
Identifying the Differences
Between FNJ and DNJ

Simon Ekman

Abstract

Two algorithms for reconstructing phylogenetic trees, Fast Neighbor Joining
(FNJ) and Dynamic Neighbor Joining (DNJ), are examined in this thesis. The
two algorithms build on the same concept, posing the question of whether they
are distinct algorithms. To closer investigate this, the differences and similarities
between the algorithms are highlighted, and they are discussed theoretically as
well as tested practically. Although a definitive answer to the question is not
given here, it will be shown that the two algorithms achieve the same results
and build on the same concept, while achieving the same practical runtime.

1

1. Introduction

In the field of phylogenetics, a common problem is identifying the evolution-
ary history of a set of genomic sequences and how they are related to each other.
For this purpose, it is desirable to construct a phylogenetic tree, where sequences
of currently living species are represented as leaves and those of ancestral species
as other vertices. Most often the only information available are the genomes
of currently living species, while those of ancestral species are unknown. On a
conceptual level, the problem is to accurately reconstruct a tree with weighted
edges when the only information available are the distances between its leaves.

Several algorithms have been proposed to solve this problem. One such al-
gorithm is the Neighbor Joining algorithm (NJ), which has given rise to many
derivative algorithms. This thesis examines two such algorithms, namely Fast
Neighbor Joining (FNJ) and Dynamic Neighbor Joining (DNJ). FNJ was pro-
posed by I. Elias and J. Lagergren in 2009, while DNJ was proposed by P.T.L.C.
Clausen in 2023. Both algorithms will be described in detail in the definitions
section. Moreover, the premise of DNJ is similar enough to FNJ that it poses
the question of whether they are distinct algorithms. The main objective of this
thesis is to investigate this closer. In the methods section, the two algorithms
will be discussed theoretically, as well as tested practically.

2. Definitions

2.1. Preliminaries

A weighted tree T (V,E) is an acyclic graph with a mapping WT : E → R
that assigns every edge in E a weight. A vertex v ∈ V in a tree is called a leaf
if it is only adjacent to one other vertex. Two leaves u, v are called neighbors
(also called siblings) if they share an adjacent vertex. A weighted tree T is a
phylogenetic tree if all edges are strictly positive-weighted.

A distance matrix D is a symmetric matrix with 0-valued diagonal elements.
If there exists a phylogenetic tree T (V,E) such that Dij =

∑
e∈P WT (e) for the

unique path P between any two leaves i, j, then D is called additive and is said
to be realized by T .

A tree T ∗(V,E) is called starlike if there are |V | − 1 leaves and a single root
connecting all leaves. Although phylogenetic trees are unrooted, NJ algorithms
consider an implicit root r of an initially starlike tree until the reconstruction
is complete. In the context of NJ algorithms, vertices are referred to as taxa.

2.2. Neighbor Joining

The goal of Neighbor Joining [5] and its derivative algorithms is as follows:
starting with a starlike tree T ∗, reconstruct a tree T using its distance function
DT . This is done by iteratively identifying and joining pairs of taxa that are
the most likely to be neighbors. Every iteration can be divided into two parts:

2

an optimal join search and an updating step.
NJ algorithms use a measure called the NJ sum (also called NJ function

[5, 3] or join criterion [2]):

Sij := (n− 2)Dij −Ri −Rj

for a pair of taxa i, j, where n is the number of taxa in the current iteration and
Ri is the sum of the ith row in the distance matrix D [6, 3, 2]. Intuitively, it is
a measure of the loss from joining i, j as neighbors. In the optimal join search,
NJ algorithms use a greedy approach where the pair x, y with the least loss are
considered the most likely neighbors. After this pair is identified, the two taxa
are joined as neighbors by creating a new vertex z that connects to x, y and
the implicit root r. Consequently, the vertices x, y are discontinued as taxa as
z replaces them.

