Investigating the Free-Surface
Stabilization Algorithm in Glacier
Simulation: Addressing Minimum
Thickness Constraints

Undersoka Free-Surface Stabilization-algoritmen i Glacidr-Simulering: Adressera
Minsta Tjockleksrestriktioner

Oskar Hogman

Handledare: Josefin Ahlkrona, Clara Henry

Examinator: Anders Moértberg
Inlamningsdatum: 2024-05-20

Abstract

Global warming is causing melting of glaciers and ice sheets globally, contribut-
ing to rising sea levels. In order to estimate future rise of sea levels, glaciers
and ice sheets are simulated using numerical methods. Glaciers and ice sheets
are described using the Stokes equations and the free-surface equation. These
equations are solved approximately computationally using the finite element
method. However, solving the Stokes equations is prone to numerical insta-
bility, demanding a small time-step. In this thesis, a free-surface stabilization
algorithm (FSSA) is investigated with regard to a minimum thickness condition,
which needs to be imposed for numerical stability. We show that time-stepping
with FSSA is stable for a time-step where the same method without the FSSA
suffer from instability. We also show that initially it gives the wrong velocities at
points where the minimum thickness condition is active. The stability granted
by the free-surface stabilization algorithm is in line with previous research. The
differing velocities at points for the minimum thickness condition confirms what
was expected, as the free-surface stabilization algorithm doesn’t take the min-
imum thickness condition into account. These results exhibits the free-surface
stabilization algorithm as a possibly viable method to increase the speed of sim-
ulations, as it allows for larger time-steps. The FSSA does come with a cost of
less accuracy at the limit of a glacier or ice sheet, where the minimum thickness
condition is applied. The free-surface stabilization algorithm shows promise in
improving on numerical methods, but the issue with the minimum thickness
condition needs to be addressed.

Sammanfattning

Den globala uppviarmningen leder till att glacidrer och inlandsisar smaélter glob-
alt, vilket bidrar till stigande havsnivaer. For att kunna uppskatta framtida
havsnivahéjningar simuleras glaciirer och istdcken med numeriska metoder.
Glaciérer och inlandsisar beskrivs med hjélp av Stokes ekvationer och ekvatio-
nen for fria ytor. Dessa ekvationer 10ses approximativt beriakningsmaéssigt med
hjélp av finita elementmetoden. Loésningen av Stokes ekvationer &r dock kénslig
for numerisk instabilitet och kraver ett litet tidssteg. I denna avhandling under-
sOks free-surface stabilization algorithm (FSSA), en stabiliseringsalgoritm, med
avseende pa ett villkor om minsta tjocklek, som maste inféras for numerisk sta-
bilitet. Vi visar att tidsstegning med FSSA &r stabil for ett tidssteg dar samma
metod utan FSSA drabbas av instabilitet. Vi visar ocksa att den initialt ger fel
hastigheter i punkter dar villkoret for minsta tjocklek ar aktivt. Den stabilitet
som stabiliseringsalgoritmen med fri yta ger &r i linje med tidigare forskning.
De olika hastigheterna i punkter for villkoret om minsta tjocklek bekriftar det
som forvintades, eftersom stabiliseringsalgoritmen med fri yta inte tar hénsyn
till villkoret om minsta tjocklek. Detta visar att algoritmen for stabilisering
av fria ytor dr en mojlig metod foér att 6ka simuleringarnas hastighet, eftersom
den mojliggor storre tidssteg. FSSA medfor dock en kostnad i form av mindre
noggrannhet vid grénsen for en glacidr eller ett istécke, dar villkoret om min-
sta tjocklek tillimpas. FSSA &ar lovande nér det géller att forbattra numeriska
metoder, men problemet med villkoret for minsta tjocklek méaste 16sas.

Acknowledgements

First and foremost a huge thank you to my supervisor Clara Henry, for tirelessly
week after week helping, assisting and guiding me with this thesis. This thesis
would not be what it is without your guidance. Thank you also to Josefin
Ahlkrona, for introducing me and awakening my interest to this topic, and
guiding me along the way of writing this thesis. A thank you to André Lofgren
as well, for helping me get started with Elemer/Ice as well as allotting time to
discuss and give insightful comments of the results.

I would also like to give thanks to my fellow co-workers and students, whom
have given good comments and helped me along the way. None mentioned, none
forgotten.

Lastly I'd like to thank Lars Arvestad, whose advice always have been and
continue to be helpful during my journey as a student.

Contents

1 Introduction

2 Preliminaries

2.1 Basic Concepts for Numerical Methods
2.1.1 The Frobenius Inner Product
2.1.2 Green’s Identity
2.1.3 Spaces . . .o . e
2.1.4 Euler Methods
2.1.5 Stability

2.2 Solving Partial Differential Equations with The Finite Element
Method
2.2.1 Partial Differential Equations
2.2.2 The Finite Element Method
2.2.3 Newton’s Method

2.3 Governing Equations L o 0oL
2.3.1 The Stokes Equations
232 Glen’sFlow Law
2.3.3 The Free-Surface Equations
2.3.4 Boundary Conditions

3 The Numerical Methods for Ice-Flow Modelling

3.1 Discretization of The Stokes Equations

3.2 Discretization of The Free-Surface Equation

3.3 The Free-Surface Stabilization Algorithm (FSSA)

3.4 Minimum thickness condition

3.5 Error estimation o oL
3.5.1 Error Calculation
3.5.2 Velocity Magnitude

3.6 Numerical experiments
3.6.1 Perlin Glacier oL
362 Mesh.
3.6.3 Solution Algorithm of Elmer/Ice for the Explicit Euler

Method
3.6.4 Experiment 1: Reference Solution
3.6.5 Experiment 2: Larger Time-Step
3.6.6 Experiment 3: FSSA Implementation
3.6.7 Experiment 4: Comparison with smaller Time-Step
4 Results

