
Kandidatuppsats i datalogi
Bachelor Thesis in Computer Science

Stabilizing Glacier Simulations: Coupling
Free-Surface Stabilization Algorithm to
the Positivity Preserving Surface Con-
straint in FeniCS.
Stabilisering av Glaciärsimuleringar: Implementering av Free-Surface Stabilization Algo-
rithm och Positivitetsbevarande Begränsning av Ytan i FEniCS.

Nasiha Häfener

Handledare: Igor Tominec, Josefin Ahlkrona
Examinator: Anders Mörtberg
Inlämningsdatum: 2024-05-20

Abstract

This thesis investigates enhancing glacier simulations, focusing on the utilization of
the Free-Surface Stabilization Algorithm (FSSA). We derived that the FSSA stabiliza-
tion term provides a improved coupling between the Stokes problem and the free-surface
equation. Furthermore, to create a realistic model we incorporate a positivity preserving
constraint on the glacier’s surface, ensuring that the surface remains positioned atop
the bedrock throughout the simulation. This is implemented in FEniCS using Scal-
able Nonlinear Equations Solvers (SNES). The experiments are executed on Löfgren’s
glacier, a two-dimensional glacier with positive accumulation. Testing the simulation
with and without FSSA shows that errors occur where SNES is active, which reveals
that the positive preserving constraint needs to be included to the FSSA formulation.
To mitigate this, the thesis proposes two remedies to decrease these errors, but their
implementation and evaluation are left for future work.

Sammanfattning

Denna uppsats undersöker förbättring av glaciärsimulationer, med fokus på använd-
ningen av Free-Surface Stabilization Algorithm (FSSA). Vi härledde att FSSA sta-
biliserings termen ger en förbättrad koppling mellan Stokes problemet och free-surface
ekvationen. Dessutom, för att skapa en realistisk modell, införlivar vi en positivitetbe-
varande begränsning av glaciärens yta, för att säkerställa dess position ovanpå berget
under hela simuleringen. Detta implementeras i FEniCS med hjälp av Scalable Nonlin-
ear Equations Solvers (SNES). Experimenten görs på Löfgrens glaciär, en tvådimen-
sionell glaciär med positiv ackumulering. När simuleringen körs med och utan FSSA
uppkommer det fel i de områden där SNES är aktiv, vilket visar att den positivitets-
bevarande begränsningen bör inkluderas i formuleringen av FSSA. För att förhindra
dessa fel föreslår vi i denna studie två lösningar på att minska felen, men deras imple-
mentering och utvärdering lämnas till framtida arbete.

Contents

1 Introduction 5

2 Preliminaries and Methods 7
2.1 Definitions . 7
2.2 Theorems . 8
2.3 Numerical methods . 9

2.3.1 Forward Euler . 9
2.3.2 Backward Euler . 10
2.3.3 Finite element method (FEM) 10
2.3.4 Newton’s method . 12
2.3.5 Picard’s method . 12
2.3.6 The Lagrange multiplier method 12

2.4 The Stokes equations . 13
2.5 Glacier boundary conditions . 15
2.6 Free-surface equation . 16
2.7 Discretization of free-surface equation 17
2.8 Finite element method for the Stokes equations 18
2.9 Free-Surface Stabilization Algorithm (FSSA) 21
2.10 Scalable Nonlinear Equations Solvers (SNES) 23
2.11 Relation between the SNES constrained free-surface equation and the

FSSA stabilization term . 24
2.12 Regions over the ice sheet surface where SNES is active 25
2.13 The goals of the thesis . 25

3 Numerical experiments 26
3.1 Löfgren’s glacier (Perlin) . 26
3.2 Stable time step . 27
3.3 Experiment 1: Surface error at the end of the simulation 28
3.4 Experiment 2: Surface error as a function of time 28
3.5 Experiment 3: Surface error as a function of time for a longer simulation 29
3.6 Experiment 4: Surface error and the change of velocities between two

time points . 30

4 Two candidate remedies for enhancing the FSSA stabilization term with
the surface positivity preserving constraint 41

5 Final remarks 42

3

Bibliography 43

1 Introduction

Glaciers and ice sheets play a crucial role in the global climate system by helping
to regulate Earth’s climate through their reflective properties. When solar radiation
interacts with ice and snow, a substantial portion is reflected back into space, which
is an important factor in regulating the planet’s energy balance [1].
However, the ongoing rise in temperature has triggered accelerated ice loss in polar
regions, which is expected to rapidly contribute to rising global sea levels [7].
Moreover, the stability of permafrost, frozen soil prevalent in polar regions [2], is in-
creasingly threatened by temperature changes [7]. It is also known that permafrost
holds a vast amounts of carbon dioxide and methane, and there is evidence suggesting
that these greenhouse gases are beginning to transfer into the atmosphere. This may
lead to further exacerbate global warming [7].

Understanding the dynamics of ice sheets is crucial for predicting their future be-
havior and analyzing their impact on climate change. Ice sheets can be described as a
non-Newtonian fluid [12], characterized by nonlinear viscosity.
The law of conservation of mass, momentum, and energy, embodied in the Stokes equa-
tions, serves as a foundational principle to describe the evolution of ice sheets. When
coupled with the free-surface equation which governs surface evolution [12], these equa-
tions form a basis for ice sheet modeling. Utilizing such a higher-order physics model
has been shown to increase the reliability of predicting future ice loss [13].

Despite advancements in modeling techniques, challenges persist, particularly regard-
ing computational efficiency. There are a number of numerical instabilities that can
compromise its accuracy and reliability. A restrictive time step constraint is a signifi-
cant obstacle inherent to ice sheet modeling [12].
However, recent developments, such as the Free-Surface Equation Algorithm (FSSA)
[12, 11] offer promising solutions for overcoming these limitations. FSSA is based on
Reynolds transport theorem and enables an implicit time-stepping scheme, allowing
for larger time step sizes and thus reducing computational time by a significant amount
[11].

Another instability arises when the upper surface, denoted as h(x, y, t), of the ice
sheet approaches the lower surface called bedrock, b(x, y). Here, x and y are coordi-
nates below the surface, and t is time. Simulations may yield, unphysical outcomes,
with the ice sheet surface appearing below the bedrock. To resolve this, we introduce
a positive preserving constraint, h(x, y, t) > b(x, y), to our numerical scheme.
This constraint guarantees that the upper surface stays above the lower surface through-
out the simulation. We will implement this using FEniCS, which is a Python finite

5

element method library for finding solutions of partial differential equations (PDEs)
[4]. To enforce the positivity constraint, we use the Scalable Nonlinear Equations
Solver (SNES), which employs the Lagrange multiplier method [3].

Our study involves implementing the positivity constraint within simulations con-
ducted on a two dimensional synthetic glacier named Löfgren’s glacier [11]. We inves-
tigate the impact of this constraint by comparing simulations utilizing FSSA against
those without.

In Section 2, the Stokes problem is defined together with the free-surface equation.
Subsequently, we discretize these by the means of FEM and explain how the FSSA
is included in the Stokes problem. Furthermore, we explain the SNES algorithm and
how it utilizes the Lagrange multiplier method to implement the positivity preserving
constraint. Then we define what regions the error would appear when using the FSSA
while the SNES algorithm is active.

In Section 3 we define the Löfgren’s glacier setup, see Section 3.1, which is used in the
simulations. In the same Section 3 we manually determine a stable time step which we
then use in the rest of the experiments. In these experiments we investigate if there
are an error occurring when running the simulation using FSSA and not using FSSA,
while SNES is active. In Section 4 we discuss two possible solutions to decrease the
error but leave the implementation and evaluation of these to future research and the
discussion regarding the result of this thesis is in Section 5.

2 Preliminaries and Methods

In this section, we provide an overview of the fundamental mathematics and numerical
methods used in this thesis, along with the equations related to formulating the ice
sheet simulation problem.

2.1 Definitions
Definition 2.1.1 (Hilbert space [8]) A Hilbert space denoted as H, is a complete
inner product space. It is a vector space equipped with inner product that induces a
norm, making it complete with respect to the metric induced by the norm.

Definition 2.1.2 (L2-space [8]) The space L2(Ω) is a Hilbert space consisting of
square-integrable functions, defined on a domain Ω, denoted as f, such that

∫
Ω
|f(x)|2dx <

∞.

