such as water.

There are several different techniques to solving this partial differential equation, or
PDE, numerically so that the solution is stable and accurate up to a certain degree
[21]. However, from a visual point of view in graphics, the most important aspect
of the method is not how small the error is, but how stable and fast the method
is and whether or not the solution looks good [33|. Therefore, given the limitation



from computational hardware, historically, the solutions to render water were achieved
by simulating something that can be perceived as water rather than simulating a
physically accurate fluid.

In the 80’s, perturbating the surface normal of a plane was introduced to make the
appearance of a moving fluid [17]. In the animated short "Carla’s Island" by Nelson
Max [26], released in 1981 [17], the effect of waves is created by adding up a series of
cosines to mimic wave trains:

f(z,y,t)=—h+ Z a;cos(rix + siy — wit), (2.3)

=1

where a; represents the amplitude of the wave train specified by a wave vector (r;, s;)
such that r? + s? = k2, w; is the angular frequency in radians/s, h is the distance of
the mean sea level below the eye at z = 0, and m is the number of wave trains [17].

However, viewing figure 2.1, the waves
appear to cut into the shoreline. Later
this model was extended to take into
the height of the sea floor to accurately
model waves near beaches [17]. While
these methods are cheap to compute
and can simulate a believable water sur-
face, they cannot handle more complex
three dimensional phenomena as flow
around objects and dynamically chang-
ing boundaries [11].

To ensure this more complex dynamic
behaviour, research began exploring
solving equations (2.1) and (2.2) over a
grid [17]. In 1990 Kass and Miller [19] Figure 2.1: Waves cutting into island shore,
introduce a water simulation based on Carla’s Island, 1981 [26].

the linearized form of the shallow water

equations; a simplified form of equations

(2.1) and (2.2), where the vertical velocity is considered to be negligible due to the
shallowness of the body of water. The horizontal velocities with their corresponding
height are then mapped onto a height field representing the surface [17]. For a height
field, every point (x,y) is mapped onto one point (z) [11]. This makes it impossible
to simulate breaking waves, foam or bubbles which requires multiple z-coordinates for
each water interface. Also, this model cannot easily incorporate floating objects and
buoyancy effects since the velocity is only calculated on the surface [14].

Further exploring simulations based on solving equations (2.1) and (2.2) numerically
over a grid, Metaxas and Foster [14] in 1996 simulate 3D velocities throughout a vol-
ume. The approach used a Marker-and-Cell (MAC) method where marker particles
mark cells in the grid as fluid, surface or empty. However, the discretization scheme



used is stable only when the time step is sufficiently small. Therefore, for small sep-
arations and/or large velocities, very small time steps have to be taken [33]. An
unconditionally stable solver for fluid dynamics in computer graphics is introduced by
Jos Stam [33] in 2001.

Instead of solving equations (2.1) and (2.2) over a grid, particle systems can be imple-
mented. The Particle-In-Cell (PIC) method is introduced by Harlow in 1957 [5] where
particles are used to track the movement of the fluid over a grid. The method is further
developed by Brackbill and Ruppel in 1985 [4] with Fluid-Implicit-Particle, "FLIP",
implementing an adaptable grid. A completely gridless approach to simulate com-
pressible flow is the Smoothed Particle Hydrodynamics method, "SPH", introduced in
1977 [29]. This method is extended to incorporate incompressible flow in 1996 in the
method Moving Particle Semi-Implicit, "MPS" [29].

Continuing into the millennia, physically based fluid simulation methods are labelled
either Lagrangian methods or Eularian methods, depending on how the solutions to the
equations are modeled [5]. In Lagrangian methods velocities and densities are stored
on particles moving in space, while in Eulerian methods the quantities are stored on a
grid. There are also hybrid methods, where both particles and grids are implemented
[17]. In modern times, the methods, hardware and software have evolved to where
we now see these numerical solutions to the PDE:s applied in pre-rendered graphics
but also in real-time rendering for video games, both in the form of the simplified
shallow water equations but also as solutions to the full Navier-Stokes equations, in
three dimensions as well as two. However, these physically based methods are often
paired with extra effects to model different parts of the water, such as the foam and
droplets on the surface.



2.2 Modern Commercial Fluid Implementations

In this section, some examples of the current state-of-the-art implementations of fluid

simulations are given.

2.2.1 Shallow Water Equations

One of the latest releases in simulating
water for shallow bodies is the plug-in
"Fluid Flux"[20], see Figure 2.2, for Un-
real Engine, which utilises the shallow
water equations coupled with predefined
wave profile animation to simulate wave
breaks. The waves in the open world
game "Horizon: Forbidden West" were
modeled in a similar fashion. [32]

Lightspeed Studios "Photon Water Sys-
tem" for Unreal Engine also uses the
shallow water equations to simulate wa-
ter together with a grid-based foam so-
lution that can be generated and moved
based on the velocity field from the wa-
ter. [32].

Figure 2.2: Water flow on rock formations,
filling up towards sea shore,
Fluid Flux [20].



2.2.2 Eulerian and Lagrangian Methods

Zibra Liquids, by Zibra AI [1], a
plug-in for Unity and Unreal engine,
includes a particle based three di-
mensional water simulation in real
time, also capable of simulating flu-
ids of different viscosity, see Figure
2.3.

