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Abstract

Global warming is causing melting of glaciers and ice sheets globally, contribut-
ing to rising sea levels. In order to estimate future rise of sea levels, glaciers
and ice sheets are simulated using numerical methods. Glaciers and ice sheets
are described using the Stokes equations and the free-surface equation. These
equations are solved approximately computationally using the finite element
method. However, solving the Stokes equations is prone to numerical insta-
bility, demanding a small time-step. In this thesis, a free-surface stabilization
algorithm (FSSA) is investigated with regard to a minimum thickness condition,
which needs to be imposed for numerical stability. We show that time-stepping
with FSSA is stable for a time-step where the same method without the FSSA
suffer from instability. We also show that initially it gives the wrong velocities at
points where the minimum thickness condition is active. The stability granted
by the free-surface stabilization algorithm is in line with previous research. The
differing velocities at points for the minimum thickness condition confirms what
was expected, as the free-surface stabilization algorithm doesn’t take the min-
imum thickness condition into account. These results exhibits the free-surface
stabilization algorithm as a possibly viable method to increase the speed of sim-
ulations, as it allows for larger time-steps. The FSSA does come with a cost of
less accuracy at the limit of a glacier or ice sheet, where the minimum thickness
condition is applied. The free-surface stabilization algorithm shows promise in
improving on numerical methods, but the issue with the minimum thickness
condition needs to be addressed.

Sammanfattning

Den globala uppvärmningen leder till att glaciärer och inlandsisar smälter glob-
alt, vilket bidrar till stigande havsnivåer. För att kunna uppskatta framtida
havsnivåhöjningar simuleras glaciärer och istäcken med numeriska metoder.
Glaciärer och inlandsisar beskrivs med hjälp av Stokes ekvationer och ekvatio-
nen för fria ytor. Dessa ekvationer löses approximativt beräkningsmässigt med
hjälp av finita elementmetoden. Lösningen av Stokes ekvationer är dock känslig
för numerisk instabilitet och kräver ett litet tidssteg. I denna avhandling under-
söks free-surface stabilization algorithm (FSSA), en stabiliseringsalgoritm, med
avseende på ett villkor om minsta tjocklek, som måste införas för numerisk sta-
bilitet. Vi visar att tidsstegning med FSSA är stabil för ett tidssteg där samma
metod utan FSSA drabbas av instabilitet. Vi visar också att den initialt ger fel
hastigheter i punkter där villkoret för minsta tjocklek är aktivt. Den stabilitet
som stabiliseringsalgoritmen med fri yta ger är i linje med tidigare forskning.
De olika hastigheterna i punkter för villkoret om minsta tjocklek bekräftar det
som förväntades, eftersom stabiliseringsalgoritmen med fri yta inte tar hänsyn
till villkoret om minsta tjocklek. Detta visar att algoritmen för stabilisering
av fria ytor är en möjlig metod för att öka simuleringarnas hastighet, eftersom
den möjliggör större tidssteg. FSSA medför dock en kostnad i form av mindre
noggrannhet vid gränsen för en glaciär eller ett istäcke, där villkoret om min-
sta tjocklek tillämpas. FSSA är lovande när det gäller att förbättra numeriska
metoder, men problemet med villkoret för minsta tjocklek måste lösas.
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1 Introduction
The Earth’s glaciers and ice sheets are diminishing in size, contributing to rising
sea levels. Over the next decades, mass loss is certain for the Greenland Ice Sheet
and likely for the Antarctic Ice Sheet even if the global temperature stabilizes
[1]. In order to prepare for rising sea levels, we need to know by how much sea
levels are expected to rise. Thus, we need to accurately predict changes in glacier
and ice sheet mass in the future, accounting for different scenarios. In order to
make predictions, Ice sheets and glaciers are described as highly viscous, non-
Newtonian fluids and are modelled using partial differential equations, solved
using numerical methods. The non-Newtonian nature of ice makes solving its
flow computationally expensive and so the continuous development of numerical
methods to correctly and efficiently simulate the change of ice sheet and glacier
mass in the future is crucial.

In a previous study [2] the free-surface stabilization algorithm (FSSA) was
implemented to improve computational efficiency when simulating ice sheets
and glaciers. The simulations of ice sheet and glacier melting is governed by
two set of equations; (1) the Stokes equations and (2) the free surface equa-
tion. These are solved discretely by using the finite element method [3], [4].
Solving these systems of partial differential equations approximately previously
demanded a strict time-step constraint to ensure stability, but by using FSSA
the authors were able to increase time-steps by up to thirty times with the same
accuracy as previous methods and without causing instability. The FSSA does
this by approximating the updated surface in each time-step for solving the
Stokes equations. The FSSA method used in the article thus shows promise in
improving on current ice sheet solvers.

A retreating glacier needs a minimum ice thickness condition, i.e. a lower
bound for thickness of the ice, as the numerical method used to model the glacier
can not produce a solution with zero thickness. In this thesis, we explore the
consequences of the minimum thickness condition when applying FSSA. The
equations cannot be solved with a zero or negative thickness, so a minimum
thickness constraint must be imposed. The FSSA, however, does not take this
minimum thickness constraint into consideration when approximating the new
surface in the Stokes equations. This causes an issue with calculating the ve-
locities of the moving ice, potentially resulting in a difference of the surface
evolution of a glacier under simulations using the FSSA. In order to investigate
if this is the case, a simulation with the FSSA implemented is compared with
two simulations without FSSA: a reference solution using a small time-step and
a simulation using the same time-step as the simulations with FSSA. The com-
parison is made in surface evolution and the velocities of the ice. A comparison
of the development of the error for each time-step is also made, particularly
in the vincinitiy of the minimum ice thickness condition. The glacier used in
this thesis is a two-dimensional synthetic glacier with a randomized bedrock
topography, created using Perlin noise [5], resulting in a shape that replicates a
real-world glacier.

The thesis is structured as follows. In Chapter 2, we introduce the termi-
nology and methods used in this thesis, as well as the governing equations of a
glacier. In Chapter 3, The numerical methods for ice-flow modelling, the ice-
flow equations are solved. Furthermore, the implementation of the FSSA and
the algorithm for the minimum thickness condition are explained. The numeri-
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cal experiments to be carried out are also introduced in Chapter 3. The results
of the experiments are presented in Chapter 4. It is followed by a discussion of
the results in Chapter 5, and the thesis is concluded in Chapter 6.
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2 Preliminaries
This chapter starts with some basic concepts for numerical methods in Sec-
tion 2.1 The chapter continues with a short introduction to partial differential
equations, the finite element method and Newton’s method in regard to its rele-
vance to ice sheet modeling in Section 2.2. The governing equations of ice sheet
modeling are introduced in Section 2.3.

2.1 Basic Concepts for Numerical Methods
To start, some initial definitions and theorems which will be needed later are de-
fined. Both the Frobenius Inner Product, Green’s idendity and function spaces
are needed later to process the equations used in this thesis. Some basic knowl-
edge of Euler methods and stability in numerical methods is also essential.

2.1.1 The Frobenius Inner Product

Definition 2.1. Let A,B be n × n matrices. The Frobenius inner product,
denoted :, is defined as

A : B =

n∑
i=0

n∑
j=0

AijBij , (2.1)

where i is the row and j the column of the matrix.

2.1.2 Green’s Identity

Theorem 2.2. Let u be a vector field and v a scalar field over a domain Ω.
Then ∫

Ω

− (∆ · u) vdx =

∫
Ω

∇ · u · ∇vdx−
∫
∂Ω

(u · n̂) vds, (2.2)

where n̂ is the unit normal pointing outward from the boundary,
∫
∂Ω

ds is the
curve integral on the boundary, and ∇ and ∆ are the first order and second order
divergences, respectively, introduced in Definitions 2.14 and 2.15. A derivation
of the theorem can be found in [6].

2.1.3 Spaces

Next, Hilbert function spaces and Sobolev function spaces are introduced. For
more information on function spaces, one can read [6], Chapter 7.

Definition 2.3. A Hilbert function space is defined as

L2(Ω) = {v : Ω → R : ||v||L2(Ω) < ∞}. (2.3)

Here, || · ||L2(Ω) refers to the L2-norm. Thus, this is the function space
of all functions with a bounded L2-norm on the space Ω. Conventionally, the
L2-norm is used since among its properties both the triangle inequality as well
as the Cauchy-Schwartz inequality holds. These are necessary inequalities to
calculate error margin for the approximations used in numerical methods.

The Hilbert function space is not enough for derivatives to make sense as
derivates are not included in the definition. Thus, Sobolev function spaces are
also introduced.
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Definition 2.4. A Sobolev function space is defined as

H1(Ω) = {v ∈ L2(Ω) : ||v||L2(Ω) + ||∇v||L2(Ω) < ∞}. (2.4)

This function space refers to all functions with a bounded gradient in L2-
norm as well.