4.1 Experiment 1: Reference Solution

4.2 Experiment 2: Larger Time-Step

4.3 Experiment 3: FSSA Implementation

4.4 FExperiment 4: Comparison with smaller Time-Step

22
22
24
24
26
27
27
27
27
28
29

29
29
29
30
30

5 Discussion

5.1
5.2
5.3
5.4

Analysisof Results
Importance of Simulating Glaciers
Further Development of Numeric Methods
Outlook

6 Conclusion

Appendices

A Extra Graphs

Al
A2
A3
A4
Ab
A6

Graphs on Experiment 1 0L
Graphs on Experiment 2
Graphs on Experiment 3
Graphs comparing Experiment 1 and Experiment 2
Graph comparing the outline of Experiment 1,2 and 3
Graphs for Experiment 4. L oL

39
39
40
40
41

43

44

1 Introduction

The Earth’s glaciers and ice sheets are diminishing in size, contributing to rising
sea levels. Over the next decades, mass loss is certain for the Greenland Ice Sheet
and likely for the Antarctic Ice Sheet even if the global temperature stabilizes
[1]. In order to prepare for rising sea levels, we need to know by how much sea
levels are expected to rise. Thus, we need to accurately predict changes in glacier
and ice sheet mass in the future, accounting for different scenarios. In order to
make predictions, Ice sheets and glaciers are described as highly viscous, non-
Newtonian fluids and are modelled using partial differential equations, solved
using numerical methods. The non-Newtonian nature of ice makes solving its
flow computationally expensive and so the continuous development of numerical
methods to correctly and efficiently simulate the change of ice sheet and glacier
mass in the future is crucial.

In a previous study [2] the free-surface stabilization algorithm (FSSA) was
implemented to improve computational efficiency when simulating ice sheets
and glaciers. The simulations of ice sheet and glacier melting is governed by
two set of equations; (1) the Stokes equations and (2) the free surface equa-
tion. These are solved discretely by using the finite element method [3], [4].
Solving these systems of partial differential equations approximately previously
demanded a strict time-step constraint to ensure stability, but by using FSSA
the authors were able to increase time-steps by up to thirty times with the same
accuracy as previous methods and without causing instability. The FSSA does
this by approximating the updated surface in each time-step for solving the
Stokes equations. The FSSA method used in the article thus shows promise in
improving on current ice sheet solvers.

A retreating glacier needs a minimum ice thickness condition, i.e. a lower
bound for thickness of the ice, as the numerical method used to model the glacier
can not produce a solution with zero thickness. In this thesis, we explore the
consequences of the minimum thickness condition when applying FSSA. The
equations cannot be solved with a zero or negative thickness, so a minimum
thickness constraint must be imposed. The FSSA, however, does not take this
minimum thickness constraint into consideration when approximating the new
surface in the Stokes equations. This causes an issue with calculating the ve-
locities of the moving ice, potentially resulting in a difference of the surface
evolution of a glacier under simulations using the FSSA. In order to investigate
if this is the case, a simulation with the FSSA implemented is compared with
two simulations without FSSA: a reference solution using a small time-step and
a simulation using the same time-step as the simulations with FSSA. The com-
parison is made in surface evolution and the velocities of the ice. A comparison
of the development of the error for each time-step is also made, particularly
in the vincinitiy of the minimum ice thickness condition. The glacier used in
this thesis is a two-dimensional synthetic glacier with a randomized bedrock
topography, created using Perlin noise [5], resulting in a shape that replicates a
real-world glacier.

The thesis is structured as follows. In Chapter 2, we introduce the termi-
nology and methods used in this thesis, as well as the governing equations of a
glacier. In Chapter 3, The numerical methods for ice-flow modelling, the ice-
flow equations are solved. Furthermore, the implementation of the FSSA and
the algorithm for the minimum thickness condition are explained. The numeri-

cal experiments to be carried out are also introduced in Chapter 3. The results
of the experiments are presented in Chapter 4. It is followed by a discussion of
the results in Chapter 5, and the thesis is concluded in Chapter 6.

2 Preliminaries

This chapter starts with some basic concepts for numerical methods in Sec-
tion 2.1 The chapter continues with a short introduction to partial differential
equations, the finite element method and Newton’s method in regard to its rele-
vance to ice sheet modeling in Section 2.2. The governing equations of ice sheet
modeling are introduced in Section 2.3.

2.1 Basic Concepts for Numerical Methods

To start, some initial definitions and theorems which will be needed later are de-
fined. Both the Frobenius Inner Product, Green’s idendity and function spaces
are needed later to process the equations used in this thesis. Some basic knowl-
edge of Euler methods and stability in numerical methods is also essential.

2.1.1 The Frobenius Inner Product

Definition 2.1. Let A, B be n X n matrices. The Frobenius inner product,

denoted :, is defined as
i=0 j=0

where i is the row and j the column of the matrix.

2.1.2 Green’s Identity

Theorem 2.2. Let u be a vector field and v a scalar field over a domain €.
Then

/Q_(A.u)udx:/Qv-u-Vvdx—/m(u-ﬁ)vds, (2.2)

where fi is the unit normal pointing outward from the boundary, f 90 ds 1s the
curve integral on the boundary, and V and A are the first order and second order
divergences, respectively, introduced in Definitions 2.14 and 2.15. A derivation
of the theorem can be found in [6].

2.1.3 Spaces

Next, Hilbert function spaces and Sobolev function spaces are introduced. For
more information on function spaces, one can read [6], Chapter 7.

Definition 2.3. A Hilbert function space is defined as
L*Q)={v:Q = R:[|v|[2(Q) < oc}. (2.3)

Here, || - ||z2(2) refers to the L2-norm. Thus, this is the function space
of all functions with a bounded L2-norm on the space 2. Conventionally, the
L?-norm is used since among its properties both the triangle inequality as well
as the Cauchy-Schwartz inequality holds. These are necessary inequalities to
calculate error margin for the approximations used in numerical methods.

