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Abstract

In this report, a vehicle fleet optimization problem at a leading Swedish whole-
saler and service supplier is formulated and analyzed with the purpose of reducing
the fleet overcapacity. The relation to established routing and scheduling prob-
lems is discussed and three heuristic methods, Simulated Annealing, Tabu Search
and Genetic Algorithms, are implemented. The methods are evaluated based on
their ability to reduce the fleet size, while still adhering to the constraints of
the problem. The results indicate that the Genetic Algorithm produces the best
solutions and that it is possible to reduce the capacity violations of the origi-
nal solution. Due to limitations in data, conclusions regarding the overcapacity
cannot be stated and is a task recommended for further research with additional
data.

Sammanfattning

I den här rapporten formuleras och analyseras ett fordonsoptimeringsproblem
hos en ledande svensk grossist och tjänsteleverantör med målet att reducera flot-
tans överkapacitet. Relationen till etablerade rutt- och schemaläggningsproblem
diskuteras och tre heuristiska metoder, Simulerad Härdning, Tabu-sökning och
Genetiska Algoritmer, implementeras. Metoderna utvärderas baserat på deras
möjlighet att reducera fordonsflottans storlek, medan de fortfarande följer de krav
problemet förutsätter. Resultatet visar att den Genetiska Algoritmen producerar
de bästa lösningarna och att det är möjligt att reducera kapacitetsöverträdelserna
i orginallösningen. På grund av begränsningar i tillgänglig data kan inte slut-
satser kring överkapaciteten dras och lämnas istället till vidare undersökningar
med ytterligare data.
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1 Introduction

The company, denoted as WoS, together with its subsidiaries, operates in the
food and logistics sectors, providing services to hotels, restaurants, stores and
other establishments. Every day, from warehouses located in different parts of
Sweden, thousands of deliveries are conducted to ensure both customer satisfac-
tion and progress towards environmental goals. These tasks involve challenges
such as smart route planning and effective operation.

1.1 Current approach at the company
The current way of operating the vehicle fleet at WoS, in regards to deliveries
to their customers, consists of two parts. The first step includes construction
of routes that fulfill the demands set by their customers, while still remaining
within certain constraints selected by WoS. This is currently well executed at
the company and results in suitable routes being created and implemented.

The second step consists of assigning a vehicle from their vehicle fleet to each
specific route, with the constraint that each vehicle already is assigned to a
specified depot. This is done in their route management system as well as
manually, partially relying on the experience of their employees to create a
satisfactory solution.

This way of working currently results in WoS having a larger fleet size than
intended, since they report an overcapacity exceeding the desired level at ten
percent. As a result the question of whether or not the overcapacity can be
reduced arises.

The purpose of this thesis is therefore to analyze the current situation at WoS
and to examine different optimization techniques applicable to this problem.
Furthermore, the goal is to be able to produce an approximate optimal solution
to propose solutions or strategies to lower the overcapacity.

1.2 Prerequisites
In order to customize the solution specifically to WoS, they provided a data set
collected from their organization. The received data consists of two lists. The
first includes pre-optimized routes executed during a week in October 2024,
where each route has the following attributes: name, home-depot, date, du-
ration, necessary vehicle capacity and registration number of the vehicle that
executed the route. The second list consists of all available vehicles in WoS’s ve-
hicle fleet, including attributes: registration number, current home-depot, euro
class, fuel-type and capacity.

The received data had not been formatted, and as a result, certain attributes
of specific vehicles or routes were either missing or not representative of reality.
The solution to this problem, agreed upon together with WoS, was to eliminate
the routes and vehicles with extreme deviations and replace missing pieces of
data with the mean of the respective column.

Another problem concerning the received data is that the starting times for each
route were not available. In agreement and cooperation with WoS, the starting
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times were therefore constructed from knowledge of the general distribution of
the route starting times. This was done by generating random numbers from
a uniform distribution and for each number a corresponding random start time
was generated within the represented percentage slot.

These solution methods allowed the majority of the dataset to be used and
enabled a better representation of reality, compared to not having any knowledge
regarding the starting times. In addition, these solutions also created a degree
of uncertainty early on in the process. They may have introduced inaccuracies
that must be considered when later making conclusions.

1.3 Problem formulation
In this section the problem at WoS, henceforth referred to as the WoS Problem
(WSP), will be formulated and explained both in general and mathematically.