Similarly, Niagara Fluids by Epic
Games [39] supports three-dimensional
real-time liquid effects, including
shallow water simulations and the
simulation of various liquids such as
gas, fire, and more viscous fluids.
Epic Games encourages the use of
the three-dimensional effects for pre-
rendered "hero effects and cinemat-
ics" [39], rather than real-time use, due to the overwhelming computational cost. In-
stead, because of higher efficiency, the two-dimensional models are recommended for
in-game use [39]. The gases are simulated on a grid, while the liquids are simulated
using FLIP [39].

Figure 2.3: Particle based simulation of a wa-
terfall falling on top of a zebra, Zi-
bra Liquids by Zibra AI [1].

2.3 The Role of Water and Perceived Realism

Concerning perceived realism one can look at graphic realism, inferential or imaginative
realism and enactive realism [22]. Graphic realism concerns how realistic or lifelike
objects look, inferential or imaginative realism concerns the accuracy and plausibility of
events, characters and environment, and lastly enactive realism concerns the accuracy
and plausibility of the interaction with the interface, controller and other characters
[22]. However, it should be mentioned that given the subjective nature of the topic,
there has been issues to both accurately define this categorical division and in extension
to empirically research how these different types of realism affects players enjoyment
in games [31].
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Figure 2.4: Water fall texture ren-
dered on plane, Red
Dead Redemption 2
[36].

In this essay it will be assumed that graphical
realism concerns the look of the water; the light-
ing refraction, the colour, and level of detail of
the surface of the water with foam and other ef-
fects. The imaginative and inferential realism is
assumed to handle the accuracy and plausibility
of the movement of the water, and the enactive
realism to be how the engagement with the water
is plausible and accurate.

There is a fine balance between perceived real-
ism and computational cost [5], and since there
are many different aspects to a scene in a game
that all have to be rendered in a fixed window of
time, this balance decides what level of graphical,
inferential and enactive realism can be achieved.
Since graphical realism is assumed to pertain to
the look of the water, it is the level of detail, the
lighting and the colour of the water that assesses
the realism. More complex lighting refraction is
more computationally costly, as well as rendering
a surface with a higher level of detail.

Imaginative and inferential realism is not appar-
ent until the water engages with other objects.
For example, a waterfall, since it falls downward,

can still behave accurately and have a level of imaginative and inferential realism if it
is a more or less motionless object rendered with a graphically realistic surface that
moves, an example of which can be seen in the game "Red Dead Redemption", see

Figure 2.4.
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However, if the water is moving such as waves
on a lake, to achieve inferential and imagina-
tive realism a more complex physically ac-
curate simulation method needs to be ap-
plied. Simulating water with the shallow wa-
ter equations and a height map can simulate
water engaging with solid boundaries with a
low computational complexity [5]. The game
"Hydrophobia", released in 2010 by develop-
ers Dark Energy Digital, features a three di- Figure 2.5: Waves from water interact-

mensional real-time water simulation moving ing with the surroundings,
through doorways, flooding corridors and ad- filling up a corridor as part
justing the water level from one room to an- of game-play, Hydrophobia
other, see Figure 2.5. The water effects were [18].

an important aspect to the game-play and a

main selling point of the game [18]. Another game where water is a main feature is the
game "Breakwaters", an upcoming release from Soaring Pixels Games [27]. The ocean
is the main aspect of the game where players can manipulate the flow of the water.
The real-time three dimensional water simulation flows through openings, occasionally
swallows islands, and can be tossed by the player to create a swell [28].

Regarding the enactive realism it is not ap-
parent until the player engages with the water
whether it behaves plausibly and accurately.
If the water is moved in such a way that a
height field is impossible, an Eulerian or La-
grangian simulation method is needed for the
water simulation to behave plausibly and ac-
curately. Examples of this are puzzle game
"Hydroventure" or "Fluidity" by Wiiware [9],
that features a real-time simulation of a two-
dimensional body of water moved around by
the player to solve different puzzles, see Fig-
ure 2.6. The game was released for Nintendo
Wii in 2010, and the player uses a hand-
motion based controller to tilt the screen and
pour the water into different spaces. Simi-
larly, in the game "Puddle" released 2012 on
various platforms by developer Neko Enter-
tainment, players guide a fluid through dif-
ferent environments by tilting the screen[10].

Figure 2.6: Body of water moved
around the screen as part
of game-play,

Fluidity/
Hydraventure [15].
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3 Methods

In this section we will be looking at the different methods mentioned earlier in more
detail. We will mostly consider the techniques and methods presented by Robert
Bridson in "Fluid Simulation for Computer Graphics, Second Edition" [5], including
the shallow water equations, grid based methods, and particle based methods. The grid
based methods, particle methods and hybrid methods, as seen in the three dimensional
simulations of Niagara and in Zibra Liquids, see Figure 2.3, are more computationally
expensive as well as more difficult to implement. The most expensive part of the
physically based methods solving the full Navier-Stokes equations is the calculation of
the pressure, which requires solving a large linear system of equations. The shallow
water equations, mentioned earlier as implemented in many simulations of small to
medium size bodies of water such as the ocean front, smaller puddles and rivers as seen
in Fluid Flux and Niagara, are the least computationally expensive. This is because
the shallow water equations are a simplified version of the Navier-Stokes equations,
where the velocities are only solved horizontally, neglecting the vertical velocity, and
the pressure is a function of the height, effectively solving a two-dimensional partial
differential equation rather than a three-dimensional. We start by an overview of the
grid-based method, continue with the particle- and hybrid methods and end with the
shallow water equations.