In the updating step, D is updated with inferred distances from z to every
other taxon:

D′
ij =

Dij z /∈ {i, j}
Dxj+Dyj−Dxy

2 z = i ̸= j
Dxi+Dyi−Dxy

2 z = j ̸= i

,

where D′ is the matrix that will be used in the following iteration, and what D
becomes after being updated [6, 2].

This process is repeated until 3 taxa remain, at which point the reconstruc-
tion is complete. The edge weights for the remaining three edges incident to r
can be computed by solving a system of equations:1 1 0

1 0 1
0 1 1

WT (r, a)
WT (r, b)
WT (r, c)

 =

Dab

Dac

Dbc

 ,

where a, b, c are the remaining three taxa.
To reduce runtime, R can be initialized as a set of row sums at the start,

and is updated alongside D:

R′
i =

∑
j

D′
ij = Ri −Dxi −Dyi +Dzi,

after joining x, y as z [6]. This allows for NJ sums to be computed in constant
time.

Neighbor Joining runs in O(N3) time, where N is the initial number of taxa.
It performs N−3 iterations to reduce the number of taxa to 3, and within those
it iterates over an O(n2) number of taxon pairs during the optimal join search,
with n being the number of taxa in a given iteration. Updating D and R in the
updating step is done in O(n) time, while computing Sij is done in O(1) time.

3

2.3. Fast Neighbor Joining

Fast Neighbor Joining [3] introduces the concept of visibility, which it uses
to reduce the number of pairs it needs to iterate over.

A pair i, j is visible from i with respect to D if j = argminjSij . A pair i, j
is visible with respect to D if it is visible from either i or j. We will use VD(i)
to denote a pair visible from i with respect to D, and SVD(i) to denote the NJ
sum of said pair.

At the start, FNJ initializes a visible set V that contains a pair VD(i) for
every taxa i. In the optimal join search, it then iterates over V instead of every
pair. Like with D, V also needs to be updated in the updating step. This is
done after updating D,R:

V ′ = (V\(i, j) : {i, j} ∩ {x, y} ≠ ∅) ∪ {VD′(z)}.
When a pair x, y is joined, FNJ drops any other pairs involving x or y from

V, and in some cases this will lead to the visible pairs for some taxa not being
present. FNJ should always detect an optimal join regardless: for a pair i, x
dropped from V after joining x, y as z, in the following iteration we will have
that VD(i) = (i, z) given that D is additive. The new taxon z would otherwise
appear to be further away from i than x, meaning that the edge between x and
z would not be strictly positive-weighted. In fact, the same reasoning may be
applied for certain cases when D is not additive:

Given a distance matrix D, if there exists an additive distance matrix DT

realized by a phylogenetic tree T such that |D − DT |∞ < µ
2 , where µ is the

minimum edge weight of T , then D is called nearly additive with respect to DT

[1, 3]. For such a distance matrix, if i, z are neighbors in the tree realized by
the additive DT , then VD(i) = (i, z) according to Lemma 2 in Elias, Lagergren
[3].

The rest of the procedure is identical to NJ.
The visible set V contains an O(n) number of elements in every iteration,

allowing an optimal join search in O(n) time, and can be updated in O(n) time
as well. This gives FNJ an O(N2) runtime overall.

2.4. Dynamic Neighbor Joining

Before describing Dynamic Neighbor Joining, we define pseudo-visibility:
A pair i, j is pseudo-visible from i with respect to D if j = argminj<iSij .

The pseudo-visible pair of i will be denoted ṼD(i).
Dynamic Neighbor Joining [2] bases itself on the following lemma:
Lemma 1, Clausen. Given a distance matrix D, row sums R, NJ sums S,

and their updated variants D′, R′, and S′ used in the following iteration:

SVD(i) = (n− 2)Dij −Ri −Rj ≤ (n− 3)D′
ik −R′

i −R′
k = S′

ik,

for VD(i) = (i, j), where k /∈ {i, z}. In other words, the NJ sum SVD(i) will
be less than or equal to the NJ sum of any pair involving the taxon i in the

4

following iteration, provided the newly formed taxon z does not make a better
join when paired with i [2].