The Hilbert function space is not enough for derivatives to make sense as
derivates are not included in the definition. Thus, Sobolev function spaces are
also introduced.

Definition 2.4. A Sobolev function space is defined as
HY Q) = {v e L2(Q) : [[v]]22(Q) + [[Vo][2 () < 00} (2.4)

This function space refers to all functions with a bounded gradient in L2-
norm as well.

Onward, using the terms *“Hilbert space” or “Sobolev space” will refer to these
definitions.

2.1.4 Euler Methods

Definitions of the forward Euler and the backward Euler methods will be in-
troduced here. The forward Euler method is also referred to as the explicit
Euler method, and in the same way the backward Euler method is also called
the implicit Euler method. These are used to approximately solve differential
equations (see 2.2.1). In this thesis, Euler methods are used for time-stepping
as well as deriving the free-surface stabilization algorithm.

Definition 2.5. The forward Fuler method, for a function y at a certain
time-step k is defined as [7]

Yk+1 = Y + Atf (tr, Yn)- (2.5)

The value At is the size of the time-step used and f(¢,y(t)) = y'(t). This is
an initial value problem, i.e. the values for ¢y and y(ty) are needed to take the
first step.

Definition 2.6. The backward Fuler method, for a function y at a certain
time-step k is defined as [7]

Yet1 = Yk + Af(Trt1, Yt1)- (2.6)

The backward Euler method is a function of yx41 on both sides, so an alge-
braic equation for yj11 needs to be solved.

2.1.5 Stability

In the last section the Euler methods were defined. These are algorithms to
solve differential equations, and as they approximate a solution for each time-
step, there’ll be an error compared to the true solution. One might ask the
question: does the error grow with each step taken? This introduces the concept
of stability. To explain this concept, two definitions are borrowed from [8]:

Definition 2.7. The region of absolute stability R for a numerical method for
solving a differential equation is defined by

Re={p: ()] <1,vA(p)} (2.7)

where \;(1t) = ah, for the time-step size h, are the roots of the characteristic
equation when the method is applied to the test equation 3y’ = ay,a € C.

10

Here, the characteristic equation refers to the one for a differential equation.
Taking the forward Euler method as example:

Yn+1 = Yn + hf(tna yn) = Yn + hay, = (1 + ha)yn, (28)

the characteristic equation becomes
A=1+ha)=(1+p). (2.9)

Definition 2.8. A method is called A-stable if its region of absolute stability
R contains the left half of the complex plane {z € C : Re(z) < 0}.

A-stability of a method is desirable, because if a true solution decays to zero
so does the approximative numerical solution. Rather than A-stable, the term
stable will be used onward. A method is unstable, affected by instability, if it
is not stable.

Returning to the Euler methods, what does this mean practically? If the nu-
merical method does not fulfill the requirement for the region of absolute stabil-
ity, the approximation will grow exponentially with each time-step taken. Thus,
eventually the approximation will diverge from the true solution. A method may
be close to one, but as long as its absolute value according to Definition 2.7 is
below one, it will closely approximate the true solution. The error will still
grow with each time-step even if the method is stable, due to a small error in
the approximation in each time-step, but not as much as with instability.

2.2 Solving Partial Differential Equations with The Finite
Element Method

In this section, partial differential equations are defined in Section 2.2.1. The
finite element method is is explained in Section 2.2.2. Solving nonlinear partial
differential equations need some iterative method to reach convergence, intro-
duced in Section 2.2.3.

2.2.1 Partial Differential Equations

In this section, partial differential equations are introduced. Some important
concepts concerning partial differential equations are also defined. An introduc-
tion to differential equations can be found in [9], and for more information on
partial differential equations, please see [10].

Definition 2.9. A differential equation is an equation consisting of the deriva-
tive of an unknown function, and possibly the function itself.

Ezxample 1. Let
y+y=rf (2.10)

be an equation for some arbitrary function f, where y is a function and ¥’ its
derivative. Then Equation 2.10 is a differential equation.

Definition 2.10. A partial differential equation is an equation in which the
function depends on several variables.

Ezample 2. In Equation 2.10, let f = f(z,y) and y = g(x,y). Then this
equation is a partial differential equation.

11

Partial differential equations are used to describe various different natural
phenomena. These are usually solved approximately by using numerical meth-
ods, as they often can not be solved analytically. Partial differential equations
are classified depending on their properties.

Definition 2.11. The dimension of a partial differential equation is equal to
the space variables of the function.

Definition 2.12. The order of a partial differential equation is equal to the
highest order of its derivatives.

Example 3. The differential equation introduced in Example 1 with the prop-
erties given in Example 2 has a dimension of two, since there are two space
variables: x and y. It is a first order partial differential equation since the
highest derivative in the equation is the first derivative.

Definition 2.13. The partial derivative of a function f(z,y) is written either
fo or fy if differentiating with respect to = or y. The second order partial
derivative is written frz, fzy, fyz OF fyy-

Definition 2.14. The symbol V- denotes the divergence, i.e. the sum of all
partial derivatives of a function.

Definition 2.15. The symbol A denotes the Laplacian (the second order
divergence), i.e. the sum of all second order partial derivatives of each individual
variable of a function.

Ezample 4. Let f(x,y, z) be a function. Then

Af_v'f:(fzx+fyy+fzz)_(fx+fy+f2) (2'11)

according to Definitions 2.14 and 2.15.

Definition 2.16. A boundary condition of a partial differential equation, is a
constraint of how the partial differential equation behaves at the boundary of
the domain the partial differential equation is defined on.

Definition 2.17. A Dirichlet boundary condition is one, where a partial dif-
ferential equation’s behaviour on the boundary of a domain can be described
by a function g.

Example 5. Let u be a function over the domain 2, and 92 be the boundary of
the domain. Let

—Au=f in Q, (2.12)
ujpo =0 on 012, (2.13)
then Equation 2.12 is partial differential equation, whereas Equation 2.13 de-
scribes a Dirichlet boundary condition. The partial differential equation defined

in 5 is called the Poisson’s equation. Poisson’s equation arises in various types
of physical situations.