3.1 Eulerian / Grid-Based Simulation

The Eulerian, or Grid-Based simulation, is a physically based simulation. Quantities
such as velocity and pressure are modeled onto a grid and updated for each time-
step. The grid cells are marked as either fluid, empty, or solid. If a fluid cell is
marked as empty, the velocity for that cell is marked as unknown. For each simulation
step all of the velocities on the grid are updated by moving the fluid around and
correcting the velocities to make the fluid incompressible. The surface is tracked as
the isocontour ¢ = 0 of an implicit function ¢. There are many numerical methods for
the Navier-Stokes equations [24], but the methods presented in this chapter are the
ones recommended by Bridson in "Fluid Simulation for Computer Graphics" [5].
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Notation

In a grid based simulation the velocity field  is stored as a discretely sampled vector
field. Grid element at position (i, j, k) is referred to as u; ;. Time-step n is referred

7 n
as ui,j,k'

Splitting the equation

The grid based methods are based on the Navier-Stokes equations (2.1) and (2.2),
solving the velocities of the velocity field @ over a grid of discrete points. Since the
viscosity of water is very small, the viscosity can be neglected and we are left with the
incompressible Euler equations:

ou 1 o
4 g-Vi+-Vp=F. 3.1
o +U u+pr (3.1)

The equation can now be split into three parts; advection, body forces and pres-
sure/incompressibility:

ou

o +%-Vi=0 (advection)
ou o
371; =F (body forces)
ou 1 . . -
N + ;Vp =0stV-u=0, (pressure/imcompressibility)

as presented in "Fluid Simulation for Computer Graphics" [5]. For the advection an
algorithm is implemented that takes an arbitrary quantity and advects it through the
velocity field # for a time interval At using a semi-lagrangian method. Both velocity
as well as different quantities such as dye are advected.

The body forces are added using a forward Euler discretization.

The pressure/incompressibility is implemented using a projection algorithm that
projects a velocity field to a divergence-free velocity field by subtracting the pressure
scalar-field.

The algorithm for a grid based solver first advects the velocities through the velocity
field, updates the velocity field, then applies the body forces to the velocities. The
last step is the pressure/incompressibility step, ensuring that the velocity is divergence
free.
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Grid

The grid type used commonly in fluid simulations
is the staggered grid used in the marker-and-cell,
] MAC, scheme introduced by Harlow and Welsch

b in 1965 [16], see Figure 3.1. In this type of grid

Uz ) the velocity field is not stored as a vector in the

-~ ° centre of each cell, but is divided into its com-
Uriye 4 x ponents that are stored in the centre of each cell
T face. Other quantities are sampled in the cen-

tre of each cell [5]. The staggered grid is used to

: Mty avoid stability issues arising from the connection

between pressure and velocity.

Figure 3.1: Staggered grid with ve- By sampling the velocity at the cell faces the cal-
locities gz, uy, u, on culation of the pressure gradient and the diver-
cell faces and pressure gence is facilitated in the projection step, while
p in cell centre[5]. also using an unbiased central difference scheme

that is accurate to O(Az?), with Az as the length
of the cell face [5]. The staggered grid however has
the disadvantage that the velocity vector at any given point must be interpolated.

At grid locations the interpolation is done by averaging, here showed in 2D:

U; 1+ Uyl 2 Vs 1 +U, 1
— 1—35,] i+35.J “hj—3 t,j+3
i ;= ( : 2 2 > (3.2)

2 ’ 2

: (3.3)

=l w1

J i—3,5°

For three dimensions, with grid size N, the velocity components are stored in an array
of size [N - N - (N + 1)], and pressure, density and other quantities that are sampled
at the center of cells are stored in arrays of size [N - N - N] Since half indices can not
be used in implementation, Bridson recommends using this formulae:

pli] (k][] = pi sk (3-4)
ug[i[J][K] = wi_y ok (3.5)
uy[i][J][K] = ;51 (3.6)
uzli][7][k] = w; g1 (3.7)
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3.1.1 Advection

The advection equation relates to the first two terms in equation 2.1, namely

o ., .
E—HrVu—O. (3.8)

Bridson recommends the use of a semi-lagrangian method[35] to solve equation (3.8)
[5]. The method was developed to overcome the time-step restrictions associated with
explicit time discretizations and allows for unconditionally large time-step [5, 34].

The semi-lagrangian advection method introduces an imaginary particle that is traced
backwards through the velocity field, finds the previous location for the particle, and
sets the new quantity at the new location to that of the previous. For a given quantity
q at position Z, an imaginary particle is introduced at Z. The ordinary differential
equation for a particle at £ moving through the velocity field is defined as:

az
— =1

dt

Since the particle is being moved from its previous position Zpye, to its current position
Zeurrent the previous position is found by moving in reverse:

xprev = Tceurrent — At Ucurrent

The current quantity geurrent is updated by setting it to the quantity of the previous
position gprey. Since the field is discrete, the values of the surrounding quantities must
be interpolated.

Algorithm:
1. Find velocity @ at Z.
2. Find previous position for particle: Zpyey = & — U - At.
3. Interpolate the nearest quantities to approximate q,,,.., at Tpreo-
4. Set ngj;"}"ent t0 @prey-

Dissipation because of numerical errors from step 2 and 3 can be improved using
different methods. In step 2, the discretization of the differential equation can be
made more accurate using a higher-order method such as high-order Runge-Kutta
methods.