□

Dynamic Neighbor Joining uses a set Q of estimated minimal NJ sums per
taxon. At the start, Q is initialized with Qi = SVD(i) for every taxon i. The
optimal join search is more involved and proceeds as follows:

For every taxon i, check whether M > Qi, where M is the NJ sum of
the best join encountered since the beginning of the search. If it is, search all
pairs i, j where j < i and assign Qi = SṼD(i); otherwise proceed to the next
taxon without searching through pairs. Note that only pairs i, j for which j
is lower-indexed than i are searched: this is because DNJ searches through Q
back-to-front, so any pair i, j for which j > i will already have been covered
since examining j.

In short, the algorithm only iterates over pairs i, j in the optimal join search
where j < i and ṼD(i) has a possibility, as indicated by Qi, of being a better
join than the so far encountered best join.

After joining x, y as z and updating D,R at the end of an iteration, Q is
updated as well:

Q′
i =

min{Siz, Qi} i > z

mini<z Siz i = z

Qi i < z

.

However, if z is assigned the last position in the list of taxa (as was done in
this implementation), this update can be omitted for all i ̸= z as all other taxa
will be lower-indexed. The intuition for only updating Qi for which i > z is
the same as in the optimal join search, namely that Qz will cover all pairs i, z
where i < z.

Unlike D,R and V, Q is for the most part only updated in the optimal join
search. If an update is applied to Q for i ̸= z in the updating step, it is only
done to satisfy the conditions of lemma 1, and does not check any pairs other
than i, z. The lemma is relevant for this purpose, as any Qi for which M ≤ Qi

will not be examined closer and thus not updated. Regardless, DNJ performs
the optimal join search correctly: the lemma shows that a Qi that was not
updated in the previous iteration will not be greater than any NJ sum involving
that taxon in the current iteration, so if M ≤ Qi, then M ≤ SVD(i).

Aside from the use of Q, the rest of the procedure is identical to NJ.
The set Q allows an optimal join search in O(dn) time, where d is the number

of taxa that are examined closer during an optimal join search. The set Q in the
implementation used here is updated in O(1) time at the end of an iteration,
giving the algorithm an O(dN2) runtime overall. It holds that 1 ≤ d < n for
all d, but their relation outside of that depends on how the taxa are ordered,
making it difficult to determine the runtime purely in terms of N .

5

3. Methods

3.1. Discussion

Readers may have noticed that the concept of visible pairs is used in both
FNJ and DNJ. While FNJ initializes a set of visible pairs V for all taxa, DNJ
initializes a set of NJ sums given by the same visible pairs. Conversely, FNJ finds
the NJ sum of elements in V while DNJ finds visible pairs representing elements
in Q during the optimal join search. Effectively, both algorithms identify the
optimal join by finding visible pairs and NJ sums, albeit in opposite order.

As shown by Atteson [1, 3], the phylogenetic tree that induces an additive or
nearly additive distance matrix is unique, and NJ is able to correctly determine
the topology of the unique phylogenetic tree. Given that FNJ and DNJ are
both able to successfully identify the optimal join given an additive or nearly
additive distance matrix, these algorithms will also determine the correct, and
more importantly, same topology.

The time complexity of FNJ and DNJ may be the greatest difference. FNJ
has a consistent O(N2) runtime, while DNJ runs in O(dN2). The unpredictable
nature of d makes the two algorithms difficult to compare theoretically in terms
of time complexity, and as such further discussion is left to the results section.

3.2. Simulation

FNJ and DNJ were implemented and tested in Python 3.11. Two tests were
run to more closely determine how the runtimes of the algorithms were related.
Specifically, d needed to be practically examined to determine how it related to
N .