Definition 2.1.3 (Inner product [16]) On a Hilbert space V , an inner product of
two continuous functions f(x) and g(x) defined on a domain Ω ⊂ Rd is:

(f, g)Ω =

∫
Ω

f(x)g(x)dx.

If we instead consider the functions on a boundary ∂Ω ⊂ Rd−1, an inner product is
defined as:

(f, g)∂Ω =

∮
∂Ω

f(x)g(x)dS,

Where
∮
∂Ω

denotes the appropriate surface integral over the boundary ∂Ω, and dS
represents the surface measure.

Definition 2.1.4 (Frobenius inner product [15]) Given two matrices A and B,
where their elements are denoted by aij and bij we define the Frobenius inner product
as: ∫

Ω

A : BdΩ = (A,B)Ω =

N∑
i=1

N∑
j=1

(aij , bij).

Definition 2.1.5 (Sobolev space [8]) A Sobolev space is a function space that con-
tains functions and their derivatives up to a certain order. The function space Hk(Ω)
consists of functions defined on a domain Ω such that their derivatives up to order k
are square integrable on Ω.

7

Definition 2.1.6 (Normal [5]) The unit normal vector to a surface described by the
function h(x, y, t) can be computed using the gradient of h and then normalized to have
a length of 1:

n =
∇h(x, y, t)

||∇h(x, y, t)||
.

Here, ∇h(x, y, t) denotes the gradient vector of h(x, y, t) and

||∇h(x, y, t)|| =
√

(∇xh)2 + (∇yh)2.

2.2 Theorems
Theorem 2.2.1 (Orthonormal basis [6]) Let B = [e1, ...en] be an orthonormal ba-
sis for a vector space V . Then the i-th coordinate of a vector v ∈ V with respect to B
is given by

bi = vi · ei.

Corollary 2.2.1.1 This is a corollary of Theorem 2.2.1:

v = (v · e1)e1 + ...+ (v · en)en.

Theorem 2.2.2 (Divergence theorem [10]) Let Ω ⊂ Rd is a domain with bound-
ary ∂Ω ⊂ Rd−1 then the divergence theorem states:∫

Ω

∂f

∂xi
dx =

∫
∂Ω

f · nidS,

for i = 1, 2 where ni a normal with i components and f ∈ C(Ω).

Theorem 2.2.3 (Green’s Formula [10]) Let u and v be functions defined on a do-
main Ω ⊂ Rd, and let ∂Ω ⊂ Rd−1 denote the boundary of Ω. Then Green’s formula
states: ∫

Ω

∂u

∂xi
vdx =

∫
Ω

∂(uv)

∂xi
dx−

∫
Ω

∂v

∂xi
udx, (2.1)

where u, v ∈ C0.

Corollary 2.2.3.1 By applying Theorem 2.2.2 to the first term on the left-hand side
of (2.1), we obtain: ∫

Ω

∂u

∂xi
vdx =

∫
∂Ω

uv · nidS −
∫
Ω

u
∂v

∂xi
dx.

If u = ui represents the components of a vector field on Ω, then Green’s formula can
be expressed as: ∫

Ω

(∇u)vdx =

∫
∂Ω

(u · n)vdS −
∫
Ω

u · (∇v)dx.

For u = −∇u we obtain:∫
Ω

−∆uvdx = −
∫
∂Ω

n · ∇uvdS +

∫
Ω

∇u · ∇vdx.

Theorem 2.2.4 (Reynolds Transport Theorem [9]) On a time-dependent domain
Ω(t) ⊂ Rd where t ∈ R+, we can define Reynolds transport theorem as follows:

d

dt

∫
Ω(t)

ϕdΩ =

∫
Ω(t)

d

dt
ϕdΩ+

∫
∂Ω(t)

(u · n)ϕdΓ.

Here, ϕ is a scalar-valued function and u represents the velocity at the boundary Γ ⊂
Rd−1.

2.3 Numerical methods
In this section we introduce numerical methods used for computing ice sheet simula-
tions.

2.3.1 Forward Euler
Forward Euler is a numerical technique that uses an explicit approach to approximate
a solution to a differential equation [17]. Here, we consider an ordinary differential
equation (ODE) that depends on only one independent variable. Consider an ODE:

dy

dt
= f(t, y),

where t ∈ R+ and with some initial value y(t0) = y0. This method uses the slope of
the function f(t, y) to predict the value of y at the next time step tk+1 = tk +∆t. We
approximate the time-derivative as follows:

yk+1 − yk
∆t

= f(tk, yk) ⇔

yk+1 = yk +∆tf(t, yk).

It’s evident that for an explicit method, we calculate the function in a future time step
using the current function value.

2.3.2 Backward Euler
Backward Euler is a numerical technique used to approximate a differential equation,
employing an implicit approach [17]. Consider an ODE:

dy

dt
= f(t, y),

with some initial value at t0 given by y(t0) = y0. We can evaluate the time derivative
as follows:

yk+1 − yk
∆t

= f(tk+1, yk+1) ⇔

yk+1 = yk∆tf(tk+1, yk+1).

For an implicit method, we calculate the next time step function value using both the
current and next time steps.

When f(tk+1, yk+1) is a nonlinear function of yk+1, we use an iterative technique
such as Newton’s or Picard’s method. An implicit approach is often more stable with
respect to the time step size.

2.3.3 Finite element method (FEM)
We aim to explain FEM using an easier example, focusing on Poisson’s equation in
two dimensions [10]:

−∆u = f, on Ω, (2.2)
u = 0, on ∂Ω. (2.3)

Where Ω ⊂ Rd is an open and bounded domain. Here, ∆ = (∂2

∂x2 + ∂2

∂y2) denotes the
Laplace operator in two dimensions and f is a given function in L2(Ω) , defined as in
Definition 2.1.2. We define a function space V0:

V0 = {v : ||∇v||L2 + ||v||L2 < ∞, v
∣∣
∂Ω

= 0}.

This means that both the L2-norm of the function v and its gradient are finite, and
the function is zero on the boundary.
To solve the PDEs (2.2)-(2.3), we first obtain the variational formulation by multiply-
ing (2.2) with a test function v:

−∆uv = fv.

Integrating both sides over the domain Ω, we get:

(−∆u, v)Ω = (f, v)Ω.

Using Green’s formula, see Theorem 2.2.3, and noting that v = 0 on the boundary ∂Ω
we obtain:

(−∆u, v)Ω = (∇u,∇v)Ω − (n · ∇u, v)∂Ω = (∇u,∇v)Ω.

Thus the variational formulation of (2.2) is to find u ∈ V0 such that:

(∇u,∇v)Ω = (f, v)Ω, ∀v ∈ V0.

We then subdivide domain Ω into triangular elements (mesh) denoted by Ωh. Let Vh

be a space of continuous piecewise linear functions on Ωh. We have Vh,0 ⊂ Vh defined
as:

Vh,0 = {v ∈ Vh : v
∣∣
∂Ω

= 0}.

With this approximation, we have the finite element method for (2.2), denoted by
uh ∈ Vh,0 such that:

(∇uh,∇v)Ω = (f, v)Ω, uh ∈ Vh,0. (2.4)

To compute the finite element approximation uh, we compute the hat functions φi and
sum these over the domain. Let {φi}Ni=1 be a basis for Vh,0. Let v = φi, then (2.4)
can then be written as:

(∇uh,∇φi)Ω = (f, φi)Ω, i = 1, 2, .., N. (2.5)

Since uh is in Vh we can express it as:

uh = ΣN
j=1ξjφj ,

with N unknown ξj ∈ R. Adding this to (2.5), we get:

ΣN
j=1ξj(∇φj ,∇φi)Ω = (f, φi)Ω, i = 1, 2, .., N.

This leads to the definition of:

Ai,j = (∇φj ,∇φi)Ω, i = 1, 2, .., N, j = 1, 2, .., N,

bi = (f, φi)Ω, i = 1, 2, .., N.

We can express bi as:

bi = ΣN
j=1Ai,jξj , i = 1, 2, .., N.

Giving us a linear system for an unknown vector ξ:

b = Aξ.

where A is the stiffness matrix and b is the load vector. Solving this linear system
provides us with ξ and therefore uh as well.