Onward, using the terms ’“Hilbert space” or “Sobolev space” will refer to these
definitions.

2.1.4 Euler Methods

Definitions of the forward Euler and the backward Euler methods will be in-
troduced here. The forward Euler method is also referred to as the explicit
Euler method, and in the same way the backward Euler method is also called
the implicit Euler method. These are used to approximately solve differential
equations (see 2.2.1). In this thesis, Euler methods are used for time-stepping
as well as deriving the free-surface stabilization algorithm.

Definition 2.5. The forward Euler method, for a function y at a certain
time-step k is defined as [7]

yk+1 = yk +∆tf(tk, yk). (2.5)

The value ∆t is the size of the time-step used and f(t, y(t)) = y′(t). This is
an initial value problem, i.e. the values for t0 and y(t0) are needed to take the
first step.

Definition 2.6. The backward Euler method, for a function y at a certain
time-step k is defined as [7]

yk+1 = yk +∆tf(tk+1, yk+1). (2.6)

The backward Euler method is a function of yk+1 on both sides, so an alge-
braic equation for yk+1 needs to be solved.

2.1.5 Stability

In the last section the Euler methods were defined. These are algorithms to
solve differential equations, and as they approximate a solution for each time-
step, there’ll be an error compared to the true solution. One might ask the
question: does the error grow with each step taken? This introduces the concept
of stability. To explain this concept, two definitions are borrowed from [8]:

Definition 2.7. The region of absolute stability R for a numerical method for
solving a differential equation is defined by

R := {µ : |λi(µ)| < 1,∀λi(µ)} (2.7)

where λi(µ) = ah, for the time-step size h, are the roots of the characteristic
equation when the method is applied to the test equation y′ = ay, a ∈ C.
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Here, the characteristic equation refers to the one for a differential equation.
Taking the forward Euler method as example:

yn+1 = yn + hf(tn, yn) = yn + hayn = (1 + ha)yn, (2.8)

the characteristic equation becomes

λ = (1 + ha) = (1 + µ). (2.9)

Definition 2.8. A method is called A-stable if its region of absolute stability
R contains the left half of the complex plane {z ∈ C : Re(z) < 0}.

A-stability of a method is desirable, because if a true solution decays to zero
so does the approximative numerical solution. Rather than A-stable, the term
stable will be used onward. A method is unstable, affected by instability, if it
is not stable.

Returning to the Euler methods, what does this mean practically? If the nu-
merical method does not fulfill the requirement for the region of absolute stabil-
ity, the approximation will grow exponentially with each time-step taken. Thus,
eventually the approximation will diverge from the true solution. A method may
be close to one, but as long as its absolute value according to Definition 2.7 is
below one, it will closely approximate the true solution. The error will still
grow with each time-step even if the method is stable, due to a small error in
the approximation in each time-step, but not as much as with instability.

2.2 Solving Partial Differential Equations with The Finite
Element Method

In this section, partial differential equations are defined in Section 2.2.1. The
finite element method is is explained in Section 2.2.2. Solving nonlinear partial
differential equations need some iterative method to reach convergence, intro-
duced in Section 2.2.3.

2.2.1 Partial Differential Equations

In this section, partial differential equations are introduced. Some important
concepts concerning partial differential equations are also defined. An introduc-
tion to differential equations can be found in [9], and for more information on
partial differential equations, please see [10].

Definition 2.9. A differential equation is an equation consisting of the deriva-
tive of an unknown function, and possibly the function itself.

Example 1. Let
y′ + y = f (2.10)

be an equation for some arbitrary function f , where y is a function and y′ its
derivative. Then Equation 2.10 is a differential equation.

Definition 2.10. A partial differential equation is an equation in which the
function depends on several variables.

Example 2. In Equation 2.10, let f = f(x, y) and y = g(x, y). Then this
equation is a partial differential equation.
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Partial differential equations are used to describe various different natural
phenomena. These are usually solved approximately by using numerical meth-
ods, as they often can not be solved analytically. Partial differential equations
are classified depending on their properties.

Definition 2.11. The dimension of a partial differential equation is equal to
the space variables of the function.

Definition 2.12. The order of a partial differential equation is equal to the
highest order of its derivatives.

Example 3. The differential equation introduced in Example 1 with the prop-
erties given in Example 2 has a dimension of two, since there are two space
variables: x and y. It is a first order partial differential equation since the
highest derivative in the equation is the first derivative.

Definition 2.13. The partial derivative of a function f(x, y) is written either
fx or fy if differentiating with respect to x or y. The second order partial
derivative is written fxx, fxy, fyx or fyy.

Definition 2.14. The symbol ∇· denotes the divergence, i.e. the sum of all
partial derivatives of a function.

Definition 2.15. The symbol ∆ denotes the Laplacian (the second order
divergence), i.e. the sum of all second order partial derivatives of each individual
variable of a function.

Example 4. Let f(x, y, z) be a function. Then

∆f −∇ · f = (fxx + fyy + fzz)− (fx + fy + fz) (2.11)

according to Definitions 2.14 and 2.15.

Definition 2.16. A boundary condition of a partial differential equation, is a
constraint of how the partial differential equation behaves at the boundary of
the domain the partial differential equation is defined on.

Definition 2.17. A Dirichlet boundary condition is one, where a partial dif-
ferential equation’s behaviour on the boundary of a domain can be described
by a function g.

Example 5. Let u be a function over the domain Ω, and ∂Ω be the boundary of
the domain. Let

−∆u = f in Ω, (2.12)
u|∂Ω = 0 on ∂Ω, (2.13)

then Equation 2.12 is partial differential equation, whereas Equation 2.13 de-
scribes a Dirichlet boundary condition. The partial differential equation defined
in 5 is called the Poisson’s equation. Poisson’s equation arises in various types
of physical situations.
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The notation of ∂Ω to specify the boundary of a domain Ω will be used
henceforth unless otherwise stated. The equation shown in Example 5 is a
specific kind of partial differential equation, given a specific name.

A partial differential equation can be classified depending on its algebraic
properties. Differentiation will be done into two categories.

Definition 2.18. A linear partial differential equation is linear in the unknown
functions.

Definition 2.19. A nonlinear partial differential equation is nonlinear in the
unknown functions.

Nonlinear partial differential equations can be further subdivided into cat-
egories depending on which order of derivatives are nonlinear, but the stated
definitions are sufficient for this thesis.

2.2.2 The Finite Element Method

Partial differential equations can be solved using the finite element method.
Here, the time-independent case of a domain in two dimensions of the finite
element method is explained. For a more thorough guide to the finite element
method, see [6].

Definition 2.20. A mesh of a domain is a mapping or a grid of the domain.

Definition 2.21. A structured mesh has regular connectivity. An unstructured
mesh instead has irregular connectivity.

See Figure 2.1 for examples of a structured and an unstructured mesh.

Figure 2.1: Example of a structured mesh and an unstructured mesh.

Definition 2.22. A finite element is a specified geometric shape making up
the mesh.
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A structured mesh can be made out of quadrilaterals while an unstructured
mesh can be made out of triangles as finite elements in the plane. Structured
meshes have space efficiency and can thus have higher resolutions than unstruc-
tured meshes. Unstructured meshes have the advantage of being able to model
much more complex domains, as the triangles can be of any size or shape as
long as all shapes are triangles (see Figure 2.2).

Figure 2.2: An unstructured mesh where the boundary is in the shape of a
dolphin. The figure is taken from [11].

Definition 2.23. Nodes are the corners of a finite element and an edge is made
up of the sides of a finite element. The nodes are named Nj , for j = 1, 2, 3, ..,M
where M is the number of nodes.

Nodes can only touch other corners of other finite elements, never an edge.
See Figure 2.3 of a configuration of a small mesh of eight finite elements in the
form of triangles, nine nodes and sixteen edges.

Figure 2.3: A small mesh.
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A definition of continuous piecewise polynomial spaces is needed next.

Definition 2.24. Let K be a finite element. A continuous piecewise polynomial
space is can be defined by

P (K) = {v : v(x) = c0 + c1x1 + c2x2, xi ∈ K for i ∈ {1, 2}, c0, c1, c2 ∈ R}.
(2.14)

Here, a linear continuous piecewise polynomial space is used, but higher order
polynomials are possible. The nodal values are used as degrees of freedom, so
the natural basis {1, x1, x2} is not suitable. Instead, a nodal basis is used.

Definition 2.25. The nodal basis {γ1, γ2, γ3} is defined by

γj(Ni) =

{
1, if i = j

0, if i ̸= j
, i, j = 1, 2, 3. (2.15)

With this definition of the nodal basis, any function v ∈ P (K) can be ex-
pressed as

v = α1γ1 + α2γ2 + α3γ3 (2.16)

where αi = v(Ni). The basis functions γj are called hat functions, after their
similarity to pointy hats when drawn on a mesh.