Runtimes were measured by performing the algorithms on randomly gen-
erated additive distance matrices with increasing numbers of taxa. To ensure
additive distance matrices, random phylogenetic trees were constructed starting
with starlike trees with given numbers of taxa. Taxa were joined as neighbors
at random, and edges were assigned random weights ranging from 2 to 12. The
distance matrices were then derived from the generated phylogenetic trees.

For every number of taxa, the same distance matrix was used for both FNJ
and DNJ. The time it took to generate the distance matrix was not measured,
only the time it took for FNJ and DNJ to reconstruct the tree.

The first test was run with N =
⌊
250 · 1.16(k−1)

⌋
taxa in step k, for 1 ≤ k ≤

27, while the second test had N = 500k taxa in step k, for 1 ≤ k ≤ 24.

4. Results

Runtime results are shown directly in fig. 1, and also per N2 and N2
√
N ,

for N taxa in fig. 2 and fig. 3.
Early runtime tests on FNJ and DNJ with smaller numbers of taxa showed

results that pointed towards d scaling logarithmically. The first test was con-

6

Fig. 1: result of the first test (left) and the second test (right).

Fig. 2: result of the first test per N2 taxa (left) and N2
√
N taxa (right).

figured to closer investigate this hypothesis. Ultimately this initial hypothesis
was discarded, as the results as seen in fig. 2 and fig. 3 instead suggest that
the runtime per N2

√
N taxa varies within a fixed interval for large N . This

suggests that both implementations run in O(N2
√
N), and that d would be an

O(
√
N) variable in practice.

These results conflict with the ones presented by Clausen [2]. In Clausen’s
study, FNJ is shown to be consistently slower than DNJ, whereas the opposite
is shown here, and furthermore have a runtime almost identical to NJ, which
would suggest an O(N3) time complexity. In addition, Clausen states in his
results that d achieves an O(1) scaling.

Clausen implemented DNJ in C and compared it with FNJ through Fast-
phylo, where FNJ is implemented in C++ , as well as a C implementation of NJ,
among other NJ-based algorithms [4, 2]. In this study, both FNJ and DNJ were
implemented in Python. The inconsistency between programming languages in
Clausen’s study may be a reason why FNJ is shown to underperform there,
while it comes closer to expected results in this study.

Additionally, Clausen’s implementation of DNJ is designed to be more op-

7

Fig. 3: result of the second test per N2 taxa (left) and N2
√
N taxa (right).

timized in terms of memory usage. This may have had an impact on runtime
also.

Lastly, there is a possibility that d is actually O(1) and that DNJ’s O(N2
√
N)

runtime is caused entirely by other factors, as test results on FNJ unexpectedly
show an O(N2

√
N) runtime as well.

In reality, there is no formal definition for equivalence between algorithms.
Although it has been shown that FNJ and DNJ build on the same concept
and achieve the same runtime, a clear answer to whether they are the same
algorithm cannot be given in this thesis.

References
[1] Kevin Atteson. The performance of neighbor-joining methods of phyloge-

netic reconstruction. Algorithmica, 25:251–278, 1999.

[2] Philip TLC Clausen. Scaling neighbor joining to one million taxa with
dynamic and heuristic neighbor joining. Bioinformatics, 39(1):btac774, 2023.

[3] Isaac Elias and Jens Lagergren. Fast neighbor joining. Theoretical Computer
Science, 410(21-23):1993–2000, 2009.

[4] Mehmood Alam Khan, Isaac Elias, Erik Sjölund, Kristina Nylander, Ro-
man Valls Guimera, Richard Schobesberger, Peter Schmitzberger, Jens
Lagergren, and Lars Arvestad. Fastphylo: Fast tools for phylogenetics. BMC
Bioinformatics, 14(1):1–9, 2013.

[5] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Molecular Biology and Evolu-
tion, 4(4):406–425, 1987.

[6] James A Studier and Karl J Keppler. A note on the neighbor-joining al-
gorithm of saitou and nei. Molecular Biology and Evolution, 5(6):729–731,
1988.

8