12

The notation of 99 to specify the boundary of a domain will be used
henceforth unless otherwise stated. The equation shown in Example 5 is a
specific kind of partial differential equation, given a specific name.

A partial differential equation can be classified depending on its algebraic
properties. Differentiation will be done into two categories.

Definition 2.18. A linear partial differential equation is linear in the unknown
functions.

Definition 2.19. A nonlinear partial differential equation is nonlinear in the
unknown functions.

Nonlinear partial differential equations can be further subdivided into cat-
egories depending on which order of derivatives are nonlinear, but the stated
definitions are sufficient for this thesis.

2.2.2 The Finite Element Method

Partial differential equations can be solved using the finite element method.
Here, the time-independent case of a domain in two dimensions of the finite
element method is explained. For a more thorough guide to the finite element
method, see [6].

Definition 2.20. A mesh of a domain is a mapping or a grid of the domain.

Definition 2.21. A structured mesh has regular connectivity. An unstructured
mesh instead has irregular connectivity.

See Figure 2.1 for examples of a structured and an unstructured mesh.

Structured Unstructured
Mesh Mesh

Figure 2.1: Example of a structured mesh and an unstructured mesh.

Definition 2.22. A finite element is a specified geometric shape making up
the mesh.

13

A structured mesh can be made out of quadrilaterals while an unstructured
mesh can be made out of triangles as finite elements in the plane. Structured
meshes have space efficiency and can thus have higher resolutions than unstruc-
tured meshes. Unstructured meshes have the advantage of being able to model
much more complex domains, as the triangles can be of any size or shape as
long as all shapes are triangles (see Figure 2.2).

\/ |-‘ AL\
s
R R
e)
Z 2
| penbi ™~
Ok @y ,
SRR
| o i RYAY B
|- o1
Sk ey >
Ay, o AR AT 1
D
f— A’ F ",_ \
\ // L7 | 7
A AVAVAVAVAYS
/ / |

Figure 2.2: An unstructured mesh where the boundary is in the shape of a
dolphin. The figure is taken from [11].

Definition 2.23. Nodes are the corners of a finite element and an edge is made
up of the sides of a finite element. The nodes are named Nj, for j =1,2,3,.., M
where M is the number of nodes.

Nodes can only touch other corners of other finite elements, never an edge.
See Figure 2.3 of a configuration of a small mesh of eight finite elements in the
form of triangles, nine nodes and sixteen edges.

Mode
My Mg Mg
Ed
Ks Ky /ge
Kg Kg
Ny phe
Ky K,
Kz K,
My My

Figure 2.3: A small mesh.

14

A definition of continuous piecewise polynomial spaces is needed next.

Definition 2.24. Let K be a finite element. A continuous piecewise polynomial
space is can be defined by

P(K)={v:v(z) =co+ 121 + coxa,2; € K for i € {1,2},co,c1,c2 € R}
(2.14)

Here, a linear continuous piecewise polynomial space is used, but higher order
polynomials are possible. The nodal values are used as degrees of freedom, so
the natural basis {1, x1,z2} is not suitable. Instead, a nodal basis is used.

Definition 2.25. The nodal basis {v1,72,73} is defined by

AR S AR TP (2.15)
7] 1) — 0,1fZ7£]7’L,']_) Sy I .

With this definition of the nodal basis, any function v € P(K) can be ex-
pressed as
v =017 + a2y + 373 (2.16)

where a; = v(N;). The basis functions ~; are called hat functions, after their
similarity to pointy hats when drawn on a mesh.

Once a mesh of the domain has been created, the partial differential equation
being solved needs to be changed into their variational form. This is the dis-
cretization of the partial differential function. To demonstrate the discretization
method, Poisson’s equation from Example 5 will be used, i.e.

—Au=f in €, (2.17)
ujpo =0 on 01, (2.18)

The first step of this is to introduce a test function v € Vj, where

Vi={v:|vllr2e) + [[VVllr2(0) < oo}, (2.19)
Vo={veV :uvsq =0} (2.20)

i.e. a Sobolev space with the boundary condition that the test function v is zero
at the boundary. This test function is multiplied with Equation 2.17 to aquire

—Auv = fo. (2.21)

Integrating over the domain €2 and, replacing the second order divergence, we
use Green'’s identity to get

/ Vu - Vudr — / n - Vuvds = / fodz (2.22)
Q a0 Q

If the integral over the boundary is solved it becomes

—/ n - Vuvds = — [n - uv]yg , (2.23)
a0

15

which becomes zero as the test function v is zero at the boundary. This concludes
to the following variational formula: find u € Vj such that

/ Vu - Vudr = / fuodz (2.24)
Q Q
for all v € V.

Now, let K be a mesh of the domain Q, and V}, the space of continuous
piecewise linear functions on K. The subspace V}, o C V}, is defined as

Vh,O = {7) eV : U|aQ = 0} (2.25)

to adhere to the boundary conditions of the partial differential equation. To
obtain the finite element method approximation, Vj in Equation 2.24 is replaced
with V}, o: find up, € V3, 0 such that

/ Vuy, - Vopde = / fopdx (2.26)
Q Q
for all vy, € Vj, 0.

In order to compute the finite element approximation uy, a linear system of
equations is needed to be derived. First, a base is defined:

Definition 2.26. Define {¢}""; as the basis of hat functions for V}, o associated

with the n; interior nodes of the mesh.

Remember, the functions in V}, o are zero on the boundary, so no hat func-
tions are allowed there. All v, € V}, o are vectors in the basis of {¢};",. Thus,
they equivalently can be replaced with the basis vectors instead. Also, since
up, € Vp 0, it is also a linear combination of the basis vectors, and can thus be
written as

Uup = ijg@j. (227)
j=1

Using these two facts, and breaking out the sum of &; from Equation 2.26,
the equation

ij/ Ve Vdr = / foide, i=1,2,....n; (2.28)
= e Q

is obtained.
Now, two matrices are defined.