2.3.4 Newton’s method
Newton’s method is a numerical technique to find better approximations to the roots
of a real-valued function f(x) [8]. Initially we select a guess x0 near the actual root of
f . The closer this initial guess is to the actual root, the faster it will converge. The
method employs an iterative formula, beginning with xn = x0. At each iteration n we
compute a new approximation xn+1 using the formula:

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, ..

This process continues iteratively, updating the value of x until the difference between
successive approximations |xn+1 − xn| falls below a predetermined tolerance level. If
convergence occurs, the sequence of approximations x0, .., xn will converge to the actual
root of the functions. The final value of x after iteration provides the approximation
to the root of f . The Newton’s method is used for solving the constraint nonlinear
minimization problem formulated by the means of the Lagrange multiplier method In
Secton 2.10. This is then used on (2.20).

2.3.5 Picard’s method
The Picard’s method is a numerical technique to approximate solutions to certain
types of functional equations [8]. We start with a given functional equation of the
form y = g(x, y), where y is the unknown function and g(x, y) is a given function of
both x and y. Starting with an initial guess y0 for the unknown function y(x), the
iterative process defines a sequence of functions y1(x), y2(x), ... recursively:

yn+1(x) = g(x, yn(x)), n = 0, 1, 2, ..

This sequence y0(x), y1(x), .. converges to a fixed point y(x) such that:

y(x) = g(x, yn(x)).

The resulting function y(x) serves as an approximation to the solution of the original
functional equation. Picard’s method is used when solving the Stokes problem, Equa-
tion (2.29) when simulating Löfgren’s glacier, in Section 3.1.

In practice Newton’s method generally converges more rapidly than Picard’s method
when the initial guess is closer to the root. However, Newton’s method involves deriva-
tive computations, which may not always be feasible and can be computationally ex-
pensive. Therefore the selection between the two methods depends on the function’s
characteristics. For functions where computing derivatives is impractical or costly,
Picard’s method may be preferred despite its potentially slower convergence rate.

2.3.6 The Lagrange multiplier method
The Lagrange multiplier method is an analytical technique utilized to identify local
maxima or minima of a function while adhering to an equality constraint [8]. Ini-
tially we define an objective function f(x1, .., xn), representing the quantity we seek to

maximize or minimize. Subsequently, we introduce an equality constraint of the form
g(x1, .., xn) = 0, where g is a function of the same variables as f . We construct the
Lagrangian function L(x1, .., xn, λ) as follows:

L(x1, .., xn, λ) = f(x1, .., xn) + λg(x1, .., xn).

In the equation above we integrated the constraint into the objective function by
multiplying with the Lagrange multiplier λ. Then we compute the partial derivatives
for each variable and identify the stationary conditions. Setting the partial derivatives
to zero we detect the critical points:

∂L
∂xi

= 0, i = 1, 2, .., n,

∂L
∂λ

= 0.

We solve the system of equations generated by the stationarity conditions to find
optimized values of x1, .., xn. The Lagrange multiplier method is utilized by SNES
when we implement the constraint on the surface height explained in Section 2.10.

2.4 The Stokes equations
Ice sheets can be characterized as a slowly moving, gravity driven highly viscous fluid
[11]. When considering the movement of fluid, two types of stresses play significant
roles: internal stresses arising from changes in pressure as the fluid moves and viscous
stresses, which result from the fluid’s resistance to deformation. This leads to the
Cauchy stress tensor, which describes the distribution of forces within a fluid:

σ = −pI + µ(∇u+∇uT). (2.6)

Here, p represents pressure and I is the identity matrix. The coefficient µ is the
viscosity of the fluid which depends on the strain-rate tensor [10]:

Du =
1

2
(∇u+∇uT). (2.7)

This describes how the fluid deforms at a specific point. The conservation of mass is
expressed by the equation:

∇ · u = 0, (2.8)

which means that the fluid is incompressible. We also have the conservation of mo-
mentum for a fluid, expressed as:

ρu̇+ ρ(u · ∇)u = ∇ · σ + f . (2.9)

Here, ρ represents the density of the fluid, and f is a given function [10]. If we compute
the divergence of the stress tensor from (2.6). We further use (2.8) in the equation
above to arrive to:

∇ · σ = −∇p+ µ(∆u+∇(∇ · u) = −∇p+ µ∆u.

Incorporating this into the momentum equation, (2.9) yields:

ρu̇+ ρ(u · ∇)u = −∇p+ µ∆u+ f ⇔

u̇+ (u · ∇)u = −∇p

ρ
+

µ

ρ
∆u+ f.

This results in a set of nonlinear PDEs for velocity and pressure, known as the Navier-
Stokes equations:

u̇+ (u · ∇)u+
∇p

ρ
− µ

ρ
∆u = f , on Ω,

∇ · u = 0, on Ω.

From the Navier-Stokes equations, we can derive the Stokes equations. The Stokes
equations are advantageous for analysis as they are linear, when the viscosity function
is linear, yet they still provide a reliable model for fluid flow [10]. Given the slow and
predominantly parallel streamline flow of ice, we can neglect the term (u · ∇)u and
since the flow over ice sheets is slow, we neglect the acceleration term u̇ = 0. Thus we
arrive at:

−µ∆u+∇p = f , on Ω,

∇ · u = 0, on Ω.
(2.10)

In this derivation of the Stokes equations, we assume linearity of the viscosity µ [10].
Instead, we aim to describe the Stokes equations specifically for ice, acknowledging the
nonlinear nature of ice viscosity, which can be characterized by Glen’s flow law [14]:

µ(Du) =
1

2
A− 1

n (ϵ2crit +
1

2
||Du||2F)

1
n

−1

2 .

Here, ||()||F is the Frobenius norm. The parameter n represents the flow law exponent,
signifying the sensitivity of ice deformation to stress. Based on earlier research a
reasonable choice for n is 3. Additionally, to ensure that the viscosity does not tend
towards infinity as the strain rate approaches zero, a small regulation constant ϵcrit
is introduced [12]. Moreover, ice viscosity is influenced by temperature through the
rate factor A(T ′), which depends on the ice relative to the pressure melting point T ′

according to the Arrhenius equation:

A(T ′) = A0e
− Q

RT ′ ,

where A0 is a pre-exponential factor, Q is the activation energy and R is the ideal gas
constant, see Table 2.1. This values are considered reasonable for ice temperatures
T ′ ≤ 263.15K, when n = 3 [14]. With this we define the Cauchy stress tensor for ice:

σ = −pI + 2µ(Du)Du, (2.11)

which incorporates the deviatoric stress tensor:

S(Du) = 2µ(Du)Du, (2.12)

dependent on the strain-rate tensor in (2.7). Consequently, with the nonlinear viscosity
of ice, (2.10) becomes:

−∇ · S(Du) +∇p = f .

The force acting on the ice body is primarily due to the gravity g, exerted in a down-
ward direction. The right-hand side of the equation should also incorporate the density
ρ, as seen in the derivation of the Navier-Stokes equations. These values are available
in Table 2.1. We define the right-hand side as f = (0,−ρg) in R2 or f = (0, 0,−ρg)
in R3. Thus, we can define the Stokes equations for ice flow as [12]:

−∇ · 2µ(Du)Du+∇p = f , on Ω, (2.13)
∇ · u = 0, on Ω. (2.14)

Table 2.1: Parameters for computing the Stokes equations for ice:
A0 3.985× 10−13s−1Pa−3

Q 60 kJ mol−13

R 8.314462 JK−1 mol−1

A 100MPa−3yr−1 ≈ 3.2Pa−3s−1

ϵ2crit 1.0× 10−11 m2s−2

g 9.8 m/s2

ρ 910 kg/m3

2.5 Glacier boundary conditions
The boundary of the glacier is denoted as ∂Ω comprising four distinct boundaries:
ΓS ,ΓB ,ΓE and ΓW , see Figure 2.1. The boundary conditions for the ice sheet are as
follows:

σ · n = 0, on Γs, (2.15)

u = 0, on Γe,Γw,Γ
f
b , (2.16)

u · n = 0, on Γs
b, (2.17)

ti · (σ · n) = −β2u · ti, on Γs
b. (2.18)

In (2.15), the stress tensor is defined as in (2.11). Here, n represent a unit normal
pointing outward from the boundary. Equation (2.15) denotes a stress-free condition on
the surface [11]. In (2.16), velocity is specified as zero on the east and west boundaries.
At the bedrock, two different conditions are considered: either Γf

b , when the ice is
frozen to the bedrock, or Γs

b, when the ice is sliding on top of the bedrock. Equation
(2.16) indicates that when the ice is frozen the velocity is zero. For the sliding condition
on top of the bedrock, the velocity is divided depending on the direction. Equation
(2.17) specifies that the velocity is zero in the direction of the normal n. Equation
(2.18) introduces ti representing the tangent spanning the plane where i = [0, d − 1],
with d as the dimension and d ∈ {2, 3}. Equation (2.18) is derived from Weertman
sliding law [18], where β is the drag coefficients of the ice. It establishes the relationship
between the velocity in direction of the tangent and the stress tensor when the ice is
sliding along the bedrock [11].