Once a mesh of the domain has been created, the partial differential equation
being solved needs to be changed into their variational form. This is the dis-
cretization of the partial differential function. To demonstrate the discretization
method, Poisson’s equation from Example 5 will be used, i.e.

−∆u = f in Ω, (2.17)
u|∂Ω = 0 on ∂Ω, (2.18)

The first step of this is to introduce a test function v ∈ V0, where

V = {v : ||v||L2(Ω) + ||∇v||L2(Ω) < ∞}, (2.19)
V0 = {v ∈ V : v|∂Ω = 0}. (2.20)

i.e. a Sobolev space with the boundary condition that the test function v is zero
at the boundary. This test function is multiplied with Equation 2.17 to aquire

−∆uv = fv. (2.21)

Integrating over the domain Ω and, replacing the second order divergence, we
use Green’s identity to get∫

Ω

∇u · ∇vdx−
∫
∂Ω

n · ∇uvds =

∫
Ω

fvdx (2.22)

If the integral over the boundary is solved it becomes

−
∫
∂Ω

n · ∇uvds = − [n · uv]∂Ω , (2.23)
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which becomes zero as the test function v is zero at the boundary. This concludes
to the following variational formula: find u ∈ V0 such that∫

Ω

∇u · ∇vdx =

∫
Ω

fvdx (2.24)

for all v ∈ V0.

Now, let K be a mesh of the domain Ω, and Vh the space of continuous
piecewise linear functions on K. The subspace Vh,0 ⊂ Vh is defined as

Vh,0 = {v ∈ Vh : v|∂Ω = 0} (2.25)

to adhere to the boundary conditions of the partial differential equation. To
obtain the finite element method approximation, V0 in Equation 2.24 is replaced
with Vh,0: find uh ∈ Vh,0 such that∫

Ω

∇uh · ∇vhdx =

∫
Ω

fvhdx (2.26)

for all vh ∈ Vh,0.

In order to compute the finite element approximation uh, a linear system of
equations is needed to be derived. First, a base is defined:

Definition 2.26. Define {φ}ni
i=1 as the basis of hat functions for Vh,0 associated

with the ni interior nodes of the mesh.

Remember, the functions in Vh,0 are zero on the boundary, so no hat func-
tions are allowed there. All vh ∈ Vh,0 are vectors in the basis of {φ}ni

i=1. Thus,
they equivalently can be replaced with the basis vectors instead. Also, since
uh ∈ Vh,0, it is also a linear combination of the basis vectors, and can thus be
written as

uh =

nj∑
j=1

ξjφj . (2.27)

Using these two facts, and breaking out the sum of ξj from Equation 2.26,
the equation

nj∑
j=1

ξj

∫
Ω

∇φj · ∇φidx =

∫
Ω

fφidx, i = 1, 2, ..., ni (2.28)

is obtained.
Now, two matrices are defined.

Definition 2.27. The ni × ni system matrix of the finite element method is
defined as

Aij =

∫
Ω

∇φj · ∇φidx, i, j = 1, 2, ..., ni. (2.29)

Definition 2.28. The ni×1 load vector of the finite element method is defined
as

ai =

∫
Ω

fφidx, i = 1, 2, ..., ni. (2.30)
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With these, Equation 2.28 can be written as
ni∑
j=1

Aijξj = ai, i = 1, 2, ..., ni, (2.31)

or, as a matrix equation,
Aξ = a. (2.32)

The vector ξ is called the solution vector. At this point, the discretization is
complete. By solving this matrix equation, the unknowns ξj are obtained, and
thus uh.

For a summation of the finite element method, see Algorithm 2.1 below:

Algorithm 2.1 The Finite Element Method
1. Make a mesh K of the domain Ω and define the continuous piecewise linear
functions space Vh,0 hat function basis {φi}ni

i=1.
2. Assemble the system matrix A and the load vector a as such

Aij =

∫
Ω

∇φj · ∇φidx, ai =

∫
Ω

fφidx. (2.33)

3. Solve the linear system
Aξ = a. (2.34)

4. Set

uh =

ni∑
j=1

ξjφj . (2.35)

A couple of notes on this. Firstly, in this example, conveniently the Poisson’s
equation had the boundary condition set to zero (Equation 2.18). If this is
not the case, the method would still follow the exact same steps, except when
constructing the load vector a the boundary conditions for the partial differential
equation would need to be included.

Secondly, in this thesis the finite element method tool Elmer/Ice is used.
This is a finite element method solver based on Elmer (a finite element method
solver), customized to use for ice-flow modelling. The tool does a lot of the work
and computations for us, and it is really only necessary to find the variational
form of the partial differential equations and plug them in. For this reason, in
chapter 3, where the governing equations for ice sheet modelling are discretized,
the process is only explained until the variational form is obtained.

For a concise guide on how to use Elmer/Ice, see [17].

2.2.3 Newton’s Method

The finite element method described in Section 2.2.2 works well for linear par-
tial differential equations. However, for nonlinear partial differential equations
iterative methods need to be implemented to reach convergence for the nonlin-
ear terms. The simulations that are done in this thesis make use of Newton’s
method for nonlinear partial differential equations. To learn more about solving
nonlinear partial differential equations, read chapter 9 in [6].
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Newton’s method can be applied on equations of the form

g(x) = 0, (2.36)

where g is assumed to be a scalar non-linear function of x. To derive Newton’s
method, a solution x̄ is split into an initial guess x0 and a correction δx, so that

x̄ = x0 + δx. (2.37)

Using Taylor expansion on g(x) around x̄,

g(x̄) = g(x0) + g′(x0)δx+O(δx2) (2.38)

is acquired, where all extra terms of the Taylor expansion are included in O(δx2).
Ignoring the higher order terms in O(δu2) and using g(x̄) = 0, the approximation

0 ≈ g(x0) + g′(x0)δx (2.39)

is attained. Solving for δx, the linear equation

δx =
−g(x0)

g′(x0)
(2.40)

is thus acquired. By adding δx to x0, a closer approximation to x̄ is expected.
Now, iterating this method with x0 replaced by x̄ until δx is lower than a pre-
decided tolerance, gives a convergence towards x.

As an example, Newton’s method for Poisson’s equation is derived. Assume
the variational form of the nonlinear Poisson’s equation:∫

Ω

a(u)∇u∇vdx =

∫
Ω

fvdx,∀v ∈ V. (2.41)

The nonlinear term is a(u) as it makes u dependant on u itself, i.e. a(u) is a
function of u. The sought-after solution u is split into an initial guess u0 and a
correction δu. Then u can be written as

u = u0 + δu. (2.42)

A Taylor expansion of a(u0 + δu) gives

a(u0 + δu) = a(u0) + a′u(u
0)δu+O(δu2). (2.43)

Neglecting higher order terms O(δu2), gives the equation∫
Ω

(
a(u0) + a′u(u

0)δu∇u0
)
∇vdx =

∫
Ω

fvdx, ∀v ∈ V. (2.44)

The equation is to be solved for δu‚ so the other terms are moved to the right
hand side of the equation, giving∫

Ω

a′u(u
0)δu∇u0∇vdx =

∫
Ω

fvdx−
∫
Ω

a(u0)∇u0∇vdx,∀v ∈ V. (2.45)
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This equation is solved using the finite element method, with δu as the solution
vector and the right hand side as the load vector.

This method is iteratively run until a small enough value, lower than a pre-
decided tolerance, is acquired for δu.

Newton’s method is a popular method due to the fast convergence rate,
however it comes with a couple of weaknesses. Since Taylor expansions are used,
it requires an “adequate” initial guess of u0 to converge at all, and computing g′

can be expensive. In cases where an initial guess needs to be acquired, a method
called Picard iteration can be used. This method is explained in chapter 9 of
[6]. In this thesis, Elmer/Ice only make use of Newton’s method.

2.3 Governing Equations
A glacier’s rate of change is governed by the Stokes equation and the glacier’s
surface evolution is governed by the free-surface equation.

2.3.1 The Stokes Equations

The movement of a glacier can be described as a highly viscous, non-Newtonian
fluid [12]. Fluids follow the laws of physics, i.e. conservation of momentum as
well as conservation of mass, and are governed by the Stokes equations:

∇ · (2µ(Du)Du)−∇p = ρgẑ, x ∈ Ω, (2.46)
∇ · u = 0, x ∈ Ω, (2.47)

where Ω ∈ Rd, d ∈ {2, 3} depending on the dimension. Here, Equation 2.46
represents conservation of momentum and equation 2.47 conservation of mass,
which is an incompressibility condition. The Stokes equation is a nonlinear
partial differential equation of two or three variables depending on the dimension
(see Section 2.2.1). The ice velocity is u and the pressure p at x in the domain
Ω. The nonlinearity is because of the viscosity, µ, which is dependent on the
velocity u (Section 2.3.2). The strain-rate tensor is Du = 1

2 (∇u +∇uT ). The
parameters used are ρ = 917 kg m−3 is ice density, and g = 9.8 m/s2 is the
acceleration of gravity.