Definition 2.27. The n; x n; system matriz of the finite element method is
defined as

Aij = / V@j . ngidJ?, i,j = 1,2, ceey TG (229)
Q

Definition 2.28. The n; x 1 load vector of the finite element method is defined
as

a; :/fgoidas, 1=1,2,...,n;. (2.30)
Q

16

With these, Equation 2.28 can be written as

ZAljgj = Qi i = 1,2,-.-,7747;, (231)

J=1

or, as a matrix equation,
A€ = a. (2.32)

The vector £ is called the solution vector. At this point, the discretization is
complete. By solving this matrix equation, the unknowns &; are obtained, and
thus uy,.

For a summation of the finite element method, see Algorithm 2.1 below:

Algorithm 2.1 The Finite Element Method
1. Make a mesh K of the domain €2 and define the continuous piecewise linear
functions space Vo hat function basis {¢;};7,.
2. Assemble the system matrix A and the load vector a as such

Aij = / Vj - Veidr, a;= / fpidz. (2.33)
Q Q
3. Solve the linear system
Ag =a. (2.34)
4. Set .
wn =3 &5 (2.35)
j=1

A couple of notes on this. Firstly, in this example, conveniently the Poisson’s
equation had the boundary condition set to zero (Equation 2.18). If this is
not the case, the method would still follow the exact same steps, except when
constructing the load vector a the boundary conditions for the partial differential
equation would need to be included.

Secondly, in this thesis the finite element method tool Elmer/Ice is used.
This is a finite element method solver based on Elmer (a finite element method
solver), customized to use for ice-flow modelling. The tool does a lot of the work
and computations for us, and it is really only necessary to find the variational
form of the partial differential equations and plug them in. For this reason, in
chapter 3, where the governing equations for ice sheet modelling are discretized,
the process is only explained until the variational form is obtained.

For a concise guide on how to use Elmer /Ice, see [17].

2.2.3 Newton’s Method

The finite element method described in Section 2.2.2 works well for linear par-
tial differential equations. However, for nonlinear partial differential equations
iterative methods need to be implemented to reach convergence for the nonlin-
ear terms. The simulations that are done in this thesis make use of Newton’s
method for nonlinear partial differential equations. To learn more about solving
nonlinear partial differential equations, read chapter 9 in [6].

17

Newton’s method can be applied on equations of the form
g(x) = 0, (2.36)

where g is assumed to be a scalar non-linear function of . To derive Newton’s
method, a solution Z is split into an initial guess % and a correction éz, so that

T =12"+ 6z (2.37)
Using Taylor expansion on g(z) around Z,
9(Z) = g(z°) + ¢'(2°)dz + O(52?) (2.38)

is acquired, where all extra terms of the Taylor expansion are included in O(dz?).
Ignoring the higher order terms in O(du?) and using g(Z) = 0, the approximation

0~ g(x°) + ¢'(2°)6z (2.39)

is attained. Solving for dz, the linear equation

5z = —9°) (2.40)

is thus acquired. By adding 6z to z°, a closer approximation to Z is expected.
Now, iterating this method with x° replaced by Z until dz is lower than a pre-
decided tolerance, gives a convergence towards .

As an example, Newton’s method for Poisson’s equation is derived. Assume
the variational form of the nonlinear Poisson’s equation:

/ a(uw)VuVude = [fodz,Vv e V. (2.41)
Q Q

The nonlinear term is a(u) as it makes u dependant on u itself, i.e. a(u) is a
function of u. The sought-after solution w is split into an initial guess ©° and a
correction du. Then u can be written as

u=u’ + du. (2.42)
A Taylor expansion of a(u® + du) gives
a(u® + 6u) = a(u®) + al, (u®)ou + O(5u?). (2.43)

Neglecting higher order terms O(du?), gives the equation

/ (a(u®) + a, (u®)6uVu®) Vode = [fuodz, Vv € V. (2.44)
Q Q

The equation is to be solved for du, so the other terms are moved to the right
hand side of the equation, giving

/a;(uo)éuVuOVvdac:/fudx—/a(uO)VuOVvdx,VUEV. (2.45)
Q Q Q

18

This equation is solved using the finite element method, with du as the solution
vector and the right hand side as the load vector.

This method is iteratively run until a small enough value, lower than a pre-
decided tolerance, is acquired for Ju.

Newton’s method is a popular method due to the fast convergence rate,
however it comes with a couple of weaknesses. Since Taylor expansions are used,
it requires an “adequate” initial guess of u° to converge at all, and computing ¢’
can be expensive. In cases where an initial guess needs to be acquired, a method
called Picard iteration can be used. This method is explained in chapter 9 of
[6]. In this thesis, Elmer/Ice only make use of Newton’s method.

2.3 Governing Equations

A glacier’s rate of change is governed by the Stokes equation and the glacier’s
surface evolution is governed by the free-surface equation.