Figure 2.1: This image depicts a glacier, represented in a two-dimensional domain
denoted as Ω. The boundaries of this domain are defined as follows: ΓS

represents the surface boundary, ΓB indicates the bedrock boundary, while
ΓE and ΓW denote the east and west boundaries respectively. The flow
velocity of the glacier is described by the vector u, illustrating the motion of
the ice within the domain. Notably, at the surface, there is an accumulation
rate denoted as as, representing the additional mass accumulation from
falling snow [11].

2.6 Free-surface equation
To describe the evolution of the glacier surface, we employ the free-surface equation.
In three dimensions (R3) the surface of the ice can be expressed as:

f(x, y, z, t) = h(x, y, t)− z,

where h(x, y, t) denotes the surface elevation at position (x, y) and time t, and z
represents the vertical coordinate. The governing transport equation for the alteration

in surface position is formulated as [14]:

∂f

∂t
= −u · ∇f. (2.19)

Evaluating the right-hand side of (2.19) yields:

∂f

∂t
=

∂(h(x, y, t)− z)

∂t
=

∂h

∂t
,

which represents the rate of change of the surface elevation over time. On the right-
hand side of (2.19), we have:

−u · ∇f = −u · ∇(h(x, y, t)− z) = −u · (∂h
∂x

,
∂h

∂y
,−1).

Defining the horizontal velocity components as u⊥ = (ux, uy) and the horizontal gra-
dient of the surface elevation as ∇⊥h = (∂h∂x ,

∂h
∂y), we rewrite (2.19) as:

∂h

∂t
= −u⊥ · ∇⊥h+ uz.

Incorporating the accumulation term as representing the vertical rate of mass accu-
mulation on the surface, the free-surface equation becomes:

∂h

∂t
= −u⊥ · ∇⊥h+ uz + as. (2.20)

Equation (2.20) describes the velocity at the glaciers surface Γs, accounting for both
horizontal and vertical motion components, as well as the accumulation of mass on
the surface [12].

2.7 Discretization of free-surface equation
The free-surface equation characterizes the velocity at the glacier’s surface and relies
on the Stokes equations for ice, (2.13)-(2.14) [12]. Initially,we solve the Stokes equation
to determine the velocity u at the surface. Subsequently, we utilize this velocity in
the free-surface equation to compute a new height h(x, y, t + ∆t), thus defining the
updated domain Ω(t + ∆t). This procedure continues to update the domain in this
way until the final time is reached.

While (2.20) can be discretized using the explicit Euler method, see Section 2.3.1,
which offers simplicity, it introduces limitations on the time step size, thereby reduc-
ing its stability. Alternatively, employing an implicit time-stepping scheme involves
solving u(t + ∆t) using the unknown data at the subsequent time step. However,
this necessitates solving the Stokes equations repeatedly within each time step, iter-
ating between the domains. This iterative process adds an extra computational loop,

resulting in increased computational time. Consequently, despite offering stability ad-
vantages over the explicit method, the implicit scheme becomes inefficient due to the
additional computational burden incurred.

Instead of employing an explicit or fully-implicit scheme, we opt for a semi-implicit
approach to discretize the free-surface equation (2.20) [11]. This method combines
Backward Euler, see Section 2.3.2, for the surface h(x, y, t) and Forward Euler, see
Section 2.3.1, for the velocity u:

hk+1 − hk

∆t
+ uk

x

∂hk+1

∂x
+ uk

y

∂hk+1

∂y
= uk

z + aks .

We further rearrange the terms in the equation to obtain:

hk+1 +∆t(uk
x

∂hk+1

∂x
+ uk

y

∂hk+1

∂y
) = hk +∆t(uk

z + aks). (2.21)

Then we employ FEM, similar to the approach outlined in Section 2.3.3, we introduce
a test function v ∈ V s where:

V s = {H1(Ω⊥)|v : ||v||L2(Ω⊥) + ||∇v||L2(Ω⊥) < ∞},

where Ω⊥ = {(x, y, 0) ∈ Ω}. Multiplying (2.21) with the test function v and integrating
over Ω⊥, we can formulate the weak formulation aiming to find hk+1 ∈ V s such that,

(hk+1, v)Ω⊥ +∆t(uk
x

∂hk+1

∂x
+ uk

y

∂hk+1

∂y
, v)

Ω⊥ = (hk, v)Ω⊥ +∆t(uk
z + aks , v)Ω⊥ ,

∀v ∈ V s.
(2.22)

Following the approach demonstrated in Section 2.3.3, we constrain the test and trial
space, denoted as V s, to the subspace V s

h . This subspace consists of piecewise-linear
polynomials.

2.8 Finite element method for the Stokes equations
We begin by discretizing the Stokes equation using FEM, explained in Section 2.3.3.
To facilitate this, we introduce the function spaces V and Q for velocity u and pressure
p as follows:

V = {v ∈ H1(Ω)|v|∂Ω\Γs∪Γs
b
= 0,v · n|Γs

b
= 0},

Q = {q ∈ L2(Ω)}.

Incorporating the boundary conditions in (2.15) where we specify that the velocity is
zero except on the surface and when the ice is sliding on the bedrock. Also when the
ice is sliding we defined Γbs where we have that the velocity is zero in the direction of

the normal n. We proceed to multiply our Stokes equations, (2.13)-(2.14) by the test
functions v ∈ V and q ∈ Q:

−∇ · (2µ(Du)Du)v +∇pv = fv, (2.23)
(∇ · u)q = 0. (2.24)

Integrating (2.23) over the whole domain Ω:

−(∇ · 2µ(Du)Du,v)Ω + (∇p,v)Ω = (f ,v)Ω, ∀v ∈ V .

We then apply Green’s Formula, see Theorem 2.2.3 and derive:

(2µ(Du)Du,∇v)Ω − (n · 2µ(Du)Du,v)∂Ω − (p,∇ · v)Ω + (n · v, p)∂Ω = (f ,v)Ω.
(2.25)

We previously defined the stress tensor in (2.11), and by integrating it over the bound-
ary, we effectively derive the stress contribution. So that (2.25) instead can be written
as:

(2µ(Du)Du,∇v)Ω − (p,∇ · v)Ω − (σ · n,v)∂Ω = (f ,v)Ω. (2.26)

We then focus on the integral over the boundary ∂Ω, separating it into different bound-
aries:

−(σ · n,v)∂Ω = −(σ · n,v)Γs − (σ · n,v)Γe − (σ · n,v)Γw − (σ · n,v)Γb

= −(0,v)Γs − (σ · n, 0)Γe − (σ · n, 0)Γw − (σ · n,v)Γb

= −(σ · n,v)Γb
.

On the surface boundary, σ · n = 0 defined in (2.15). Also we defined that v = 0
for the east and west boundaries earlier. For the sliding bedrock we further refine the
calculation when the ice is frozen and when the ice is sliding:

−(σ · n,v)Γb
= −(σ · n,v)Γf

b
− (σ · n,v)Γs

b

= −(σ · n, 0)Γf
b
− (σ · n,v)Γs

b

= −(σ · n,v)Γs
b
.