In step 3, for the interpolation in one dimension, the particle @p,e, is assumed to
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be on the interval [z;,z;11] , with a = 2224 s giving rise to the following linear
interpolation:
¢ = (1-a)g! +aqy.

Because of this averaging, dissipation from numerical errors can occur. Other types of
interpolation can be used for higher-order accuracy.

3.1.2 Projection/Pressure Solve

For solving the pressure update, the algorithm that is implemented is called project.
This algorithm is based on the Helmholtz-Hodge Decomposition by Hermann von
Helmholtz in 1958, introduced for fluid mechanics by Chorin in 1968 [6] and Temam
in 1969 [38] and later incorporated in computer graphics in the late 1990’s and early
2000’s [2]. The Helmholtz-Hodge Decomposition asserts that any vector field w can
be decomposed uniquely into two components:

w=u+ Vg (3.9)
where u has zero divergence (V- u = 0) and q is a scalar field. Any vector field is the
sum of a mass conserving field and a gradient field. [33]

With this, the operator P is defined which projects a vector field w onto its divergence
free part u = Pw . Applying the divergence operator on (3.9) yields:

V-w=V? (3.10)

This equation represents a Poisson equation for the scalar field ¢, subject to the Neu-

mann boundary condition g—g = 0 on 0D. The solution to this equation is then used

to compute the projection u:

u=Pw=w-Vqg (3.11)

The projection step involves solving the linear system for the Poisson equation, which
is expanded further by Bridson in the text "Fluid simulation for Computer Graphics"
to include other boundary conditions than the Neumann condition, namely that the
projection routine subtracts the pressure gradient from the velocity field u:

1
vt =g — At;Vp, (3.12)

such that the result satisfies incompressibility (3.13) inside the fluid as well as solid
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boundary conditions (3.14):

V-a"tt =0 (3.13)
@ f = gpria - N (3.14)

The idea of the update is simple. After the pressure update, the vector field @"*! is
supposed to be divergence free, and therefore satisfies (3.13). To find the values of
pressure and velocity that ensure this we first discretize the divergence using finite
differences; here in two dimensions with @ = (u,v), for ease of reading:

gl (_itE i,%,j) (Ui,jJr% ”m‘%) )
Vi ~( Az + ~ : (3.15)

Now, we find the different velocities written as the pressure update (3.12):

1 Piny i — Dy

u't =g - Ap=Lils —Pig
it+3,7 T3 p ACL’

1pint i — Pis

wtl =y — APl — Pl
1=3,] 277 p A.’E

1D i1 — Dis

’U?H_ll =1 _At,M
L+ 35 I T3 p Am

1p;iny — i

v =, _ Ap-Piitt T Pig
Lj—3 JT 3 p A(E

We can now substitute the velocity components inside equation (3.15) with the dis-
cretized pressure updates. Simplifying we arrive at the following equation:

At (41%’,]‘ — Pit+1,j — Pi—1,j — Pi,j+1 —p@j—l) _

p Ax?
Uit 3. —“z‘—%,j) (Uz',j+% —”m‘—%)
- . (3.16
(( Az + Az (3.16)

Which is exactly the equation (3.10) derived earlier. Now comes the question of en-
forcing the solid boundary conditions (3.14) as well as the free boundary condition.
By enforcing the free boundary condition we simply set the pressure of the adjacent
air cell to 0.

To update the solid boundary, we must solve for the pressure outside of the fluid
domain. For a a fluid cell (4, j), to find the value for pressure at p; 1, ;, we can look at
the pressure update for the velocity at the border:
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We can substitute u:’_:'f] with g4, and rearranging we get the following linear
25
equation:
pAx
Pit1,j = Pij + AL (UZLJF%J = Usolid)- (3.18)

To enforce these conditions we simply insert them into the pressure equation (3.16):

p Ax?

B (“H%J - ui,%,j) + (Ui,jJr% - ”m‘%)
Az Ax

A
At <4pi,j - [Pi,j + pAtm (UZ%J - usolid)} —Pi-1,5 — Pi,j+1 —pi,j1>

At (3pij — pi—1j — Pij+1 —Pij-1 ) _ (“solid - “i—%,j) N (“mﬁ - ”i,jfé)
p Ax? Az Az ’

Simply, the coefficients in front of the pressure index (i, 7j) is the same as the sum of
non-solid neighbours, for a solid wall the velocity is set to the velocity of the solid,
and pressure from neighbouring air cells disappear. We now have a system of linear
equations for each fluid cell that can be written as a matrix of coefficients A for a
pressure vector p that equals the divergence d, written in matrix form Ap = d. The
system is only solved for fluid cells and velocities in air cells are left unknown.

There are several different ways of solving this type of linear system, Bridson rec-
ommends using a preconditioned conjugate gradient solver, but multigrid can also be
used. For a smaller grid, a simple Jacobian preconditioning can be implemented [34].

3.1.3 Tracking the Surface

Marker Particles

To track what cells are fluid or air, Bridson recommends using marker particles. The
particles are emitted in all fluid cells in a jittered pattern such that the density of
particles per fluid cell is at least 4 particles per cell. The particles can then be advected
using the neighbouring velocities in the velocity field. By entering a cell, the fluid
particles then mark the cell as fluid to be included in the pressure update step.
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Implicit Surface Function

Because of the inherent square properties of a grid, the surface of the fluid will exhibit
voxelized jagged edges. To make a smooth surface, there have been many different
approaches; Blinn introduces "Blobbies" [3], constructing a smooth implicit surface
F(Z) = 7, around the particles, with F(Z) defined as

F(7) = Zk(@) (3.19)

where k is a smooth kernel function of choice, T; is a particle, h is a parameter for the
extent of every particle [5]. A kernel smoother usually defines weights that decrease in
a smooth fashion as one moves away from the target point [30]. The surface is created
where F'(z) = 7, the 7-isocontour for the function [5].