2.3.1 The Stokes Equations

The movement of a glacier can be described as a highly viscous, non-Newtonian
fluid [12]. Fluids follow the laws of physics, i.e. conservation of momentum as
well as conservation of mass, and are governed by the Stokes equations:

V- (2u(Du)Du) — Vp = pgZz, x € (), (2.46)
V-u=0, x €, (2.47)

where Q € R%, d € {2,3} depending on the dimension. Here, Equation 2.46
represents conservation of momentum and equation 2.47 conservation of mass,
which is an incompressibility condition. The Stokes equation is a nonlinear
partial differential equation of two or three variables depending on the dimension
(see Section 2.2.1). The ice velocity is u and the pressure p at x in the domain
Q). The nonlinearity is because of the viscosity, u, which is dependent on the
velocity u (Section 2.3.2). The strain-rate tensor is Du = 2(Vu+ Vu®). The
parameters used are p = 917 kg m~? is ice density, and g = 9.8 m/s? is the
acceleration of gravity.
In order to shorten the writing of the Stokes equations, define

S(Du) = 2u(Du)Du (2.48)
and let
f=—pgz. (2.49)
This gives the following expression of the Stokes equations:
V-S(Du) — Vp = —f, x € Q, (2.50)
V-u=0, x € Q. (2.51)

2.3.2 Glen’s Flow Law

The Glen’s viscosity, u, depends on the temperature and velocity. It is governed
by Glen’s flow law, [13] and [14],

1—n

2n

p(u, T') = A(T') "= <;tr(Du2) + Du§> : (2.52)

19

The term Dug = 10710 yr=2 is a regularization term, added so that zero strain
rates do not cause infinite viscosity. The term n, in this case n = 3, is called
the power-law exponent. The value of A(T") is set to 100 MPa 2a~".

2.3.3 The Free-Surface Equations

To determine the upper surface position (z; = zs(x,y,t)) of a glacier at a time
t the free surface-equation [12] is used:

0z, s 025

0zs cu 2%
ot * Oz Y 0y

= ul + as. (2.53)

Since on a glacier it will snow and melt, a; describes the accumulation or ab-
lation of mass. From the Stokes equations 2.46 and 2.47 we get for the surface

the velocity field u® = (u3, u;, u3).

2.3.4 Boundary Conditions

atmosphere . F + /h(x,y,t)

Figure 2.4: An ice sheet with the boundaries 'y, Iy, I'y and I'g marked out.

For the glacier boundary 02 we specify non-overlapping boundary parts I,
T'w, I'y and I'g. Except for the surface I', the boundaries are stationary. This
means the change of the glacier completely depends on the evolution of the
surface. A mountain glacier is a smaller ice sheet.

See Figure 2.4 for a schematic of a general ice sheet, with the boundary
parts included. The ice-water boundary shown here is not necessary when mod-
elling glaciers. Note that the length of the ice sheet is displayed in orthogonal
directions x and y, and the height of the ice sheet is in the z-direction.

The following boundary conditions are considered for the different parts of
the boundary

o =0, x € [y, (2.54)
u-n=0, x € 0Q/T, (2.55)
t;-on=—F%u|™ tu-t, x €Ty, (2.56)

20

The tensor 0 = 2uDu — pl, where [is the identity matrix, is called the Cauchy
stress tensor, n is the unit normal pointing outward from the boundary and
{f:i}f:_ol are tangent vectors, spanning the plane defined by . The term S is
the drag coefficient and m is an exponent. Equation 2.54 shows a stress-free
condition on the glacier surface. This follows from the assumption that the
stresses asserted on the surface are negligible compared to internal stresses of
the glacier. Equation 2.55 describes the impenetrable condition of the glacier-
bedrock. It is set to zero because both accumulation and loss of ice at the
bedrock are negligible. Equation 2.56 states that the ice may slip along the
bedrock, called a Weertman-type sliding law. We put m = 1, so the relation is

linear.

21

3 The Numerical Methods for Ice-Flow Modelling

In this part, the use of numerical methods to solve the governing equations of ice-
flow modelling are explained, the Free-surface stabilization algorithm (FSSA) is
derived and the algorithm for the minimum thickness condition is introduced.
Then, the numerical experiments are introduced.

The hypothesis is that using the Free-surface stabilization algorithm (FSSA)
will give different velocities where the minimum thickness condition comes into
play, resulting in a different surface. This is because a minimum thickness
condition is used when solving the free-surface equation, but FSSA doesn’t take
this minimum thickness condition into account when approximating the domain
the velocities are calculated on.

3.1 Discretization of The Stokes Equations
From Section 2.3.1 we get:

V-S(Du)-Vp=—-f (3.1)
V-u=0 (3.2)

Let u = u(x) where x = (x,y). In order to apply the finite element method on
the Stokes equations, a discretization needs to be done. Firstly, two test spaces
are introduced:

V =A{v:[[vll20) + [Vol[L2(0) < o0, ulr, =0}, (3.3)

Q={q:lallr2@) < oo, /Q q(x)dx = 0}. (3.4)

Equation 3.1 is multiplied with —1 and the Stokes equations are multiplied with
test functions v € V and ¢ € @ such that

—V-S(Du) - v+Vp-v==£-v, (3.5)
V-ug=0. (3.6)

The equations are then integrated over the domain €2 and this yields
—/V-S(Du)-vdx—i—/Vp~vdx:/f~vdx, (3.7
Q Q Q

/ V - ugdx = 0. (3.8)
Q

For now 3.8 is ignored and 3.7 is dealt with onward. Green’s identity is applied
to both the first and second integral on the left hand side to acquire

/S(Du):Vvdx—/ﬁ~V-S(Du)-vds—/pV~vdx+/ﬁ-pvds:/fvdx.
Q r Q r Q

(3.9)
The integrals over the boundary are simplified on their own. We first collect
the terms under the same integral such that

_/Fﬁ-v-S(Du)voszr/F ﬁ-pvds:/Fﬁ-(—V-S(Du)—i—p)vds: —/Fﬁ-(V-S(Du)—P)Vd&

(3.10)

22

The parenthesis contains the Cauchy stress tensor, in Section 2.3.4 defined as
0. The integral is divided into the different boundaries, also defined in Section
2.3.4. Thus, this yields

—/aﬁ~vds=
r

—/ aﬁ-vds—/ crfl-vds—/ oﬁ-vds—/ on-vds. (3.11)
Fs FE FW Fb

Now, due to the boundary conditions defined in Part 2.3.4 together with that
ds = 0 for I'yy and I'g, all integrals but the one over I'y, becomes 0, so 3.11
becomes