(2.27)

For the frozen bedrock Γf
b , we also defined v = 0. So from the integral over the

boundaries we only have to consider the bedrock when the ice is sliding. Using Theorem
2.2.1 of orthonormal basis, we can write the stress tensor in three dimensions:

σ · n = ((σ · n) · n)n+ ((σ · n) · t1)t1 + ((σ · n) · t2)t2.

If we use this in (2.27), we use the fact that we defined v ·n = 0 and we also use (2.18)
so that:

−(σ · n,v)Γs
b
= −((((σ · n) · n)n+ ((σ · n) · t1)t1 + ((σ · n) · t2)t2),v)Γs

b

= −((σ · n) · n,n · v)Γs
b
− ((σ · n) · t1, t1 · v)Γs

b
− ((σ · n) · t2, t2 · v)Γs

b

= −((σ · n) · n, 0)Γs
b
− (−β2(t1 · u), t1 · v)Γs

b
− (−β2(t2 · u), t2 · v)Γs

b

= (β2(t1 · u), t1 · v)Γs
b
+ (β2(t2 · u), t2 · v)Γs

b

= (β2((t1 · u)t1 + (t2 · u)t2),v)Γs
b
.

(2.28)
We use Theorem 2.2.1 to write an orthonormal basis for u:

u = (u · n)n+ ((t1 · u)t1 + (t2 · u)t2),

where we defined u · n = 0 on Γs
b in (2.17) so that:

u = ((t1 · u)t1 + (t2 · u)t2).

From this we have that (2.28) instead can be written as:

(β2((t1 · u)t1 + (t2 · u)t2),v)Γs
b
= (β2u,v)Γs

b
.

We can now conclude that the integral over the boundary is equal to the equation
above. We rewrite (2.26) as:

(2µ(Du)Du,∇v)Ω − (p,∇ · v)Ω + (β2u,v)Γb
= (f ,v)Ω, ∀v ∈ V .

Then we also integrate (2.24) over the whole domain Ω:

(∇ · u, q)Ω = 0, ∀q ∈ Q.

We can now add the two equations above together to make it simpler and we subtract
the second equation because we want to have a symmetric matrix when we derive the
linear system [12]. The weak formulation is then, to find u ∈ V and p ∈ Q such that:

(2µ(Du)Du,∇v)Ω − (p,∇ · v)Ω − (∇ · u, q)Ω + (β2u,v)Γb
= (f ,v)Ω,

∀v ∈ V and ∀q ∈ Q.

We now subdivide Ω into triangles and let this be a mesh Ωh = ∪N
i=1Ki, where Ki is

a mesh element. We choose Vh to be a space of piecewise qudratic polynomials over
Ωh, and Qh a space of piecewise linear polynomials over Ωh. The final Stokes problem
formulation is: find uh ∈ Vh and ph ∈ Qh such that:

(2µ(Duh)Duh,∇v)Ω − (ph,∇ · v)Ω − (∇ · uh, q)Ω + (β2uh,v)Γb
= (f ,v)Ω,

∀v ∈ Vh and ∀q ∈ Qh.
(2.29)

Then we let {φi}ni=1 be a set of vector valued basis functions for Vh and {χi}mi=1 be a
scalar basis functions for Qh. We also have ξ and ω containing the vectors of unknown
degree so that:

uh =

n∑
j=1

ξjφj

ph =

m∑
j=1

ωjχj .

We can now write the (2.29) so that:
n∑

j=1

ξj(2µ(∇φj)∇φj ,∇φi)Ω −
m∑
j=1

ωj(χj ,∇ ·φi)Ω −
n∑

j=1

ξj(∇ ·φj , χi)+

n∑
j=1

ξj(β
2φj ,φi)Γb

= −(f,φi)Ω, ∀φi ∈ Vh and ∀χi ∈ Qh.

From this we get a matrix system simarly as in the Poisson example in Section 2.3.3.
The different is that we have a stiffness matrix A and a divergence matrix B. We form
a blockstructured system [10]: [

A BT

B 0

] [
ξ
ω

]
=

[
b
0

]
where we have that,

Aij = (2µ(∇φj)∇φj ,∇φi)Ω + (β2φi,φj)Γb
,

Bij = (χj ,∇ ·φi)Ω,

BT
ij = Bji = (∇ ·φj , χi)Ω,

bi = (f ,φi)Ω.

2.9 Free-Surface Stabilization Algorithm (FSSA)
In dealing with a time-dependent domain Ω, we employ Reynolds transport theorem,
see Theorem 2.2.4, to handle the evolution of quantities within the domain. The
theorem states [9]:

d

dt

∫
Ω(t)

ϕdΩ =

∫
Ω(t)

d

dt
ϕdΩ+

∫
∂Ω(t)

(u · n)ϕdΓ.

Here ϕ is any scalar quantity, let’s choose ϕ = (0, 0,−ρg) · v = f · v, substituting this
yields:

d

dt

∫
Ω(t)

f · vdΩ =

∫
Ω(t)

d

dt
f · vdΩ+

∫
∂Ω(t)

(u · n)(f · v)dΓ.

As f · v doesn’t depend on time, the first term on the right-hand side equal zero:

d

dt

∫
Ω(t)

f · vdΩ =

∫
∂Ω(t)

(u · n)(f · v)dΓ.

This yields:

d

dt
(f ,v)Ω(t) = (u · n,f · v)Γ. (2.30)

We approximate the time derivative using Forward Euler, in Section 2.3.1:

d

dt
(f ,v)Ω(t) =

(f ,v)Ωk+1 − (f ,v)Ωk

∆t
.

Equating this with the previous expression (2.30), we obtain:

(f ,v)Ωk+1 − (f ,v)Ωk

∆t
= (u · n,f · v)Γk .

This leads to [12]:

(f ,v)Ωk+1 = (f ,v)Ωk +∆t(u · n,f · v)Γk . (2.31)

We can now relate the last term to the free-surface equation. A normal to the surface,
see Definition 2.1.6, is determined by the surface equation h(x, y, t):

n =
(∂h∂x ,

∂h
∂y ,−1)√

(∂h∂x)
2 + (∂h∂y)

2 + (−1)2
. (2.32)

The last term in (2.31) is an integral over the surface, where the surface interval is
[−L,L]:

∆t(u · n,f · v)Γk
s
= ∆t

∫ L

−L

(u · n)(f · v)dΓs. (2.33)

The arc length over Γs is:

dΓs =

√
(
∂h

∂x
)2 ++(

∂h

∂y
)2 + (−1)2dt, (2.34)

where t represents a parameter along the surface boundary. If we include the normal
in (2.32) and the surface boundary in (2.34), we can express the integral in (2.33) as:

∆t

∫ L

−L

(u · n)(f · v)dΓs =

= ∆t

∫ L

−L

(u ·
(∂h∂x ,

∂h
∂y ,−1)√

(∂h∂x)
2 + (∂h∂y)

2 + (−1)2
)(f · v)

√
(
∂h

∂x
)2 + (

∂h

∂y
)2 + (−1)2dt

= ∆t

∫ L

−L

(u · (∂h
∂x

,
∂h

∂y
,−1))(f · v)dt =

∫ L

−L

∆t(ux
∂h

∂x
+ uy

∂h

∂y
− uz)(f · v)dt.

(2.35)

Upon observation, term:

∆t(ux
∂h

∂x
+ uy

∂h

∂y
− uz),

matches the right-hand-side of the free-surface equation (2.20) but discretized by means
of Forward Euler method, see Section 2.3.1. To fully couple the terms in (2.35) to the
free-surface equation we also add the mass accumulation term as from (2.20) to (2.31):

(f ,v)Ωk+1 = (f ,v)Ωk +∆t((u+ asz) · n,f · v)Γk
s
. (2.36)

As previously discussed in Section 2.7 the implicit method is unfortunately not feasible.
Instead we utilize the Free-Surface Stabilization Algorithm (FSSA), which leverages
the Reynolds transport theorem to mimic an implicit time-stepping scheme without
the extra cost of iterating [11]. Using (2.36), we derived from Reynolds transport
theorem for (2.29), we can compute the velocity and pressure of the next time step
while still integrate over the current domain. We estimate (ũk+1, p̃k+1) ∈ V ×Q such
that,

(2µ(∇ũk+1)∇ũk+1,∇v)Ωk − (p̃k+1,∇ · v)Ωk − (∇ · ũk+1, q)Ωk + (β2ũk+1,v)Γk
b
=

(f ,v)Ωk +∆tθ((̃u
k+1

+ aks) · n,f · v)Γk
s
.