This approach leads to a surface with round protruding shapes, which to some extent
can be smoothed out by increasing the h-parameter, however by increasing it too much
details might disappear. For a smoother look Bridson argues for an approach where
the implicit surface function is defined as

o) = |17 - X|| -7

with X as a weighted average of nearby particle locations:

The surface is then defined as the set of coordinates Z such that ¢(Z) = 0. This is
usually referred to as the 0-isocontour, or level set, of ¢.

To render the surface, a level set can be directly ray traced, but it is also common to
construct a mesh approximating the surface [5].
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3.2 Lagrangian and Hybrid Simulation

3.2.1 Particle-In-Cell

The Particle-In-Cell method, PIC, involves having all of the quantities stored on par-
ticles in stead of on a grid [5]. For each step, the particles are moved according to
the advection equation. The advection used for Lagrangian advection are bounded by
stricter timesteps since the errors accumulate over time, and are not reset like for the
semi-lagrangian advection. Bridson recommends using this scheme for the minimiza-
tion of errors:

k= i(Z,) (3.20)
ko = @(Z, + LAtky) (3.21)
ks = @(T, + 3 Athy) (3.22)
Fpa1 = Tn + 2Athy + SAthy + Atk (3.23)

The quantities of the advected particles are then transferred to a grid, and the rest
of the computations are performed as for a Eulerian grid simulation. The quantities
are then transferred back to the particles. The fluid implicit particle method, FLIP,
works just like PIC, but instead of replacing the quantities, the change in quantities
are interpolated and used to increment the values stored at the particles.

3.3 Shallow Water Equations

Moving on from the more computationally complex methods to a simplified version of a
physical based simulation, the idea of the shallow water equations stems from assuming
that if a body of water is shallow, one can ignore vertical variations in the velocity field
and only solve for the depth-averaged horizontal velocities.[5] This method effectively
makes a three dimensional shape from a two dimensional velocity field.

The water surface is represented as a height field y = h(z, z), and the bottom region
as y = b(x, z) with the following region defined as water:

b(z,z) <y < h(z, 2),

with water depth d is defined as d(z,z) = h(x,z) — b(x, z). Since the height of the
water is constructed in this way the model can only portray one height per surface
region, eliminating effects like breaking waves and splashes. Different techniques have
been introduced to emulate these features, such as the pre-rendered wave technology
seen in Fluid Flux and Horizon Zero Dawn, but also by introducing particle systems
to generate foam and splashes [5].
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Deriving the Equations

The simplified momentum equation (3.1), used in the previous section, is further re-
duced to make the shallow water equations. To fully understand how these simplifica-
tions are made, we start by looking at the pressure term.

To clarify, in this context we assume that for the spatial coordinates (z,y, z), the y axis
is the vertical axis in the simulation. Different game engines use different coordinate
systems, where the alternative is to use the z-axis as the vertical component.

From the assumption that the horizontal velocities are larger than the vertical, hydro-
static pressure is assumed:

19p
R —
p Oy

Combined with the free surface boundary condition p = 0 for y = h, this gives rise to
the pressure approximation

p(a:,y,z,t) :pg(h(xaz?t) _y)' (324)

The pressure can now be written as a function of the height h, and does not need
to be solved in a large linear system of equations. This significantly speeds up the
simulation.

Continuing from the pressure, expanding equation 3.1 and disregarding the vertical
velocity component, we are left with the two horizontal velocity components. Since
we assume that the vertical velocities are constant, the derivative of the vertical com-
ponent U%Z equals to zero, reducing the horizontal velocities to
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which consist of advection in two dimensions and the pressure gradient. However,
since we earlier deduced that the pressure can be written as equation (3.24), and the
horizontal components of the pressure are constant in y we can replace the pressure
term in the velocities, arriving at
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where the velocities are determined by horizontal advection and a gravitational force
pulling higher regions of the water towards the bottom.

We can write the change of height as the following equation:

— tu— tw—+=—d| -+

od od od ou Ow
ot Ox 0z <8m 0z ) ’ (3.26)

which is derived from the advection equation in three dimensions for the height of the
surface together with an expression for the vertical velocity. In the equation we can
see that the depth is moved by the horizontal velocities, and changed proportional to
the depth times the divergence.

For the boundary, there are many different approaches to be made. For a solid wall,
given the 2 dimensional normal to a wall 7, it is required that

(u,w) -1 =0. (3.27)

This ensures that no water is flowing outside of the domain, and pushed back into the
body of water. To handle an open edge, such as matching the shallow water to the
ocean, the usual method is to gradually blend out velocities [5] or use a characteristic
boundary condition that allows for waves to exit the computational domain [23].

Implementing the Shallow Water Equations

To implement this method, Bridson recommends storing the the horizontal velocities
on a 2D MAC-grid, on the faces of each cell. The depth d is stored in the centre of
each cell. The height h is constructed as h = (b + d), where b is the height of the
bottom.