—/ ofi - vds. (3.12)
Ty
Let now the basis of i in two dimensions be defined as
fi=n’+nl (3.13)
The theorem for change of basis for orthonormal bases in linear algebra yields
o-fi=ont +onl = ((on)-n) -4+ ((on)-t) -1, (3.14)

where t is a tangent vector, spanning the vector defined by fi. Including this in
3.12 yields the integral

- /F (o) -) -+ ((o) - £) - E]-vds = — /F ((oh)-h)-f-v+((on)-t)-E-vds.
b b (3.15)

The first term becomes 0 because of the definition of the space in Equation 3.3.
Further, the second term can be rewritten using Equation 2.56 in Section 2.3.4.
This yields

— [=B*[(u-t)-t]-vds= [B*(u—(u-n)-A)-vds= [B*u-vds, (3.16)
T, T, T

by dividing u into its components and solve for (u - fi) - i1, which becomes zero

due to Equation 2.55. Now reintroducing the result from simplifying the integral

over the boundary to 3.9 yields

/ S(Du) : Vvdx — / pV -vdx+ [p*u-vds= / fvdx. (3.17)
Q Q T, Q
The result of the discretization, reintroducing Equation 3.8, thus becomes
/ S(Du) : Vvdx — / pV -vdx+ [B*u-vds= / fvdx, (3.18)
Q Q T, Q
/ V - ugdx = 0. (3.19)
Q

In the actual implementation of the Stokes equations, 3.19 is subtracted from

both equations, so the Stokes equations becomes one equation. This yields the

variational problem: find (u,p) € V' x @ such that

/S(Du):V-vdx—/pV~vdX—|— f*u-vds— | V-ugdx— [fvdx=0
Q Q Q Q

(3.20)

Ty

for all ve V and all ¢ € Q.

23

3.2 Discretization of The Free-Surface Equation

Let k be the current time step. The upper surface of the glacier is denoted z;
and the lower surface of the glacier z;. The free-surface equation is discretized
with regards to time using a semi-implicit Euler discretization. It is called semi-
implicit since it is implicit with regards to the surface z;, but explicit in terms
of u. The discretization depends on that to solve for u”* the surface area QF+1
is needed, described by z¥*1.

We are solving for z¢+1.

; The implicit approximation of its derivative is
described as

Oz _ 2kt — 2k

ot At
Here At is the time-step from k to k + 1. Using this approximation in the
free-surface equation for two dimensions we acquire

(3.21)

k1 _ ok k+1
Zs — % k azs k k
= . 3.22
Multiplication with the time-step and addition of 2* solves for z5¥*1 and gives
" gkt ,
AL At (uﬁ 5) =28 + At(ub +db), (3.23)
x

the complete time-discretization of the free-surface equation.

3.3 The Free-Surface Stabilization Algorithm (FSSA)

A fully explicit forward Euler time discretization solves the Stokes equations
on the domain Q* for u* and then uses u* as coefficients in the free-surface
equations, obtaining Q**!. This approach requires small time steps, to avoid
numerical instability [2]. A fully implicit backward Euler time discretization
avoids the numerical instability, but instead needs to solve the Stokes equations
twice in each iteration, having a higher computational cost.

In Section 3.2 we used a semi-implicit Euler time discretization. Its dis-
cretization is implicit in terms of z, but explicit in terms of u*. This means it
still have the issue with numerical instability, but the free surface stabilization
algorithm (FSSA) solves that by mimicking a fully implicit scheme. An esti-
mate of the domain in the next time-step is approximated by applying gravity’s
impact of force on the domain. This is done using Reynold’s transport theo-
rem, which standard form can be found in [12]. The FSSA was first used with
mantle-convection simulations [15] and then adapted to ice-sheet modeling in
2022 [2].

The FSSA is based on computing an estimate (@*+1, 5*1) instead of (u
for the full-Stokes equations: Find (uf*!, p¥*1) € V x @ such that

k+1
tp

/ S(Du¥) : Vvdx —/ PPV - vdx +/ B2uk - vds = fvdx, (3.24)
QF Qk Ty Ok

/Qk V- ukgdx =0, (3.25)

24

k+1)

for all v € V and all ¢ € @), where V and Q are defined as
V =Av:|lle2) + |IVv][L2(0) < o0,ulp, =0}, (3.26)

Q= {4: llall2) < oo /Q 4(x)dx = 0}. (3.27)

To solve for u**! the right hand side of Equation 3.24 is modified to an
approximation of ka+1 f-vd). This is done using Reynold’s transport theorem,
which states that

d / / 0 / R
— gdx = —gdx + u-n)gds. 3.28
dt Jagw o) Ot BQ(t)() (3.28)

Here Q(t) = QF for a specific time-step k. Since g = f - v, which depends on
constants and z, we get

0
—gdx = 0. 3.29
o) OF (3.29)

The left hand side of Equation 3.28 is approximated in terms of integrals over
QOF explicitly, such that

d Jopir £ovdx — [, £ vdx
— f.vdx ~ Q Q . .
dt/Qk vdx A7 (3.30)

Combining Equation 3.29 and Equation 3.30, and solving for ka+1 f vdxin
Reynolds transport theorem gives the approximation

/ f vdx = / f vdx+ At/ (u-n)(f - v)ds. (3.31)
QR QF aak

If we now put this result as the right hand side into the variational formulation
of the Stokes equations we get: find (@**!,5**1) € V x Q such that

PV - v)dx = /

QFk

S(Di*) : Vvdx — /

f-vdx + At/ @1 h)(f - v)ds,
QF

QF o0k
(3.32)

V- a*tlqdQ =0, (3.33)
QF

for all v € V and all ¢ € Q. FSSA adapted for glacier modelling needs an
additional term for ablation/accumulation. To account for the accumulation,
as, the surface velocity u in Reynold’s transport theorem is replaced by u+ asz.
The integral for the FSSA is then split on the addition between u and a;Z and
the FSSA term for u is moved to the left hand side of the equation, giving the
final variational form for ice-flow: find (@**! $**1) € V x Q such that

/ S(Dik) : Vvdx — / PPV - vdx
QF QF

—aAt/ (ﬁk“-ﬁ)(f-v)ds:/ f~vdx+0At/ (asz-0)(f - v)ds,
oNk Ok 9Ok
(3.34)

V- i tlgdx =0, (3.35)
Qk

25

for all v € V and all ¢ €). This is the free-surface stabilization algorithm. A
parameter 6 € {0, 1} has been included in Equation 3.34, where 6 = 0 gives an
explicit solver without FSSA, and 6 = 1 gives a quasi-implicit solver with FSSA
activated. This is done to easily be able to compare the FSSA with an explicit
solver without the FSSA.