Separating the last term for more clarity:

(2µ(∇ũk+1)∇ũk+1,∇v)Ωk − (p̃k+1,∇ · v)Ωk − (∇ · ũk+1, q)Ωk + (β2ũk+1,v)Γk
b
−

∆tθ((uk+1 · n,f · v)Γk
s
= (f ,v)Ωk +∆tθ(aks · n,f · v)Γk

s
, ∀v ∈ V and ∀q ∈ Q.

(2.37)
This equation incorporates a parameter θ ∈ [0, 1] to control the level of implicitness
in the function. When θ = 0 the function is fully explicit with respect to u and when
θ = 1 it becomes semi-implicit [12].

2.10 Scalable Nonlinear Equations Solvers (SNES)
SNES is a toolkit in FEniCS that employs Newton’s method, see Section 2.3.4 to
solve nonlinear equations numerically. We are using this to implement the positivity
preserving constraint, that the surface height should always stay above the bedrock
height. For a surface h(x, y, t) and the bedrock b(x, y) we want to implement that
h(x, y, t) > b(x, y). To do this we will be looking at the free-surface equation (2.22):

(hk+1, v)Γk
s
+∆t(uk

x

∂hk+1

∂x
+ uk

y

∂hk+1

∂y
, v)

Γk
s
= (hk, v)Γk

s
+∆t(uk

z + aks , v)Γk
s
⇔

a(hk+1, v) = L(v), ∀v ∈ V s.

In every iteration we want to find hk+1, that follows the constraint hk+1 > b. To
implement this, SNES uses the Lagrange multiplier method, see Section 2.3.6. The
objective function that we want to minimize is:

f(hk+1) = a(hk+1, hk+1)− L(hk+1).

We formulated the constraint as hk+1 − b− s2 = 0 where s is a slack term so that our
constraint function becomes,

g(hk+1, s) = hk+1 − b− s2.

We can formulate the Lagrangian formation:

L(hk+1, s, λ) = f(hk+1)− λg(hk+1, s).

The minimization problem is:

min
hk+1,s,λ

L(hk+1, s, λ) (2.38)

We then obtain the constrained hk+1 by solving the system of equations [3]:

∂L
∂hk+1

= 0,

∂L
∂s

= 0,

∂L
∂λ

= 0.

2.11 Relation between the SNES constrained
free-surface equation and the FSSA stabilization
term

In this thesis, we use FEM to discretize the Stokes equations resulting in (2.29).
Through the incorporation of the FSSA term (2.36), we enable larger simulation time
steps, denoted in (2.37).

Moreover, in Section 2.9 we demonstrated that the FSSA term itself, expressed in
(2.36), establishes a coupling between the Stokes problem (2.29) and the free-surface
equation, (2.20). The FSSA term entails the left-hand side of the free-surface equation
as depicted in (2.35).

However, this connection is limited to the original free-surface equation. The SNES
algorithm, outlined in 2.10 essentially modifies the free-surface equation (2.20) such
that its solution obeys the constraint, ensuring that h(x, y, t) > b(x, y), where h(x, y, t)
represents the ice sheet surface height, and b(x, y) denotes the ice sheet bedrock height.

As an illustration, we take this into account by reformulating the free-surface equation
(2.20) as:

∂h

∂t
= −u⊥ · ∇⊥h+ uz + as + SNES term. (2.39)

Here, we introduce an additional term called SNES that, after the equation is solved,
effectively raises the surface height, ensuring its position is over the bedrock.

Upon examining the derived connection between the original free-surface equation
(2.20) and the FSSA stabilization term (2.36), it becomes apparent that the SNES
term, present on the right-hand-side of (2.39), is absent. This makes it evident that
further investigation concerning the integration of the SNES term within the context
of this thesis is needed.

2.12 Regions over the ice sheet surface where SNES
is active

We have the positivity preserving constraint hk+1 ≥ bk + δ, where δ is the glaciers
initial ice thickness. We approximate hk+1 = hk +∆t(uk · nk), where ∆t(uk · nk) is
the displacement of the surface into normal direction. We use this in the positivity
preserving constraint to arrive at:

hk +∆t(uk · nk) ≥ bk + δ.

This will be satisfied when:

uk · nk ≥ 1

∆t
(bk − hk + δ). (2.40)

Thus, the approximate regions where the positivity preserving constraint is not satis-
fied are given as a set below:

α̃ = {x ∈ Γs |uk · nk <
1

∆t
(bk − hk + δ)}, (2.41)

where α̃ represent the regions on the surface Γs where the SNES algorithm is active.

2.13 The goals of the thesis
In this thesis we examine simulation errors arising due to the fact that the SNES
term in (2.39), is not taken into account when integrating the FSSA stabilization
term (2.36) into the Stokes problem (2.29). We make the examination by a series of
numerical experiments. Furthermore, we develop a strategy to eliminate or decrease
those errors.

3 Numerical experiments

In Section 3.1 we define the glacier we conduct the simulations on. In Section 3.2 we
conduct simulation to find a stable time step for when we are not using the FSSA.
Then we will conduct four experiments to investigate the connection between the
surface error and the activation of the positivity preserving constraint when the FSSA
stabilization term is added to the Stokes problem. In Section 3.3 we determine if any
error appear at all and compare the relative spatial error distribution on a linear scale
with that on a logarithm scale to determine the most effective visualization method.
In Section 3.4 we show the errors throughout the simulation, observing how they
fluctuates when accumulation is active.
In Setion 3.5, we extend the total simulation duration to observe the changes in error
when the accumulated snow is melted.
Finally, in Section 3.6, we closely examine the velocity field, comparing the errors of
two closely spaced times when the glacier experiences significant mass loss.

3.1 Löfgren’s glacier (Perlin)
Here we describe a simulation of a glacier geometry in two dimensions from (Lofgren,
2023) [11]. At the initial time, denoted as t = 0, the glacier consists of a thin ice
layer, which progressively thickens due to positive accumulation. Figure 3.1 illustrates
the temporal evolution over an extended period as the glacier accumulates snow. The
accumulation process, represented by a non-negative function, is described by a linearly
decaying function:

as(x, y = 0) =

2, if r(x, y) ≤ 0.25,

2(1− r(x,y)−0.25
0.75), 0.25 ≤ r(x, y) ≤ 1,

0, otherwise.
(3.1)

Here, r(x, y) is an anisotropic distance function, with (xc, yc) denoting the center,
defined as :

r(x, y) =

√(
x− xc

a

)2

+

(
y − yc

b

)2

.

The parameters a = 750 and b = 1500 represent the distance from the center to the
vertices along the x-axis and y-axis, respectively. In our experiments we use as as
defined in (3.1), when t < Tmelt. Then when t ≥ Tmelt we use as = −1. Here, Tmelt is
the time where we switch from accumulation mode to melting mode.

26

The boundary conditions at ΓW ,ΓE are set according to (2.16). On the surface Γs the
free-surface equation, as per Equation (2.20), is applied. For the bedrock (2.16)-(2.18)
are employed depending on whether the glacier is frozen to the bedrock or not. In
(2.18), the drag coefficient β2 is defined as:

β2(x) = β2
min +

β2
max − β2

min

1 + e(
x−µ
σ)

.

Here, βmin and βmax denotes the minimum and maximum values of β, respectively.
The parameters σ and µ are as in Table 3.1. Also A0 is the same value that are
used in Table 2.1. The simulation utilizes the Picard iteration method as described
in Section 2.3.5 due to its independence from a precise initial guess, especially useful
when the function’s derivative might be non-existent or computationally expensive
to compute. The mesh resolution is set to (Nx, Nz) = (200, 5), where Nx and Nz

represent the number of layers in the horizontal and vertical directions, respectively.
In our computational framework, we include the variable θ as outlined in (2.37). This
variable enables us to selectively apply the FSSA.

Table 3.1: Variables for Perlin glacier
β2

min 0.01 MPa yr m−1

β2
max 1000 MPa yr m−1

σ 200 m
µ 3000 m

3.2 Stable time step
In this section we establish the stability threshold for the time step size required to
simulate the Perlin glacier model in absence of FSSA. This entails conducting simu-
lations without FSSA and analyze the behavior of the velocity component ux as the
time step size, denoted as ∆t, is increasing.