1.3.1 General description

The WSP optimization problem can be described as follows. One has a hetero-
geneous vehicle fleet, a fleet consisting of different types of vehicles, and a set of
routes the fleet has to cover. Each route belongs to a specific depot and has to
be executed at a specific time. In addition, all routes have their own capacity
constraints needed to be fulfilled by the assigned vehicle. When determining
where to place each vehicle, certain vehicles should be prioritized, such as if it
is an electrical vehicle or by their euro class.

Given these conditions and constraints the desire is to assign routes to vehicles
in order to obtain a solution that optimizes the fleet, primarily regarding size
but also considering vehicle type. The result of this can then be used to reduce
the overcapacity within the fleet by analyzing the solution and adapting the
current fleet assignments.

1.3.2 Mathematical definition

The WSP is characterized by several constraints and trade-offs. In order to
optimize the problem it is necessary to have a mathematical understanding
and overview of it. The mathematical formulation of this problem is therefore
specified in this section.
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Starting with the following definitions:

Sets Definition
V The set of available vehicles, |V | = n

R The set of routes, |R| = m

Constants Definition
n Number of available vehicles
m Number of routes
Ij Time interval for route j
ei Integer representing the type of vehicle i
ci Capacity of vehicle i
dj Demand of route j

depotj The depot route j originates from
Variables Definition

yi Binary variable such that yi =

{
1 if vehicle i is used
0 otherwise

xij Binary variable such that xij =

{
1 if vehicle i is assigned route j

0 otherwise

tjk Binary variable such that tjk =

{
0 if Ik ∩ Ij = ∅
1 otherwise

hjk Binary variable such that xij =

{
0 if depotj = depotk
1 otherwise

Table 1: Table of definitions for the WSP

the aim is to minimize

F =

n∑
i=1

yi +

n∑
i=1

yi · ei

=

n∑
i=1

yi

(
1 + ei

) (1)

such that (2)-(6) hold.

n∑
i=1

xij = 1 , ∀j (2)

yi = min

(
1,

m∑
j=1

xij

)
, ∀i (3)

m∑
j=1

djxij ≤ ci , ∀i (4)
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tjk + xij + xik − 2 ≤ 0 , ∀i,∀j,∀k, j ̸= k (5)

hjk + xij + xik − 2 ≤ 0 , ∀i,∀j,∀k (6)

In this formulation the objective function F in (1) minimizes the number of
vehicles and prioritizes certain vehicle types. Equation (2) ensures that each
route is assigned exactly one vehicle, equation (3) that if a vehicle is assigned
a route it must be used, equation (4) that there are no capacity constraints
violations, equation (5) that there is no time overlap of two routes assigned
to the same vehicle and equation (6) that all vehicles and its assigned routes
originate from the same depot.

This mathematically captures the different aspects of the problem, enabling it
to be optimized with all constraint being addressed.

1.4 Previous research and Related theoretical problems
This section discusses previous research regarding similar problems, such as the
Vehicle routing problem and Vehicle scheduling problem, and their connection
to the WSP.

1.4.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) was first introduced by G. B. Dantzig
and J. H. Ramser in 1959 [1] and has since resulted in a substantial amount of
research. The problem, although well-studied and implemented, has, because of
the many constraints needed to fit an actual real life scenario, no one universally
accepted definition. Instead the research has mainly focused on the standardized
version of the VRP, recognizing that many of the implemented algorithms can
be customized to fit the needs of several problem formulations with additional
constraints. The standardized, also referred to as classical, VRP consists of
constructing m vehicles routes that start and end at a depot such that each
customer is served by exactly one vehicle, the total demand of each route does
not exceed the total capacity and simultaneously minimizing the total routing
cost [5]. The problem is defined mathematically in Definition 1.

Definition 1. The Vehicle Routing Problem [5]

Let G = (V,E) be an undirected graph with vertex set V = {0, 1, ..., n} and
edge set E = {(i, j) | i, j ∈ V, i ̸= j}. Vertex 0 represents the depot at
which there are located at most m identical vehicles of capacity Q. With
each customer i ∈ V \ {0} is associated a non-negative demand qi ≤ Q. A
cost matrix cij is defined on E. The problem is then:

Minimize

∑
[i,j]∈E

cijxij (7)
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subject to ∑
j∈V \{0}

x0j = 2m , (8)

∑
i<k

xik +
∑
k<j

xkj = 2 (k ∈ V \ {0}) , (9)

∑
i∈S,j /∈S or i/∈S,j∈S

xij ≥ 2b(S) (S ⊂ V \ {0}) , (10)

xij = 0 or 1 (i, j ∈ V \ {0}) , (11)

x0j = 0, 1 or 2 (j ∈ V \ {0}) . (12)

Where xij is an integer variable representing the number of times edge [i, j]
appears in the optimal solution and b(S) is a lower bound on the number of
vehicles required to serve all customers of S.