In order to shorten the writing of the Stokes equations, define

S(Du) = 2µ(Du)Du (2.48)

and let
f = −ρgẑ. (2.49)

This gives the following expression of the Stokes equations:

∇ · S(Du) −∇p = −f, x ∈ Ω, (2.50)
∇ · u = 0, x ∈ Ω. (2.51)

2.3.2 Glen’s Flow Law

The Glen’s viscosity, µ, depends on the temperature and velocity. It is governed
by Glen’s flow law, [13] and [14],

µ(u, T ′) = A(T ′)−
1
n

(
1

2
tr(Du2) +Du2

0

) 1−n
2n

. (2.52)
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The term Du2
0 = 10−10 yr−2 is a regularization term, added so that zero strain

rates do not cause infinite viscosity. The term n, in this case n = 3, is called
the power-law exponent. The value of A(T ′) is set to 100 MPa−3a−1.

2.3.3 The Free-Surface Equations

To determine the upper surface position (zs = zs(x, y, t)) of a glacier at a time
t the free surface-equation [12] is used:

∂zs
∂t

+ us
x

∂zs
∂x

+ us
y

∂zs
∂y

= us
z + as. (2.53)

Since on a glacier it will snow and melt, as describes the accumulation or ab-
lation of mass. From the Stokes equations 2.46 and 2.47 we get for the surface
the velocity field us = (us

x, u
s
y, u

s
z).

2.3.4 Boundary Conditions

Figure 2.4: An ice sheet with the boundaries Γs, ΓW , Γb and ΓE marked out.

For the glacier boundary ∂Ω we specify non-overlapping boundary parts Γs,
ΓW , Γb and ΓE . Except for the surface Γs, the boundaries are stationary. This
means the change of the glacier completely depends on the evolution of the
surface. A mountain glacier is a smaller ice sheet.

See Figure 2.4 for a schematic of a general ice sheet, with the boundary
parts included. The ice-water boundary shown here is not necessary when mod-
elling glaciers. Note that the length of the ice sheet is displayed in orthogonal
directions x and y, and the height of the ice sheet is in the z-direction.

The following boundary conditions are considered for the different parts of
the boundary

σn̂ = 0, x ∈ Γs, (2.54)
u · n̂ = 0, x ∈ ∂Ω/Γs, (2.55)

t̂i · σn̂ = −β2|u|m−1u · t̂i, x ∈ Γb, (2.56)
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The tensor σ = 2µDu− pI, where I is the identity matrix, is called the Cauchy
stress tensor, n̂ is the unit normal pointing outward from the boundary and
{t̂i}d−1

i=0 are tangent vectors, spanning the plane defined by n̂. The term β is
the drag coefficient and m is an exponent. Equation 2.54 shows a stress-free
condition on the glacier surface. This follows from the assumption that the
stresses asserted on the surface are negligible compared to internal stresses of
the glacier. Equation 2.55 describes the impenetrable condition of the glacier-
bedrock. It is set to zero because both accumulation and loss of ice at the
bedrock are negligible. Equation 2.56 states that the ice may slip along the
bedrock, called a Weertman-type sliding law. We put m = 1, so the relation is
linear.
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3 The Numerical Methods for Ice-Flow Modelling
In this part, the use of numerical methods to solve the governing equations of ice-
flow modelling are explained, the Free-surface stabilization algorithm (FSSA) is
derived and the algorithm for the minimum thickness condition is introduced.
Then, the numerical experiments are introduced.

The hypothesis is that using the Free-surface stabilization algorithm (FSSA)
will give different velocities where the minimum thickness condition comes into
play, resulting in a different surface. This is because a minimum thickness
condition is used when solving the free-surface equation, but FSSA doesn’t take
this minimum thickness condition into account when approximating the domain
the velocities are calculated on.

3.1 Discretization of The Stokes Equations
From Section 2.3.1 we get:

∇ · S(Du)−∇p = −f (3.1)
∇ · u = 0 (3.2)

Let u = u(x) where x = (x, y). In order to apply the finite element method on
the Stokes equations, a discretization needs to be done. Firstly, two test spaces
are introduced:

V = {v : ||v||L2(Ω) + ||∇v||L2(Ω) < ∞,u|Γb
= 0}, (3.3)

Q = {q : ||q||L2(Ω) < ∞,

∫
Ω

q(x)dx = 0}. (3.4)

Equation 3.1 is multiplied with −1 and the Stokes equations are multiplied with
test functions v ∈ V and q ∈ Q such that

−∇ · S(Du) · v +∇p · v = f · v, (3.5)
∇ · uq = 0. (3.6)

The equations are then integrated over the domain Ω and this yields

−
∫
Ω

∇ · S(Du) · vdx+

∫
Ω

∇p · vdx =

∫
Ω

f · vdx, (3.7)∫
Ω

∇ · uqdx = 0. (3.8)

For now 3.8 is ignored and 3.7 is dealt with onward. Green’s identity is applied
to both the first and second integral on the left hand side to acquire∫
Ω

S(Du) : ∇vdx−
∫
Γ

n̂ ·∇ ·S(Du) ·vds−
∫
Ω

p∇·vdx+
∫
Γ

n̂ ·pvds =
∫
Ω

fvdx.

(3.9)
The integrals over the boundary are simplified on their own. We first collect
the terms under the same integral such that

−
∫
Γ

n̂·∇·S(Du)vds+

∫
Γ

n̂·pvds =
∫
Γ

n̂·(−∇·S(Du)+p)vds = −
∫
Γ

n̂·(∇·S(Du)−p)vds.

(3.10)
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The parenthesis contains the Cauchy stress tensor, in Section 2.3.4 defined as
σ. The integral is divided into the different boundaries, also defined in Section
2.3.4. Thus, this yields

−
∫
Γ

σn̂ · vds =

−
∫
Γs

σn̂ · vds−
∫
ΓE

σn̂ · vds−
∫
ΓW

σn̂ · vds−
∫
Γb

σn̂ · vds. (3.11)

Now, due to the boundary conditions defined in Part 2.3.4 together with that
ds = 0 for ΓW and ΓE , all integrals but the one over Γb becomes 0, so 3.11
becomes

−
∫
Γb

σn̂ · vds. (3.12)

Let now the basis of n̂ in two dimensions be defined as

n̂ = n⊥ + n∥. (3.13)

The theorem for change of basis for orthonormal bases in linear algebra yields

σ · n̂ = σn⊥ + σn∥ = ((σn̂) · n̂) · n̂+ ((σn̂) · t̂) · t̂, (3.14)

where t̂ is a tangent vector, spanning the vector defined by n̂. Including this in
3.12 yields the integral

−
∫
Γb

[
((σn̂) · n̂) · n̂+ ((σn̂) · t̂) · t̂

]
·vds = −

∫
Γb

((σn̂)·n̂)·n̂·v+((σn̂)·̂t)·̂t·vds.

(3.15)

The first term becomes 0 because of the definition of the space in Equation 3.3.
Further, the second term can be rewritten using Equation 2.56 in Section 2.3.4.
This yields

−
∫
Γb

−β2
[
(u · t̂) · t̂

]
·vds =

∫
Γb

β2(u− (u · n̂) · n̂) ·vds =
∫
Γb

β2u ·vds, (3.16)

by dividing u into its components and solve for (u · n̂) · n̂, which becomes zero
due to Equation 2.55. Now reintroducing the result from simplifying the integral
over the boundary to 3.9 yields∫

Ω

S(Du) : ∇vdx−
∫
Ω

p∇ · vdx+

∫
Γb

β2u · vds =
∫
Ω

fvdx. (3.17)

The result of the discretization, reintroducing Equation 3.8, thus becomes∫
Ω

S(Du) : ∇vdx−
∫
Ω

p∇ · vdx+

∫
Γb

β2u · vds =
∫
Ω

fvdx, (3.18)∫
Ω

∇ · uqdx = 0. (3.19)

In the actual implementation of the Stokes equations, 3.19 is subtracted from
both equations, so the Stokes equations becomes one equation. This yields the
variational problem: find (u, p) ∈ V ×Q such that∫
Ω

S(Du) : ∇ · vdx−
∫
Ω

p∇ · vdx+

∫
Γb

β2u · vds−
∫
Ω

∇ · uqdx−
∫
Ω

fvdx = 0

(3.20)
for all v ∈ V and all q ∈ Q.
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3.2 Discretization of The Free-Surface Equation
Let k be the current time step. The upper surface of the glacier is denoted zs
and the lower surface of the glacier zb. The free-surface equation is discretized
with regards to time using a semi-implicit Euler discretization. It is called semi-
implicit since it is implicit with regards to the surface zs, but explicit in terms
of u. The discretization depends on that to solve for uk the surface area Ωk+1

is needed, described by zk+1
s .