Velocity plots are generated for each time step during the simulation iterations to
enable a comprehensive comparison. Figure 3.2 illustrates the velocity distribution at
the simulation’s end time T = 100 for four distinct step sizes. Our observations reveal
that when the step size exceeds ∆t = 5, oscillations emerge on the surface, signifying
instability.

Additionally, we explore the surface plots represented in Figure 3.3, for the corre-
sponding time steps, which further confirm instability for larger values than ∆t = 5.
Based on our analysis, we conclude that ∆t = 5 is exhibiting stable behavior. We thus
decide to use ∆t = 3 for our experimental simulations.

3.3 Experiment 1: Surface error at the end of the
simulation

Here, we conduct simulations both with and without FSSA. We use a stable time step
size ∆t = 3. The simulation ran until the end time T = 100, with melting beginning
at Tmelt = 80. In all cases the SNES constraint is turned on. Our aim is to investigate
if the FSSA and the constraint by SNES entails errors defined as:

e(xi, t) =
|hFSSA(xi, t)− hNOFSSA(xi, t)|

(max i)|hNOFSSA(xi, t)|
, i = 1, 2, .., N.

Here, hFSSA represents the surface height when utilizing FSSA, and hNOFSSA repre-
sents the surface height when not using FSSA, serving as the reference and true height.
Additionally, e is calculated at a specific point xi and a specific time t. In this exper-
iment we measure the error at the end time, tend = 100. The logarithmic scale helps
with magnifying relatively small errors, which might otherwise be overshadowed.

In Figure 3.4, we depict surface and velocity plots at the simulation’s end time, T = 100
for both vertical and horizontal velocity vectors, with melting initiated at Tmelt = 80.
Additionally in the same figure, we present two plots illustrating the error of the sur-
face height at the end time. Initially, we observed significant error in only one specific
area when plotting the error in linear scale , necessitating a logarithmic scale to en-
hance visualization of the error. We can see in Figure 3.4, that a logarithmic scale
gives a fairer result, therefore we will use this in all further experiments.

Upon analyzing the plots, we observed that the majority of the error was approxi-
mately 10−16, rendering it effectively negligible. However, a significant error at 10−2

was evident in the region extending from the glacier’s start to x = 2000, as can be
seen in the plot from Figure 3.4. The point where the error begins corresponds to the
area where the glacier have accumulated a substantial mass, which starts to thin out
at around x = 1000.

This suggests that the error may be attributed to the significant snow accumulation in
the area, as in Section 2.12. Snow accumulating on the first thin surface likely triggers
higher velocities, potentially necessitating the activation of the SNES algorithm.
Additionally, the observation of high velocities in both vertical and horizontal compo-
nents within the domain x = 1000 and x = 2000, where the surface height is relatively
small further supports the need for SNES activation in this specific region.

3.4 Experiment 2: Surface error as a function of time
In the second experiment, we have the same setup as in the first experiment but we
now look at the error as a function of time. In Figure 3.5 we display the velocity com-
ponent ux in the first four plots and uz in the last four at different times T . Figure

3.6 visualizes the respective relative error on a logarithmic scale for each of these times.

Similar to the first experiment, a distinct error pattern emerges in Figure 3.6, per-
sisting from x = 0 til x = 2000, consistetly present across all figure. This error pattern
correlates with the domain where the glacier accumulates a significant amount of snow.
As in Section 2.13, we hypothesized that the error would be prominent initially when
the surface is thin and begins to accumulate snow. Furthermore, we observed that
the error does not increase over time, suggesting that it is more pronounced at the
beginning and then stabilizes as the surface accumulates mass, becoming less sensitive
to SNES.

Moreover, as the error can be observed across the glacier’s surface, a comparison
of the two last plots in Figure 3.6, reveals a decrease in error between T = 60 − 90.
However, considering that melting starts at Tmelt = 80, and a significant portion of
the mass has melted by T = 90, this reduction in error can also be attributed to the
reduction in mass. As in Section 2.13, this error may be caused by the active SNES
term, suggesting that it manifests where mass accumulation occurs.

3.5 Experiment 3: Surface error as a function of time
for a longer simulation

In the third experiment we simulate the Perlin glacier using a time step size of ∆t = 3
and an extended end time T = 500, with melting initiating at Tmelt = 240.
Figure 3.7 displays surface and velocity plots for the ux components at six different
time steps, while Figure 3.8 depicts the surface and velocity plots for the uz compo-
nents at the corresponding six time steps. Additionally, Figure 3.9 presents the surface
error on a logarithmic scale for these six distinct times.

Compared to the first and second experiments here we see that the glacier not only
accumulates snow from the start til point x = 2000, it now gather mass up to the
point x = 3000 and then further til x = 4000.
Here, we can also see from the surface plots that it also melts all of the accumulated
snow when we appear at the end time T = 500. Therefore, we now have a simulation
where we can see the glacier is adding on mass on a larger domain then before and
also melting it back to the starting thickness.

If we investigate the error plot in the first three plots in Figure 3.9 we can see that
similar to the first and second experiment we have the largest error at the place where
we accumulate the most snow. It can also be said that the doesn’t seem to grow
explained in the second experiment this is probably due to the fact that the error
is large when the glacier begins to accumulate snow and then when it has gathered
mass the downward normal velocity is not so large to make it sensitive to the constraint.

In Figure 3.9 at T = 240 we have a lot of errors through out the surface, but when the
melting start at T = 240 we see in the next plot at T = 300 a lot of this accumulated
snow have melted only remaining the larger error.
As in the second experiment we can connect this to the accumulated mass is affecting
the error.
Then in the fifth plot in Figure 3.9 where T = 240 we can see that there is almost none
of the errors left. If we compare this to the Figure 3.7 we can see that this correspond
to the last part where there is mass. Then in the last of the error plots we can see that
all of the snow has melted and the error is gone which further confirmed the correlation
of SNES being active when the glacier collect mass.

3.6 Experiment 4: Surface error and the change of
velocities between two time points

Similar to the third experiment we compute a simulation where the end time is
T = 500, with time step size ∆t = 3 and we have that melting starts at T = 240.
Here, we want to look closer at the velocity of the vertical and horizontal component
at the times, T = 240 and T = 300.

In Figure 3.10 the first two plots we first see the surface and bedrock at times T = 240
and T = 300 making it obvious that the glacier has lost parts of the glacier due to the
melting. The next four plots are of the velocity the first two represents the velocity
component of ux at T = 240 respectively T = 300. The next two is of the velocity
components uz at time T = 240 and T = 300. Then we included the error plots to
compare the error at the times T = 240 and T = 300.

Looking at the plots in Figure 3.10, where T = 240, the velocity ux is at the highest
value at point x = 2000. We also see that the uz component is large at this time, but
in a negative direction. If we compare this to the error plot when T = 240, we here
have a large error at (10−2) and looking at the surface we see that at point x = 2000
the glacier has accumulated a bit of snow.

If we then look at Figure 3.10, where T = 300, we see that the velocity components have
decreased significantly both in horizontal and vertical direction at the point x = 2000.
The surface plots also show that the ice at this point has melted, going back to the
original thickness. At the same time the error around x = 2000 became of size 10−16.
We observe closer that the velocity and the thickness of the ice affect the error in
the regions where SNES should be active this supports the hypothesis that this is the
cause of the error.

The conclusion to make is as in Section 2.12 that when we have a proportionally
large velocity compared to the thickness of the ice this creates an error due to the fact
that SNES is active but the FSSA does not take this into account.

T = 0.

T = 500.

T = 1000.

Figure 3.1: The surface and velocity component ux (meter/years) of the Perlin glacier.
The glaciers length is Lx = 8000 m and the height is Lz = 800 m. We can
see that the accumulation function is adding mass through the years with
end time T = 1000 years.

∆t = 3. ∆t = 5.

∆t = 13. ∆t = 25.

Figure 3.2: The Perlin glacier simulated with various time step sizes, denoted as ∆t,
depicted at the end time T = 100, all conducted without utilizing FSSA.
This analysis aims to show how stability varies with increasing the time
step size.