3.4 Minimum thickness condition

When we are simulating glaciers, we need to decide a minimum thickness the ice
can reach. If this condition is not in place, it’s possible for the upper surface, z,
to go below the lower surface z,. As this is not physically possible, it’s unwanted
in our simulations. In order to prevent the upper surface to fall below the lower
surface, Elmer/Ice lets us choose a minimum thickness of the ice, hy,;,, and uses
the algorithm described in [16] when solving the discretized free-surface equation
(Equation 3.2) under the constraint. We need a fix so that z5 > z, + Amin. The
algorithm works as follows.

Define A as the system matrix and a the load vector. Then h is the solution
vector containing the values for the upper surface z; at the nodes. The matrix
system of the unconstrained system being solved is

A -h=a.
We want to solve this equation under the constraint that h > hy,;,.

e The algorithm goes through the nodes in h, and if one is found to not
satisfy the minimum thickness condition, it is set as active and added to
a set of active nodes.

e For each active node 7, the Dirichlet condition h; = hpiy; is introduced by
changing row ¢ in the system matrix to A;; = d;;, where

1, if i = j,
dij = e
0, if i # j,
and the ith entry of the body force to a; = hmini, resulting in the con-

strained equation
A'-h=a

e Solve the constrained equation in the previous step for h’.

e Obtaining h’, it’s put into the unconstrained system, replacing h. A
residual is defined as
R=A-h'-a

This residual can physically be interpreted ad the additionally needed
ablation at the nodes for the requirement of the minimum ice thickness.

e If an active node i now complies with h; > hyin; it is set as inactive and
removed from the set if and only if R; < 0.

e This is repeated until there’s no change in the set of active nodes and the
convergence criteria for the free surface solver is met.

Forcing this constraint using the algorithm results in altered forces within the
ice, which in turn results in altered velocities.

26

3.5 Error estimation

In order to compare the results, an error needs to be estimated. In this section,
the equations used for error calculations are introduced.

3.5.1 Error Calculation

Let h be the experiment, and h* be a reference solution. Then the total error
for the variable in question is calculated as

1

=— [|h—h*|ds. (3.36)
‘Qh‘ Qp

€

3.5.2 Velocity Magnitude

Comparing the differences in velocity for v, and v, separately might give an idea
of the errors, but for a complete picture a comparison of the absolute velocity
needs to be done. To be able to calculate the error of the whole velocity, rather
than v, and v, by themselves, velocity magnitude is used.

Let vy, Vg, ..., Uz, be the velocities in n different directions. Then the ve-
locity magnitude, V, is calculated as

Vo= v2 402 4. 402 . (3.37)

3.6 Numerical experiments

The aim of the experiments are to investigate how simulations behave using
the FSSA together with the minimum thickness condition. The algorithm for
minimum thickness is already implemented in Elmer/Ice, so we run simulations
without FSSA first as benchmarks to compare with the simulation using FSSA.

As described in part 3.3, the FSSA approximates the domain for the next
time step, to more accurately calculate the velocities of the ice when solving
the discretization of the Stokes equations. The FSSA, however, may not fully
account for the minimum thickness condition, which is applied when calculating
the surface. With this in mind, our hypothesis is that the velocity field for the
FSSA will be different, as it is possible the condition zs > 2 + hAmin Will not
hold when solving the Stokes equations when the glacier is retreating. For the
point at which the glacier reaches hy,;,, the word limit is used.

All experiments are simulated for 500 a (years), where we chose to look at the
period from 100 a to 200 a. The reason for this is that before 100 a, the glacier
was advancing at some moments. We are interested in the retreating case, as
that is when the nodes become active with the minimum thickness condition.
If the glacier is advancing, there is no need to check that h > h,,;, as we are
increasing thickness. For comparison, there is no need to use a longer period
than 100 a.

The first experiment is our reference solution, using forward Euler. Here we
use a much smaller time step to get a more exact solution to compare our next
experiments with, i.e. # = 0 for the simulation in equation 3.34. Experiment 2
is with the same solver as the reference solution, with a larger time step. Ex-
periment 3 is the same solver, but with FSSA implemented, i.e. the simulation

27

with @ = 1, with the same time step as Experiment 2. Experiment 4 compares
the evolution of the surface and the velocities for 10 a for a simulation with
f = 0 and a simulation with § = 1, starting at 100 a, with a smaller time-step
but still larger than the reference solution.

3.6.1 Perlin Glacier

The glacier used for the experiment is a 2D “Perlin” synthetic glacier. This
means the bedrock is generated by using Perlin noise, that produces smooth,
psuedo-randomly generated terrain. How this is done is described in detail in
[5]. The glacier used here is the moderately sloping glacier in that thesis, with
some data pre-processing used on the lower limit. For a picture of the glacier
at the start of our simulations (0 a), see Figure 3.1.

Figure 3.1: The initial look of the Perlin glacier.

The horizontal extent of the domain is L, = 8000 m, and the bedrock is
sloping, with undulations, starting at a high point of 800 m at x = 0 and going
down to 5 m at x = 8000. To build up a glacier on the bedrock a positive
accumulation function is used:

3x
= 1 - 0 .
a(m) max (. 5)

This function will linearly decay along the horizontal coordinates, with a maxi-
mum at x = 0.

Accumulation and sliding conditions are