First the velocities and the depth are advected with a semi-lagrangian advection
method, to udvect, qpadvect gadvect  The pext step involves setting the new heights
according to the advected velocities and depths, with h2dvect = (p 4 gadvect)  The
height is then extrapolated to non-fluid cells. After this, the velocities are updated
with the pressure acceleration as follows:

hadvecti+1_k _ h;_}dvect
k
u:ljll/z k= u?i\lle/%tk — Atg -
s ; AfI}
advect;1,x _ padvect
w?l+1 — wgdvect o Atg h hiyk
i+1/2,k i+1/2,k Ax )
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before they also are extrapolated to non-fluid cells. The last step involves updating
the depth with the divergence terms, as follows:

n+1 n+1 n+1 n+1
Ax Ax >

u, — U, w, —W.
+1/2,k —1/2,k Jk+1/2 k—1/2
d:z;l—l _ d?,%vect _ Atd?’%vect( i+1/ i—1/ 4 ? / ? /
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4 Implementation

The objective of this implementation was to explore how a water simulation could
be achieved using available methods and techniques. The selected methods include a
lightweight graphics shader solution and a more complex physically-based simulation.

In Figure 4.1, two sections are highlighted: the programmable vertex processor and
the programmable pixel processor. This is a generalized visualization of the graphics
pipeline performed on the GPU to render an image or video in computer graphics.
The vertex shader manipulates the vertices of a mesh, while the pixel shader modifies
rasterized fragments. The graphics shader implemented in this section includes both
a vertex shader and a pixel shader, both written in High-Level Shading Language
(HLSL).

To harness the computing power of the Graphics Processing Unit (GPU) beyond the
rendering pipeline, another type of shader can be utilized; compute shaders. This type
of shader can be used to write an arbitrary algorithm that is performed on the GPU
completely separate of the graphics rendering pipeline. These shaders are essential for
real-time fluid simulations as they enable multiple calculations to occur simultaneously.

For the physically-based simulation, the algorithms were initially implemented on the
Central Processing Unit (CPU) before being translated to code that runs on the GPU.
This approach allowed for the algorithms to be refined and debugged in a more familiar
environment before tackling the more challenging task of writing the code in the shader
language associated with the game engine. However, due to time constraints, the
implementation of compute shaders was deemed beyond the scope of this thesis. The
physically-based simulation implemented here is a two-dimensional Eulerian simulation
written for the CPU.
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Figure 4.1: The Graphics Pipeline: step by step GPU processing
(©Ben Cloward 2019 [7].
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4.1 Selecting Game Engine

When selecting the game engine for the project different aspects were considered.
Availability of resources and material for learning, previous knowledge of coding lan-
guage and familiarity with the engine was considered. There are several game engines
available such as Unreal Engine, Unity and Godot. When comparing the amount of
resources available, Unity arguably had the most material accessible, and was familiar
to the author. Scripts in Unity are written in C# and shaders are written in HLSL.

4.2 Rendering a Plane; a Light-Weight Graphics
Shader

In Unity, a texture shader is analogous to a vertex shader, and a surface shader is
analogous to a pixel shader. An introduction to coding shaders for Unity can be found
on the website catlikecoding.com [13], that presents a section on programming shaders
for fluid motion.

Arguably the most efficient algorithm to simulate a water like effect is the method
of adding sine functions introduced in "Carlas Island", mentioned in Chapter 2 (See
equation (2.3)). Any type of periodic function will generate a wave pattern, however, a
popular function to be used is the Gerstner Wave, which makes a sharp pointed wave.
The Gerstner wave, introduced by Franz Joseph von Gerstner in 1802, was the first
exact nonlinear solution for waves of finite amplitude on deep water [8], and are also
called periodic surface gravity waves [13].

Based on a code presented on catlike-
coding.com [13], an implementation of a
shader for Unity with a series of Ger-
stner waves was used to create a tex-
ture shader. Another shader, a surface
shader, combines a noise filter to gener-
ate the perception of ripples in a some-
what still water. These two were com-
bined in a shader to create more realistic
Figure 4.2: Gerstner wave texture shader, water effects, see Figure 4.2.
rendered in Unity.

The code provides the user with input

parameters in setting the wave directions
in (z,y) coordinates, steepness of the wave and wavelength. The simulation currently
allows for 6 waves, however, there is no upper bound for the amount of waves that could
be added. Since the function is analytical and the derivative is easily found through
simple derivation, a normal map to reflect light is easily generated which further adds
to the simplicity of the model.
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4.3 Grid-Based Approach

Besides Bridson [5] different sources were researched to further understand the nature
of the implementation of the theory. An implementation of a grid-based simulation
of a wind tunnel by Matthias Miiller [25] written for a web browser in HTML and
Javascript, used a 2-dimensional staggered grid and a boolean field to mark grid cells
as either fluid or solid. Another implementation of a grid-based simulation, "Real-
Time Fluid Dynamics For Games" by Jos Stam [34], does not implement a staggered
grid but instead samples all quantities in the centre of each cell. The method does
not simulate the fluid vertically with a surface but instead implements a less complex
horizontal 2-dimensional fluid simulation where the entire domain is fluid.

Both an implementation of Miillers, Bridsons and Stams approach were performed.
The implementation of Miillers method was written in Javascript and HTML to run
in a web browser, see Figure 4.3. The Bridson and Stam approaches were made in
Unity, written in C+#.