We are solving for zk+1
s . The implicit approximation of its derivative is

described as
∂zs
∂t

≈ zk+1
s − zks

∆t
. (3.21)

Here ∆t is the time-step from k to k + 1. Using this approximation in the
free-surface equation for two dimensions we acquire

zk+1
s − zks

∆t
+ uk

x

∂zk+1
s

∂x
= uk

z + aks . (3.22)

Multiplication with the time-step and addition of zks solves for zk+1
s and gives

us

zk+1
s +∆t

(
uk
x

∂zk+1
s

∂x

)
= zks +∆t(uk

z + aks), (3.23)

the complete time-discretization of the free-surface equation.

3.3 The Free-Surface Stabilization Algorithm (FSSA)
A fully explicit forward Euler time discretization solves the Stokes equations
on the domain Ωk for uk and then uses uk as coefficients in the free-surface
equations, obtaining Ωk+1. This approach requires small time steps, to avoid
numerical instability [2]. A fully implicit backward Euler time discretization
avoids the numerical instability, but instead needs to solve the Stokes equations
twice in each iteration, having a higher computational cost.

In Section 3.2 we used a semi-implicit Euler time discretization. Its dis-
cretization is implicit in terms of zs but explicit in terms of uk. This means it
still have the issue with numerical instability, but the free surface stabilization
algorithm (FSSA) solves that by mimicking a fully implicit scheme. An esti-
mate of the domain in the next time-step is approximated by applying gravity’s
impact of force on the domain. This is done using Reynold’s transport theo-
rem, which standard form can be found in [12]. The FSSA was first used with
mantle-convection simulations [15] and then adapted to ice-sheet modeling in
2022 [2].

The FSSA is based on computing an estimate (ũk+1, p̃k+1) instead of (uk+1, pk+1)
for the full-Stokes equations: Find (uk+1, pk+1) ∈ V ×Q such that∫

Ωk

S(Duk) : ∇vdx−
∫
Ωk

pk∇ · vdx+

∫
Γb

β2uk · vds =
∫
Ωk

fvdx, (3.24)∫
Ωk

∇ · ukqdx = 0, (3.25)
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for all v ∈ V and all q ∈ Q, where V and Q are defined as

V = {v : ||v||L2(Ω) + ||∇v||L2(Ω) < ∞,u|Γb
= 0}, (3.26)

Q = {q : ||q||L2(Ω) < ∞,

∫
Ω

q(x)dx = 0}. (3.27)

To solve for uk+1 the right hand side of Equation 3.24 is modified to an
approximation of

∫
Ωk+1

f ·vdΩ. This is done using Reynold’s transport theorem,
which states that

d

dt

∫
Ω(t)

gdx =

∫
Ω(t)

∂

∂t
gdx+

∫
∂Ω(t)

(u · n̂)gds. (3.28)

Here Ω(t) = Ωk for a specific time-step k. Since g = f · v, which depends on
constants and ẑ, we get ∫

Ω(t)

∂

∂t
gdx = 0. (3.29)

The left hand side of Equation 3.28 is approximated in terms of integrals over
Ωk explicitly, such that

d

dt

∫
Ωk

f · vdx ≈
∫
Ωk+1 f · vdx−

∫
Ωk f · vdx

∆t
. (3.30)

Combining Equation 3.29 and Equation 3.30, and solving for
∫
Ωk+1 f · vdx in

Reynolds transport theorem gives the approximation∫
Ωk+1

f · vdx =

∫
Ωk

f · vdx+∆t

∫
∂Ωk

(u · n̂)(f · v)ds. (3.31)

If we now put this result as the right hand side into the variational formulation
of the Stokes equations we get: find (ũk+1, p̃k+1) ∈ V ×Q such that∫
Ωk

S(Dũk) : ∇vdx−
∫
Ωk

p̃k+1(∇ · v)dx =

∫
Ωk

f · vdx+∆t

∫
∂Ωk

(ũk+1 · n̂)(f · v)ds,

(3.32)∫
Ωk

∇ · ũk+1qdΩ = 0, (3.33)

for all v ∈ V and all q ∈ Q. FSSA adapted for glacier modelling needs an
additional term for ablation/accumulation. To account for the accumulation,
as, the surface velocity u in Reynold’s transport theorem is replaced by u+asẑ.
The integral for the FSSA is then split on the addition between u and asẑ and
the FSSA term for u is moved to the left hand side of the equation, giving the
final variational form for ice-flow: find (ũk+1, p̃k+1) ∈ V ×Q such that∫
Ωk

S(Dũk) : ∇vdx−
∫
Ωk

p̃k+1∇ · vdx

−θ∆t

∫
∂Ωk

(ũk+1 · n̂)(f · v)ds =
∫
Ωk

f · vdx+ θ∆t

∫
∂Ωk

(asẑ · n̂)(f · v)ds,

(3.34)∫
Ωk

∇ · ũk+1qdx = 0, (3.35)
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for all v ∈ V and all q ∈ Q. This is the free-surface stabilization algorithm. A
parameter θ ∈ {0, 1} has been included in Equation 3.34, where θ = 0 gives an
explicit solver without FSSA, and θ = 1 gives a quasi-implicit solver with FSSA
activated. This is done to easily be able to compare the FSSA with an explicit
solver without the FSSA.

3.4 Minimum thickness condition
When we are simulating glaciers, we need to decide a minimum thickness the ice
can reach. If this condition is not in place, it’s possible for the upper surface, zs,
to go below the lower surface zb. As this is not physically possible, it’s unwanted
in our simulations. In order to prevent the upper surface to fall below the lower
surface, Elmer/Ice lets us choose a minimum thickness of the ice, hmin, and uses
the algorithm described in [16] when solving the discretized free-surface equation
(Equation 3.2) under the constraint. We need a fix so that zs > zb + hmin. The
algorithm works as follows.

Define A as the system matrix and a the load vector. Then h is the solution
vector containing the values for the upper surface zs at the nodes. The matrix
system of the unconstrained system being solved is

A · h = a.

We want to solve this equation under the constraint that h > hmin.

• The algorithm goes through the nodes in h, and if one is found to not
satisfy the minimum thickness condition, it is set as active and added to
a set of active nodes.

• For each active node i, the Dirichlet condition hi = hmini is introduced by
changing row i in the system matrix to Aij = δij , where

δij =

{
1, if i = j,

0, if i ̸= j,

and the ith entry of the body force to ai = hmini, resulting in the con-
strained equation

A′ · h′ = a′.

• Solve the constrained equation in the previous step for h′.

• Obtaining h′, it’s put into the unconstrained system, replacing h. A
residual is defined as

R = A · h′ − a.

This residual can physically be interpreted ad the additionally needed
ablation at the nodes for the requirement of the minimum ice thickness.

• If an active node i now complies with hi > hmini it is set as inactive and
removed from the set if and only if Ri < 0.

• This is repeated until there’s no change in the set of active nodes and the
convergence criteria for the free surface solver is met.

Forcing this constraint using the algorithm results in altered forces within the
ice, which in turn results in altered velocities.
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3.5 Error estimation
In order to compare the results, an error needs to be estimated. In this section,
the equations used for error calculations are introduced.

3.5.1 Error Calculation

Let h be the experiment, and h∗ be a reference solution. Then the total error
for the variable in question is calculated as

ϵ =
1

|Ωh|

∫
Ωh

|h− h∗| dx. (3.36)

3.5.2 Velocity Magnitude

Comparing the differences in velocity for vx and vz separately might give an idea
of the errors, but for a complete picture a comparison of the absolute velocity
needs to be done. To be able to calculate the error of the whole velocity, rather
than vx and vz by themselves, velocity magnitude is used.

Let vx1
, vx2

, ..., vxn
be the velocities in n different directions. Then the ve-

locity magnitude, V , is calculated as

V =
√
v2x1

+ v2x2
+ ...+ v2xn

. (3.37)

3.6 Numerical experiments
The aim of the experiments are to investigate how simulations behave using
the FSSA together with the minimum thickness condition. The algorithm for
minimum thickness is already implemented in Elmer/Ice, so we run simulations
without FSSA first as benchmarks to compare with the simulation using FSSA.

As described in part 3.3, the FSSA approximates the domain for the next
time step, to more accurately calculate the velocities of the ice when solving
the discretization of the Stokes equations. The FSSA, however, may not fully
account for the minimum thickness condition, which is applied when calculating
the surface. With this in mind, our hypothesis is that the velocity field for the
FSSA will be different, as it is possible the condition zs > zb + hmin will not
hold when solving the Stokes equations when the glacier is retreating. For the
point at which the glacier reaches hmin, the word limit is used.