∆t = 3. ∆t = 5.

∆t = 13. ∆t = 25.

Figure 3.3: The simulation of the Perlin glacier surface during different time step sizes,
denoted as ∆t, depicted at T = 100 without the utilization of FSSA. This
examination aims to highlight the differences in stability as the time step
size is increased.

ux, T = 100. uz, T = 100.

Error in linear scale, T = 100. Relative error in logarithm scale, T = 100.

Figure 3.4: Experiment 1: The Perlin glacier’s surface and velocity when simulating
with a time step size of ∆t = 3. Depicted at the end time T = 100 and
melting starts at the time Tmelt = 80. The relative error of the surface
height is depicted in linear scale and in logarithm scale.

ux, T = 9. ux, T = 30.

ux, T = 60. ux, T = 90.

uz, T = 9. uz, T = 30.

uz, T = 60. uz, T = 90.

Figure 3.5: Experiment 2: The surface and velocity of the Perlin glacier, including ux

and uz, are examined at four distinct time points T . With a time step size
of ∆t = 3 and melting of the glacier begins at the time Tmelt = 80.

Error, T = 9. Error, T = 30.

Error, T = 60. Error, T = 90.

Figure 3.6: Experiment 2: The relative error in logarithm scale of the Perlin glacier’s
surface is evaluated at four time points T . The simulation extend until the
end time T = 100. With a time step size of ∆t = 3 and melting of the
glacier begins at the time Tmelt = 80.

ux, T = 120. ux, T = 180

ux, T = 240 ux, T = 300

ux, T = 420 ux, T = 480

Figure 3.7: Experiment 3: The surface and velocity (ux) of the Perlin glacier are ex-
amined at six distinct time points T . With a time step size of ∆t = 3 and
melting of the glacier begins at Tmelt = 240.

uz, T = 120 uz, T = 180

uz, T = 240 uz, T = 300

uz, T = 420 uz, T = 480

Figure 3.8: Experiment 3: The surface and velocity (uz) of the Perlin glacier are ex-
amined at six distinct time points T . With a time step size of ∆t = 3 and
melting of the glacier begins at the time Tmelt = 240.

Error, T = 120. Error, T = 180.

Error, T = 240. Error, T = 300.

Error, T = 420. Error, T = 480.

Figure 3.9: Experiment 3: The relative error in logarithmic scale of the Perlin glacier’s
surface is evaluated at six time points T . The simulation extend until the
end time T = 500. With a time step size of ∆t = 3 and melting of the
glacier begins at the time Tmelt = 240.

Surface, T = 240. Surface, T = 300.

ux, T = 240. ux, T = 300.

uz, T = 240. uz, T = 300.

Error, T = 240. Error, T = 300.

Figure 3.10: Experiment 4: Comparing the simulations error,the velocity components
ux and uz and the surface height, at the time points T = 240 and T = 300.

4 Two candidate remedies for
enhancing the FSSA stabilization
term with the surface positivity
preserving constraint

In the Section 3 we found the presence of the error when the SNES algorithm is active
and the FSSA stabilization term is added to the Stokes problem. Here we propose
two candidate remedies to augment the FSSA stabilization term with an approximate
positivity preserving constraint on the velocity field.

The first remedy is to solve the Stokes problem (2.37), with:

(uk · nk) ≥ 1

∆t
(bk − hk + δ), Γs,

added as a requirement. Implementing this by employing the SNES algorithm is cum-
bersome, as imposing an inequality constraint over the domain boundary is not a
natural part of the code interface.

The second remedy is to compute the regions where the SNES algorithm is active
by using α̃ as given in (2.41) and then impose the condition:

(uk · nk) =
1

∆t
(bk − hk + δ), on α̃ ⊂ Γs.

This condition would be easier to implement in the FEniCS library then the first
remedy. In this thesis we have not attempted to use the two proposed remedies. We
leave that to the research community as future work.

41

5 Final remarks

The central focus of this thesis addresses numerical instabilities encountered in simu-
lations of ice sheet dynamics, specifically when the ice sheet surface height approaches
the underlying bedrock height.

Previous studies have demonstrated that incorporating the FSSA stabilization term
(2.36) with the Stokes problem discussed in (2.29) effectively increases the time step
size, when the velocities computed from the Stokes problem are used in the free-surface
equation.

In Section 2.11 we showed that the FSSA stabilization term is supposed to take the
action of the SNES algorithm into account. In Section 3, we numerically showed that
the SNES positivity preserving algorithm combined with the FSSA, gives rise to an
error.

In Section 4 we then propose two candidate remedies for including a positivity pre-
serving constraint to the FSSA stabilization term. We leave their implementation and
evaluation for future work.

Other future work also entails investigations over a more realistic three-dimensional
ice sheet domain, as well as a study of the effect of the mesh size on the error.

The significance of this study is a contribution to enhancing the FSSA, which in turn
improves the reliability of predictions concerning glacier dynamics, crucial for assessing
their impact on climate change.

42

Bibliography

[1] Climate and ice. https://scied.ucar.edu/learning-zone/
climate-change-impacts/climate-and-ice. (Accessed: 2024-02-26).

[2] Parts of the cryosphere. https://scied.ucar.edu/learning-zone/
earth-system/parts-cryosphere. (Accessed: 2024-02-26).

[3] SNES: Nonlinear Solvers. https://petsc.org/main/manual/snes/. (Accessed:
2024-04-30).

[4] The FEniCS computing platform. https://fenicsproject.org/. (Accessed:
2024-04-30).

[5] Jerrold E. Marsden Anthony Tromba. "Vector Calculus". Freeman, 2016.

[6] Judi McDonald David Lay, Steven Lay. "Linear Algebra and Its Applications,
Global Edition ". PEARSON EDUCATION LIMITED, 2021.

[7] V. Masson-Delmotte P. Zhai M. Tignor E. Poloczanska K. Mintenbeck A. Ale-
gría M. Nicolai A. Okem J. Petzold B. Rama N.M. Weyer (eds.) H.-O. Portner,
D.C. Roberts. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere
in a Changing Climate. 2019. (Accessed: 2024-02-26).

[8] Kent-Andre Mardal Hans Petter Langtangen1. "Introduction to Numerical Meth-
ods for Variational Problems". Springer Nature Switzerland AG, 2016.

[9] Volker John. "Methods For Incompressible Flow Problems". Springer, 2016.

[10] Mats G Larson and Fredrik Bengtzon. "The Finite Element Method: Theory,
Implementation and Practice". Springer-Verlag Berlin and Heidelberg GmbH Co.
K, 2013.

[11] A. Löfgren, T. Zwinger, P. Råback, C. Helanow, and J. Ahlkrona. Increasing
numerical stability of mountain valley glacier simulations: implementation and
testing of free-surface stabilization in elmer/ice. EGUsphere, 2023:1–22, 2023.

[12] André Löfgren, Josefin Ahlkrona, and Christian Helanow. "increasing stable time-
step sizes of the free-surface problem arising in ice-sheet simulations". Journal of
Computational Physics: X, 16:100114, 2022.

[13] Frank Pattyn, Catherine Ritz, Edward Hanna, Xylar Asay-Davis, Rob DeConto,
Gaël Durand, Lionel Favier, Xavier Fettweis, Heiko Goelzer, Nicholas R Golledge,
et al. The greenland and antarctic ice sheets under 1.5 c global warming. Nature
climate change, 8(12):1053–1061, 2018.

43

[14] Heinz Blatter Ralf Greve. "Dynamics of Ice Sheets and Glaciers". Springer Berlin,
Heidelberg, 2009.

[15] Charles R. Johnson Roger A. Horn. "Matrix Analysis". Cambridge University
Press; 2nd edition, 2012.

[16] Walter Rudin. "Functional analysis". McGraw-Hill Science/Engineering/Math;
2nd edition, 1991.

[17] Felix Kwok Walter Gander, Martin J. Gander. "Scientific Computing - An Intro-
duction using Maple and MATLAB". Springer Cham, 29 April 2014.

[18] Johannes Weertman. On the sliding of glaciers. Journal of glaciology, 3(21):33–38,
1957.

Matematiska institutionen

Datalogi
www.math.su.se

Beräkningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