4.3.1 Wind Tunnel

To illustrate the flow in the tunnel Miiller
implements a dye-field, an array of floats
the same size as the domain ranging
from zero to one, that is advected by
the surrounding velocities. However, in
the code, the projection step is differ-
ent; Miiller updates the velocities by im-
plementing what seems to be a Jaco-
bian solver, but structures the pressure
equation a bit differently to the Bridson
implementation. For each iteration in Figure 4.3: Eulerian grid simulation, writ-
the solver, a variable p is set to -div/s, ten in Javascript and HTML.
where div is divergence and s is the num-

ber of solid neighbours. The variable p is then multiplied by a factor of 1.9 which
Miiller refers to as a relaxation factor to increase convergence. The velocities on the
edges of the cell are updated by subtracting p from the velocities on the lower fluid
cell edge and left fluid cell edge and adding p to the velocities on the right and upper
cell edge. The number of iterations is set to 100. Miiller seems to disregard gravity
and assumes constant density, effectively making a visually successful subsonic gas
simulation. The simulation implementation performed can be seen in Figure 4.3.
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4.3.2 2-Dimensional Fluid Container
Bridson Approach

When implementing the Bridson approach, the problem was divided into parts; visu-
alisation, force input, advection and projection. The fluid was simulated in a square
container, where the fluid grid cells were marked as either fluid or solid. A color was
introduced, as in the Miiller method, to illustrate the flow. For simplicity, the entire
region was assumed to be liquid, without air cells. The goal was to make a vertical
simulation with air cells and a fluid with a surface.

Implementing the semi-lagrangian advection in the Bridson approach was similar to
the implementation made by Miiller. Another aspect driving the velocities into neigh-
bouring cells was the application of forces, such as gravity. By adding gravity, the
velocities were pushed downwards towards the bottom of the container, without any
boundary. The projection algorithm was needed to enforce boundary conditions. How-
ever, when introducing the gravity, the notion of a surface to the fluid became more
important.

To achieve a surface, grid cells were meant to be marked as air. Only fluid velocities
that were inside the fluid domain were meant to be advected, and velocities outside
of the fluid were to be marked as unknown. To be able to simulate velocities entering
empty cells, velocities need to be extrapolated from fluid cells to empty cells. The
extrapolation of the air boundary would entail implementing marker particles to mark
cells as fluid or air.

In Bridson’s approach, the projection algorithm is meant to be solved only for the
cells that are marked as fluid, not for the entire domain. The task of tackling not
only writing a solver for a linear system of equations, where Bridson recommended
implementing a preconditioned conjugate gradient solver, but also solving the complex
task of constructing the matrix of fluid cells, as well as implementing an implicit
function to track the surface, was simply not possible in the time frame for this project.
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Stam Approach

Instead, the less complex 2-dimensional
fluid simulation without a surface by
Stam, where instead a horizontal fluid is
solved over the entire grid, was imple-
mented. In this approach, the use of the
MAC-grid is discarded for a simpler grid
where all quantities are stored in the cen- e |
ter of a grid cell. To illustrate a flow i1, i __.i'+1,j
dye is added to the simulation such as in
the Miiller simulation. Stam introduces a
density field, however this density field is
not used to solve for pressure but merely
to illustrate the diffusion of density in the
fluid.

ij+1

N
|

Three fields are updated each timestep, Figure 4.4: Grid cell structure for diffusion
the x velocity component field u, the y solver, Jos Stam [34]

velocity component field v, and the den-

sity /dye field d.

To propagate the density and the velocities, besides the advection algorithm and the
projection algorithm, Stam includes a diffusion algorithm. This diffusion algorithm is
an iterative method to solve the quantity of a cell, comparing it to the quantities of
its 4 neighbouring cells, see Figure 4.4. For every frame, the cell will lose quantity
to its neighbors, while also being added quantity from its neighbours, resulting in a
difference of

SU?_;'_LJ' +x?—2,] +x;€j+1 +.T’Zj_1 —4$ZJ (41)
The rate of diffusion is determined by a factor a = dt - diff - N - N, where diff is a
diffusion parameter to be set by the user. For a stable method, Stam uses a backwards
propagating scheme, where the quantity for cell xfj_l is defined by:

n—1_ _n n n n n n
v =iy —al@i el e Fal g —4-a)). (4.2)

To find the quantity for cell z!;, the terms are rearranged to the following equation:

T = (»T;L;l —alziyy ;o ol + i 1)/(1—4a) (4.3)

and solved with an iterative solver. Both velocities and densities are diffused using this
algorithm with different diffusion parameters, using the term diffusion for the density
field and viscosity for the velocity field.
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The solver is divided into two steps; velocity step and density step, where the velocity
step updates the velocity fields u and v and the density step updates the density/dye
field d. The velocity step begins with the adding of forces, followed by diffusion,
then projection and lastly advection. The density step begins with adding of density,
followed by diffusion and lastly advection.

The advection is solved by using a semi-lagrangian advection scheme as in the Bridson
method. The projection step follows the same algorithm as Bridson, however since the
entire domain is a fluid, the projection is solved over the entire domain. Stam imple-
ments an iterative Jacobian solver to solve the pressure equation, which is arguably
less complex to implement in code than the preconditioned conjugate gradient method
recommended by Bridson, and was replicated in the implementation.

The diffusion algorithm is not included in the Bridson implementation nor the Miiller
implementation. As mentioned in Chapter 3, numerical dissipation arises from in-
terpolation in the advection routine. Tests were conducted by comparing the visual
effects in the different simulations where different values for diffusion were set. The
initial velocity for the entire domain is set to 0, with an opening in the right hand side
were velocities and white dye are injected into the domain. The velocity of the side
input is set to 20. Since the fluid is modeled as water, viscosity was set to 0. The rate
of diffusion was set to 0.001, 0.0001, and 0.