All experiments are simulated for 500 a (years), where we chose to look at the
period from 100 a to 200 a. The reason for this is that before 100 a, the glacier
was advancing at some moments. We are interested in the retreating case, as
that is when the nodes become active with the minimum thickness condition.
If the glacier is advancing, there is no need to check that h > hmin as we are
increasing thickness. For comparison, there is no need to use a longer period
than 100 a.

The first experiment is our reference solution, using forward Euler. Here we
use a much smaller time step to get a more exact solution to compare our next
experiments with, i.e. θ = 0 for the simulation in equation 3.34. Experiment 2
is with the same solver as the reference solution, with a larger time step. Ex-
periment 3 is the same solver, but with FSSA implemented, i.e. the simulation
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with θ = 1, with the same time step as Experiment 2. Experiment 4 compares
the evolution of the surface and the velocities for 10 a for a simulation with
θ = 0 and a simulation with θ = 1, starting at 100 a, with a smaller time-step
but still larger than the reference solution.

3.6.1 Perlin Glacier

The glacier used for the experiment is a 2D “Perlin” synthetic glacier. This
means the bedrock is generated by using Perlin noise, that produces smooth,
psuedo-randomly generated terrain. How this is done is described in detail in
[5]. The glacier used here is the moderately sloping glacier in that thesis, with
some data pre-processing used on the lower limit. For a picture of the glacier
at the start of our simulations (0 a), see Figure 3.1.

Figure 3.1: The initial look of the Perlin glacier.

The horizontal extent of the domain is Lx = 8000 m, and the bedrock is
sloping, with undulations, starting at a high point of 800 m at x = 0 and going
down to 5 m at x = 8000. To build up a glacier on the bedrock a positive
accumulation function is used:

a(x) = max

(
1− 3x

Lx
, 0

)
.

This function will linearly decay along the horizontal coordinates, with a maxi-
mum at x = 0.

Accumulation and sliding conditions are present. The boundary conditions
imposed are those described in Section 2.3.4.

The data pre-processing used was to set the minimum thickness condition
to hmin = 10. This was done by creating a copy of the file describing the
bedrock and modifying it. The bedrock is described in a file consisting of two
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columns. The first column contained the position in the horizontal plane, and
the second column described the height of the bedrock. In order to set the
minimum thickness condition to hmin = 10, the value 10 was added to all values
in the second column using a Python script. This new file was then used as zs
lower limit.

Note that since the glacier is two dimensional, the y-dimension does not exist
for the domain. Only the x-axis and the z-axis are considered.

3.6.2 Mesh

The mesh that is used is a structured mesh, with an equidistant grid in the x-
direction, having different distances between nodes in the z-direction depending
on the ice-thickness. The mesh uses triangles as the finite elements. There
are five equidistant layers of nodes in the z-direction, with five nodes in the
z-direction being placed every 20 meters in the x-direction. This means the
mesh consists of a total of 2000 nodes.

3.6.3 Solution Algorithm of Elmer/Ice for the Explicit Euler Method

The time-stepping used in these simulations are the explicit Euler method. How
Elmer/Ice updates the Stokes and the free-surface equation each time-step, is
explained in Algorithm 3.1. The procedure for the explicit Euler method is
taken from [5].

Algorithm 3.1 Explicit Euler Method
Let ∆t be the size of the time-step and k the current time-step.
1. Solve the Stokes equations for uk on the domain Ωk.
2. Solve the free-surface equation for the new velocities uk acquiring the new
domain Ωk+∆t.
3. Start over with the next time-step k + 1.

3.6.4 Experiment 1: Reference Solution

The first experiment is a reference solution, a benchmark to compare our other
experiments with. We expect the simulations to become less accurate the larger
the time-step, so for this experiment we let the time-step be small: 0.5 a. The
simulation was performed with θ = 0 in Equation 3.34, i.e. FSSA is not acti-
vated.

We need a reference simulation so we can compare the performance of our
other simulations with something we expect to be accurate.

3.6.5 Experiment 2: Larger Time-Step

Experiment 2 is the same simulation as in Experiment 1, with the difference that
the time-step now is 5 a. With a smaller time-step, the simulations take longer
to run, as in each time-step the discretized Stokes equations and free-surface
equation have to be solved.
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3.6.6 Experiment 3: FSSA Implementation

For this experiment, we set θ = 1 in Equation 3.34. We use the same time-step
as in Experiment 2, i.e. 5 a. Hence, we can both compare this experiment with
how Experiment 2 perform, and the accuracy using the reference simulation in
Experiment 1.

3.6.7 Experiment 4: Comparison with smaller Time-Step

This experiment was designed after seeing the results of the Experiment 1,
Experiment 2 and Experiment 3. The purpose of this experiment is to look
at the geometry at the nodes close to the limit, where the minimum thickness
constraint comes into play.

Starting at the state of the reference simulation at 100 a, a simulation with
θ = 0 and a simulation with θ = 1, both with a time-step of 1 a, is performed
until 110 a. The smaller time-step is to avoid instabilities. To explain how the
FSSA together with the minimum thickness constraint affect the velocities at
the limit of the glacier, errors for each time-step between the simulation with
θ = 0 and the simulation with θ = 1 are shown.
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4 Results
Here, the results of the four experiments performed are presented. The glacier
advanced for some parts of the first century, and since our interest lies in the
retreating case, the experiments start at 100 a.

4.1 Experiment 1: Reference Solution
Experiment 1 is the reference solution, with a time-step of 0.5 a. As this sim-
ulation is for 500 a, just like Experiment 2 and Experiment 3, there are 1000
time-steps in which the Stokes equation and the free-surface equation are solved.
This can be seen in Table 4.1, where Experiment 1 has a five times longer run-
time than Experiment 3.

For the reference solution, we see in Figure 4.1 the glacier melting as time
passes. For 100 a and 150 a, the limit of the glacier, where the minimum
thickness condition is found, is between the points x = 6500 and x = 7000. For
200 a the limit is at x ≈ 5750. Thus, the glacier is retreating during our time
period.

We can also find the limit by looking at Figure 4.2. Here we clearly see that
the ice thickness reaches the minimum value of hmin = 10 at x = 7000 for 100
a, about x ≈ 6750 for 150 a, and around x ≈ 5750 for 200 a. From this we can
conclude that the glacier retreated faster in the period 150-200 a than in the
period 100-150 a.

Figure A.1 in the Appendix shows the velocity in both x- and z-direction
for the limit of the glacier. The velocity of the ice slows down over time, but
tends toward a steady state.

Figure 4.1: The development of the glacier at the limit of Experiment 1: Refer-
ence solution.
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Experiment Runtime
Experiment 1 49 minutes, 48 seconds
Experiment 2 4 minutes, 35 seconds
Experiment 3 9 minutes, 27 seconds

Table 4.1: Table over the runtime for each experiment.

Figure 4.2: Ice thickness at the limit of Experiment 1.

4.2 Experiment 2: Larger Time-Step
In Experiment 2, we run the same simulation as Experiment 1, but with a larger
time-step of 5 a. Thus, it is the same experiment as Experiment 3, but with the
difference that θ = 0, i.e. FSSA inactivated.

Figure A.2 in the Appendix shows that the limit is at x ≈ 4500 for all
three time-steps looked at. Moreover, the glacier is growing in thickness as time
goes on. For 100 a, there are two isolated regions past the limit where the ice
thickness is larger than hmin = 10. In Figure A.3 in the Appendix, this becomes
more clear, as we see the three tops for 100 a, and that the line for 150 a is
above 100 a, and the line for 200 a is above them both. The velocity, found
in Figure A.4 in the Appendix, we find part of the explanation for the growing
glacier. For the horizontal velocity, vx, the values of the velocity dips for 100 a
at x ≈ 4500, while for 150 a and 200 a the values of the velocity is more even
in that period.

The development of the glacier for Experiment 2 differ a lot from Experiment
1. This becomes apparent in Figure A.8, A.9 and A.10 in the Appendix. We
see that the outline for the glacier of Experiment 2 is lower than for Experiment
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Error Experiment 2 Experiment 3
Surface Elevation

100 a 40.27 2.06
150 a 24.36 2.16
200 a 13.65 1.06

Velocity Magnitude
100 a 3.88 0.18
150 a 2.20 0.11
200 a 1.59 0.05

Table 4.2: Table over the error of the surface and velocity magnitude for Exper-
iment 2: Larger time step and Experiment 3: FSSA implementation, compared
to Experiment 1: Reference solution, rounded to two decimals.

1, even if the difference gets smaller the more time passes. The velocity for
Experiment 2 is closer to zero for both vx and vz compared to Experiment 1.

The magnitude of the difference in Velocity Magnitude and Surface Elevation
between Experiment 2 and Experiment 1 can be seen in Table 4.2. How the error
is calculated is described in Section 3.5.1. The meaning of “Velocity Magnitude”
is described in Section 3.5.2. The running time of Experiment 2, however, is
the shortest, as seen in Table 4.1.