The top two rows in Figure 4.5 show how the diffusion routine adds diffusion in the
dye field, at 1, 3 and 5 seconds of elapsed time. The third row shows a simulation
where the diffusion is set to 0.
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Diffusion: 0.001
Viscosity: 0
Input velocity: 20

Diftusion: 0.0001
Viscosity: 0
Input velocity: 20

Diftusion: 0
Viscosity: 0
Input velocity: 20

Figure 4.5: 2-Dimensional horizontal fluid simulation implementation of a Eulerian
approach at different viscosities. White colour illustrate the incoming flow
from the outside perimeter. Background colours from default background
in Unity Game Engine.

3

[\



5 Discussion

5.1 Advantages and Disadvantages of Water
Simulation Methods

Arguably there are many ways to asses the quality of a method to simulate shallow
bodies of water over another. The complexity of the method as well as the actual
visual result and the perceived realism of the method are important factors to take in
to account.

The challenges in simulating water in video game environments are partly the actual
work of implementing the functions and integrating them into an environment, but
also the task of compromising the level of realism to the complexity.

Looking at the current implementations presented in Chapter 2, the shallow water
equations is the more popular choice to simulate a shallow body of water in game play,
because of the low computational complexity of the methods. As stated in Chapter
2, the more complicated three dimensional simulations were recommended by Epic
Games [39] to be used in cinematic episodes or hero effects rather than real-time
simulations, because of time management and budget in developing the game as well
as the computational complexity when running the game.

When simulating rivers, creeks, puddles or pools for a character to interact in, since
the water is usually level, the advantages of the shallow water equations in terms of
computational complexity exceeds the added perception of reality that would come
from implementing a three dimensional simulation with a surface rendered from an
implicit function. Of course, this is a subjective topic.

For something like a waterfall, where the height map is impossible, the only methods
available would be the grid- or particle based methods. However, since a waterfall is
usually quite stable in its movement, as seen in the example in Chapter 2, a believable
effect can be generated by simply animating a surface. Again, one could argue that
the added level of realism of interacting with a real-time simulated waterfall does not
exceed the added work load and computational complexity.

One could argue that depending on the level of interaction a player has with a body
of water, the more or less is the realism or lack thereof evident to the player. Working
from this logic, the less interaction that takes place with the water, the less apparent is
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the inferential and enactive realism and a less physically accurate and computationally
cheaper method can be used. On the other hand, the more a player engages with a
body of water the more apparent are these aspects. Since all objects in the game have
to be simulated and rendered in every frame in such a way that the game is stable,
the amount of memory and time that is awarded to rendering each object of the game
is limited, and objects of less importance are thus rewarded.

With this logic, if a scene is constructed to entail water moving from one vessel to
another or being moulded and shaped by the player as a part of the game play, such
as the examples shown in Chapter 2, naturally the water needs to be simulated in
real time using a two- or three dimensional simulation with a surface from an implicit
function.

When considering the level of realism versus the complexity of the algorithm, one could
therefore conclude that it is the game-play itself that sets these parameters.

The aspect besides computational complexity to consider is the level of difficulty in
the actual implementations of the methods. Though this might not be an issue for a
larger company looking to include a water simulation, however, for a smaller company
or for a single creator this would in fact be a factor to consider, if the available add-ons
are not compatible with the game-play wished to be achieved.

When attempting to implement a grid-based method, it became apparent that the level
of difficulty to implementing this type of method is high and the implementation takes
a long time to realise. To answer the question of how one could implement a water
simulation with available methods and techniques; for an introductory programmer
with little experience in developing code for video games, perhaps the initial attempt to
implement a simulation of shallow body of water would be the shallow water equations.
The perturbation of normals in a plane, as the example in Figure (4.2), albeit not a
very realistic simulation of shallow water, could also serve as a viable option for a more
stylized game.

5.2 Conclusion

There are a wide range of different methods to apply fluid dynamics for shallow bod-
ies of water in video games. The particular setting of a real-time virtual reality in
video games produces its specific requirements of a set time frame, but also provides
with creative opportunities where a physical phenomena like water can be simulated
with greater reigns of freedom. When abandoning physical accuracy, the simulation
methods can be combined and puzzled together creating a realistic looking effect.

The challenges in simulating water in a video game environment lies in finding the
delicate balance between perceived realism and computational cost. The constraints
of hardware and software dictates to a degree how realistic game-play can become,
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but the improvements of different aspects in the methods, for example improving
the convergence for the projection solver, also pushes the envelope on how water can
be realised in a video game. Extending a cheap method such as the shallow water
equations with pre-defined wave breaks as mentioned in Chapter 2, is another example
of this.

The different techniques of simulation are readily available to study and implement,
however, for an independent developer albeit a physically based solver of the full
Navier-Stokes equations might seem most enticing, the less computationally complex
methods are not only easier to implement but also the industry standard. To get a
water simulation up and running, the most efficient method to implement is a light-
weight graphics shader such as the one implemented in Section 4.2. Secondly, a bit
more computationally costly but with a much higher level of imaginative/inferential
and enactive realism are the shallow water equations. Lastly, for an independent
developer integrating a two- or three dimensional physically based solver is only worth
the extra computational complexity and developmental difficulty if the game-play is
centered around the body of water.
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