4.3 Experiment 3: FSSA Implementation
Experiment 3 is the same experiment as Experiment 2, but now with the FSSA
implementation, with θ = 1, as described in Section 3.3.

The glacier outline for Experiment 3 can be seen in Figure A.5 in the Ap-
pendix. The limit for this experiment is between x = 6500 and x = 7000
for all three time-steps, with large differences between the time steps between
x = 6000 and x = 7000. The large difference in ice thickness between x = 6000
and x = 7000 is also apparent in Figure A.6 in the Appendix. The thickness
does not change as much between the time-steps for x < 6000. Surface velocity
for Experiment 3 is shown in Figure A.7 in the Appendix. The same trend as
A.5 and A.6 is seen for the velocity, with large differences between x = 6000 and
x = 7000. For that space, the velocity of both vx and vz at 200 a is essentially
zero. The velocities for the nodes at x < 5000 do not change much, with the
velocities for 150 a and 200 a being more or less the same.

Experiment 3 follows Experiment 1, the reference solution, closer than Ex-
periment 2, the same simulation as Experiment 3 except without FSSA. In
Figure A.11, 4.3 and 4.4 it is sometimes hard to see the line for Experiment 3,
as it closely follows the lines of Experiment 1. We also see this in Table 4.2,
where the error of Experiment 3 is about 5%− 10% of the error of Experiment
2, both in surface area and velocity magnitude.

The running time of Experiment 3 is about twice that of Experiment 2, as
seen in Table 4.1.

Comparing where the error is largest between Experiment 2 and Experiment
3, we can see in Figure 4.5 that Experiment 3, where θ = 1 is more exact in the
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middle of the glacier, but have a higher error at the limit. This results is, as
previously stated, probably tainted by instability in Experiment 2.

Figure 4.3: Ice thickness at the limit of the simulation for Experiment 1: Ref-
erence Solution, Experiment 2: Larger Time-Step and Experiment 3: FSSA
Implementation.

Figure 4.4: Velocity in vx and vz for the surface of the glacier at the limit
for Experiment 1: Reference Solution, Experiment 2: Larger Time-Step and
Experiment 3: FSSA Implementation.

34



Figure 4.5: The error at each node of the surface for Experiment 2: Larger
Time-Step and Experiment 3: FSSA Implementation.

4.4 Experiment 4: Comparison with smaller Time-Step
This experiment consists of two simulations. Both are started at the point for
the reference simulation at 100 a, and both run for 10 a, with a time-step size of
1 a. The difference between them is that the first simulation has θ = 0 for the θ
for FSSA in Section 3.3, while the second simulation has θ = 1. In other words,
the first simulation runs without FSSA implemented, and the second simulation
does have FSSA implemented.

For the results of this experiment, the velocity magnitude is not calculated,
but rather vx and vz are separated. This is to separate the difference between ice
flow in the x-direction and in the z-direction. For the earlier experiments, the
goal was to investigate how large of a difference there was between Experiment
2 and Experiment 3. In this experiment the goal is instead to see why there
is a difference. We are looking at differences in velocities, because velocities
are calculated with the Stokes equations, and it is for the Stokes equations
the FSSA is implemented. Thus, by looking at the velocities in the different
directions separately, one can deduce wether there is a larger difference in how
the velocities differ.

The Figures 4.6, 4.7, 4.8 and A.12 (the last one found in the Appendix) are
all taken from 103 a. This year was chosen because it is the first year where
there is a difference of ice thickness between θ = 0 and θ = 1, see 4.3.

From these figures, it is easy to see that at the limit of the glacier the
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Diff vx vz Thickness Surface
101 a 0.0425 0.0079 0.0000 0.0000
102 a 0.0413 0.0075 0.0000 0.0029
103 a 0.0402 0.0071 0.0032 0.0063
104 a 0.0392 0.0069 0.0062 0.0088
105 a 0.0382 0.0066 0.0089 0.0114
106 a 0.0372 0.0064 0.0115 0.0142
107 a 0.0363 0.0062 0.0140 0.0165
108 a 0.0353 0.0060 0.0162 0.0184
109 a 0.0344 0.0059 0.0184 0.0201
110 a 0.0335 0.0058 0.0204 0.0226

Table 4.3: Table over the the absolute difference of value for the horizontal
velocity, the vertical velocity, Ice Thickness and Surface Elevation between Ex-
periment 4: θ = 0 and Experiment 4: θ = 1, rounded to four decimals.

horizontal velocity is lower for the θ = 1 simulation, but higher for the vertical
velocity for the θ = 1 simulation, both compared to the θ = 0 simulation.

In Table 4.3 the absolute value of the difference in values between the θ = 0
simulation and the θ = 1 simulation are shown for each time-step for this exper-
iment. In the table, one can see that the difference between ice thickness is the
greatest at the last time-step, since the different velocities for the two simula-
tions at that point have made maximum impact for this simulation. Something
else to notice as well is that for each time-step taken the difference in veloc-
ity between the θ = 0 simulation and the θ = 1 simulation is decreasing for
both vx and vz. This could mean both of these value are converging towards a
steady-state for velocities.
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Figure 4.6: The velocities for vx for Experiment 1: Reference Solution, Experi-
ment 4: θ = 0 and Experiment 4: θ = 1 at the limit for 103 a.

Figure 4.7: The velocities for vz for Experiment 1: Reference Solution, Experi-
ment 4: θ = 0 and Experiment 4: θ = 1 at the limit for 103 a.
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Figure 4.8: The ice thickness for Experiment 1: Reference Solution, Experiment
4: θ = 0 and Experiment 4: θ = 1 at the limit for 103 a.
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5 Discussion
In Section 4 four experiments were carried out. Experiment 1, 2 and 3 were
all for the time period 100-200 a, and Experiment 4 was for the time period
100-110 a. The time periods were chosen based on our interest in the retreating
case of the glacier, and for the first century of the simulations the glacier was
at occations advancing.

5.1 Analysis of Results
Experiment 1 was a reference solution, with a small time-step of 0.5 a without
FSSA. Experiment 2 was a simulation with a large time-step of 5 a, also without
FSSA. Experiment 3 was a simulation also with a large time-step of 5 a, with
FSSA activated, θ = 1 for the θ in Equation 3.34. This means that when the
velocities were calculated by solving the Stokes equations, they were done so over
an approximation of how the surface looked in the next time-step. Experiment
4 was two simulations with a time-step of 1 a, one without FSSA and the other
with FSSA.

From our results we see that Experiment 3 was much more accurate than
Experiment 2 compared to Experiment 1, both in velocity magnitude and sur-
face elevation. Even though Experiment 3 was slower to run than Experiment
2, it is possible that we could take larger time steps, speeding up the simulation,
and still be in an acceptable range of accuracy. This was shown in [2] for an
advancing glacier, where the time-stepping could be increased by a factor of
thirty or more and without loss of accuracy.

The surprise was that Experiment 2 showed significant error compared to the
reference solution. This might be because of instability in Experiment 2, since
the time-step was 5 a, which is quite large. The large differences in velocity
between the experiments can be explained by that there is a large difference
in the surface at these time-steps. The errors of both Experiment 2 and 3
decreases as time passes. This could possibly be explained by that the glacier
is retreating. This means there’s fewer amount of nodes where there can be an
error, as the minimum thickness condition is met for all experiments on a larger
part of the glacier the longer the simulations run. Graphing where the errors
were the largest between Experiment 2 where θ = 0 and Experiment 3 where
θ = 1 shows that the errors were larger for θ = 1 at the limit of the glacier,
but smaller at the middle of the glacier. This last find was however tainted by
instability in Experiment 2.

For Experiment 4, a difference in the velocities was found between the two
simulations. The consequence of this was a growing difference between the two
simulations for the ice thickness and surface for each time-step. The difference
for the velocities between the simulations with θ = 0 and θ = 1 did however get
smaller for each time-step. This could be explained by the fact that the glacier
is retreating, just as explained in the previous paragraph. Since the glacier is
retreating, it is flatter in time-step k + 1 compared to time-step k.

The slower horizontal velocities for θ = 1 can be explained by the FSSA
not taking the minimum thickness condition into consideration. This means the
slope of the glacier could become more flat, giving slower horizontal velocities.
The higher speeds for the vertical velocities for θ = 1 could then be a conse-
quence of the slower horizontal velocities. Equation 2.47 says that the derivative
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of the horizontal velocities and the vertical velocities must be zero:

∇ · u = 0,x ∈ Ω. (5.1)

The slower horizontal velocities gives a smaller change of velocity than for θ = 0,
making the vertical velocities have a larger change of velocity to compensate,
to fulfill the condition given in 2.47.

Our hypothesis was that solving the Stokes equations using FSSA would give
incorrect velocities at the limit, since it does not take the minimum thickness
condition into consideration. This was confirmed by Experiment 4, as the veloc-
ities at the limit were different for θ = 1 compared to θ = 0. The difference in
velocities was, however, minimized with each time-step. In simulating glaciers,
we are mostly concerned with the evolution of the surface. This is because the
surface evolution shows the mass loss of the glacier over time. The velocities of
the glacier are only calculated to be used in calculations of the surface evolution
for each time-step. The question if the different velocities calculated by using
the FSSA causes a large difference in surface further down the line. Experiment
2 and 3 showed that the method using the FSSA was more exact, but no con-
clusions can be drawn since there is a large possibility Experiment 2 suffered
from instability.

5.2 Importance of Simulating Glaciers
The reason for simulating ice sheets and glaciers is the expected rise in sea levels
due to ice sheets and glaciers losing mass. The mass of glaciers consists of frozen
water, and when they melt, the water end up in the oceans. As described in [1],
mass loss is certain for the Greenland Ice Sheet and probable for the Antarctica
Ice Sheet in the near future. Consequences for mass loss from these massive ice
sheets, according to [18], include but are not limited to fresh water availability,
severe flooding and coastal hazards for communities placed at low level elevation
coastal zones, existing in both developed and developing countries. In order to
take counter measures and mitigate the problems rising sea levels cause, the
need to accurate model the mass loss of ice sheets and glaciers is crucial.

In this thesis, the FSSA method, just recently applied to ice sheet modelling
by [2], is tested for accuracy in geometry and velocity for a retreating glacier. If
the method is proven reliable for simulating glaciers, it could be applied to get
more accurate estimates of future rising sea levels.

5.3 Further Development of Numeric Methods
The Antarctic Ice Sheet and the Greenland Ice Sheet are the largest on earth.
As such, their contribution to rising sea levels are expected to be great if they
continue to lose mass. At the same time, their size make them hard to model.

Today’s simulations of ice sheet and glacier melt relies on solving the Stokes
equations. These are computationally expensive, and thus require better and
more effective numerical methods to reliably be solved with accuracy and speed.
Faster models can also simulate ice sheets at a higher resolution, i.e. more nodes
in the mesh, giving more reliable predictions. The development of new numerical
methods for simulations needs to be tested and assured to be robust as well, as
to not give inaccurate or false predictions.
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In order to check that the simulation is robust, it is compared to a reference
simulation, in this thesis represented by Experiment 1. Taking a smaller time-
step is expected to give a more accurate solution, as those are not as prone to
being affected by numerical instabilities.

The FSSA is a stabilization algorithm, implemented with the intention to
be take larger time-steps without causing instability. It does this by solving the
Stokes equations over an approximation of how the surface will look in the next
time-step, by using Reynold’s transport theorem, explained in Section 3.3.

In a previous article, [2], on using FSSA for ice sheet modeling, it was shown
the FSSA increased the largest stable time-step by a factor of over 30, speeding
up simulations without losing accuracy. The largest increase in time-stepping
was seen for a semi-implicit Euler method. These experiments were done on an
advancing glacier. The model with the FSSA was less exact at the limit of the
glacier, but more exact in the middle of the glacier.

This experiment, using an explicit Euler method, showed that for the limit
at the glacier, where the minimum thickness condition is applied, the error for
the velocities are decreased with each time-step. This might be because of that
the glacier is retreating. The results of the earlier experiments was most likely
tainted by instability, but the conclusion that implementing the FSSA stabilize
time-stepping with larger time-steps can still be drawn. Just as in [2], the larger
errors of the surface were close to the limit, but it was more exact for in the
middle. These findings in this thesis was most likely tainted by instability. As
opposed to [2], these experiments were done on a retreating glacier.

The results from the earlier article, together with the results from this thesis,
shows promise for using the FSSA as a stabilization algorithm. The results of
this thesis also needs to be compared to results of using an explicit Euler method
for the time-stepping instead.

5.4 Outlook
Moving forward, Experiment 4 should be repeated for a longer time duration.
Keeping the time-step at 1 a is recommended to avoid instability for the non-
FSSA simulation. The experiment should run for a longer time than 10 years
to see if the velocities for the simulations with θ = 1 and θ = 0 keeps getting
closer, and check if this eventually trivialize the difference in velocities between
θ = 0 and θ = 1. This experiment can also check if the initial differences in
velocities cause large differences in the surface of the glacier and ice thickness
over a longer time-period than 10 years. Since it is the surface evolution that is
most interesting when simulating glaciers, this last suggestion is of great interest.
The error of the surface should be analyzed using these simulations in order to
see if the error for the simulation with θ = 1 is still lower in the middle but
higher at the limit than the simulation using θ = 0.

The results from Experiment 4 should also be compared to a reference simu-
lation to see if simulations with θ = 1 have a larger error than simulations with
θ = 0, rather than just conclude that there is a difference in velocities.

A fix for the larger error where the minimum thickness condition is applied
is also needed to be developed for the FSSA. A suggestion is some kind of
condition, that if the node for the approximated domain falls below hmin, a
special kind of calculation takes place. This could be accomplished by using an
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if-statement. The if-condition checks wether zs + ũ · n̂ < zb + hmin in the FSSA
calculation. In that case, replace zs + ũ · n̂ with zb + hmin.

One could also look at different values for θ, rather than just 0 and 1, and
investigate how this changes the simulations with regards to a reference solution.
Does a tweaking of the influence of θ by using a different number than θ = 1
decrease or increase the error at the limit of the glacier?

Once enough is known about the FSSA for ice sheet modelling, one would
need to compare this method with other numerical methods on real ice sheet
environments. The Marine Ice Sheet Model Intercomparison Project (MISMIP)
[19] aim to compare different numerical methods of the grounding line for ice
sheets. The grounding line is the zone where a floating ice sheet meets the ocean.
It would be interesting to see how the FSSA does in velocity and geometry
compared to other numerical methods in simulating this complicated area of ice
sheet modelling.
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6 Conclusion
In this thesis, the free-surface stabilization algorithm (FSSA) was investigated
with regards to the minimum thickness condition using Elmer/Ice. The FSSA
uses Reynold’s transport theorem to approximate the domain in the next time-
step when solving the Stokes equations, thus mimicking a fully implicit time-
stepping scheme. The minimum thickness condition is an algorithm that makes
sure the ice thickness of the glacier does not go below some decided hmin. The
FSSA, when approximating the domain in the next time-step, does not take the
minimum thickness condition into consideration. The method using FSSA was
compared to a method with the same time-step, and a reference solution. The
behaviour of the FSSA at the limit, where the minimum thickness condition be-
comes relevant, was also investigated. All simulations were done on a retreating
glacier.

The main finding was that the method using the FSSA was more stable
for the same time-step as the method without FSSA. The error of the surface
for the method using FSSA was lower in the middle but higher at the limit of
the glacier. Another finding was that different velocities were calculated for the
FSSA at the limit compared to a method without the FSSA where the minimum
thickness condition becomes relevant, for a small time-step. The differences in
velocity for the FSSA for a small time-step, though, became smaller with each
time-step.

These findings points towards the FSSA showing promise as a stabilization
algorithm for ice sheet modelling, however more research is needed to prove the
FSSA as a robust algorithm for improving glacier and ice sheet simulations.

43



Appendices
A Extra Graphs

A.1 Graphs on Experiment 1

Figure A.1: Velocity in vx and vz for the surface of Experiment 1: Reference
Solution.
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A.2 Graphs on Experiment 2

Figure A.2: The development of the glacier at the limit of Experiment 2: Larger
Time-Step.

Figure A.3: Ice thickness at the limit of Experiment 2: Larger Time-Step.
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Figure A.4: Velocity in vx and vz for the surface of the glacier at the limit for
Experiment 2: Larger Time-Step.

A.3 Graphs on Experiment 3

Figure A.5: The development of the glacier at the limit of Experiment 3: FSSA
Implementation.

46



Figure A.6: Ice thickness at the limit of Experiment 3: FSSA Implementation.

Figure A.7: Velocity in vx and vz for the surface of the glacier at the limit for
Experiment 3: FSSA Implementation.
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A.4 Graphs comparing Experiment 1 and Experiment 2

Figure A.8: The development of the glacier at the limit of Experiment 1: Ref-
erence Solution and Experiment 2: Larger Time-Step.

Figure A.9: Ice thickness at the limit of Experiment 1: Reference Solution and
Experiment 2: Larger Time-Step.
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Figure A.10: Velocity in vx and vz for the surface of the glacier for Experiment
1: Reference Solution and Experiment 2: Larger Time-Step.

A.5 Graph comparing the outline of Experiment 1, 2 and
3

Figure A.11: The development of the glacier at the limit of the glacier for Exper-
iment 1: Reference Solution, Experiment 2: Larger Time-Step and Experiment
3: FSSA Implementation.
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A.6 Graphs for Experiment 4

Figure A.12: The surface for Experiment 1: Reference Solution, Experiment 4:
θ = 0 and Experiment 4: θ = 1 at the limit for 103 a.
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