In Definition 1 equation (8) ensures that the same number of vehicles leaving
the depot are also returning. Equation (9) ensures that exactly one vehicle
visits each customer, since the constraint concludes that there are exactly two
incident edges of each customer vertex. Equation (10) ensures that for each
subset of customers there is both a trip to and from the subset for each vehicle
assigned to a customer in the subset and it must be larger than the smallest
amount of vehicles required to serve all customers in S. Lastly, equations (11)
and (12) describe the integer variable xij .

A modification of the VRP is the Capacitated VRP (CVRP) and it is the most
studied version of the problem. It introduces a capacity constraint where each
customer has a demand and where the sum of the demands of each customer on
a route cannot override the capacity of the assigned vehicle [7]. Other variants of
the VRP include the VRP with Time Windows (VRPTW), introducing a time
constraint for each customer [4], or the Green VRP (GVRP), which aims to
address issues regarding sustainable transportation with a goal of balancing the
trade-off between economic and environmental concerns while still producing
effective routes [11]. A fourth variant is the Multi-depot VRP (MDVRP) where
the set of depots is not equal to one and therefore vehicles can depart from
different depots [7].

Another alternative variant of the VRP, that is constructed to consider sev-
eral additional layers of complexity and therefore enabling the problem to be
customized to fit certain real-life situations, is the Multi-Depot Heterogeneous
Fleet Periodic Capacitated VRP with Time Windows (MDHFPCVRPTW). It
has been found that the success of finding a solution to such a problem can
depend on how one formulates it mathematically. The number of indices used
on the variables effected the solutions [10].

When dealing with multi-objective VRPs, for example with both financial and
environmental goals, one solution is to combine the two objectives and use
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weights to create a single-objective function. However, these approaches heavily
depend on the assigned weights and to escape that problem one can instead chose
a solution technique able to consider multi-objectives [7].

1.4.2 The Vehicle Scheduling Problem

The Vehicle Scheduling Problem (VSP) has been studied extensively during
the last 50 years and therefore has many different formulation approaches. In
general, the problem consists of the following. Given a set of routes with fixed
departure time, arrival time, start location and end location, find an assignment
of routes to vehicles such that each route is covered exactly once, each vehicle is
assigned a feasible sequence of routes and the total cost is minimized. This can
mathematically be represented as finding the minimum cost flow of a network
described in Definition 2 [6].

Definition 2. The Vehicle Scheduling Problem [6]

Consider a network. Let N be the set of all nodes in the network, A the set
of all arcs and AT the set of route arcs. The decision variable xij represent
the flow on the arc (i,j) in the network and cij is the operational costs of
taking route i directly after route j.

Minimize ∑
(i,j)∈A

cijxij (13)

such that

∑
i:(i,j)∈A

xij −
∑

i:(i,j)∈A

xji = 0 , ∀n ∈ N, (14)

1 ≤ xij ≤ 1 , ∀(i, j) ∈ AT, (15)

xij ≥ 0. (16)

In Definition 2 equation (14) ensures that the flow, which are vehicles in the VSP
case, entering and exiting a node is equal, equation (15) that there is exactly
one vehicle assigned to each route and equation (16) that the flow is positive
within the network.

The VSP can be extended with additional constraints to consider more scenarios.
Some of these include the multi-depot VSP (MDVSP), where there are more
than one depot the routes can originate from. Others are the multiple vehicle
types VSP (MVTVSP), VSP with time windows (VSPTW) and the vehicle type
group VSP (VTGVSP) [6].
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1.4.3 NP-hardness of the VRP and VSP

The VRP is an NP-hard problem which indicates that it cannot be solved in
polynomial time [2].

The VSP has in contrary time complexity O(n3) [2], although modified versions
of the problem are also NP-hard. For example the MDVSP is NP-hard [3] and
even the (MVTVSP), which is an extended version of the VSP even without
the multi-depot attribute, is NP-hard [6].

1.4.4 Relation to the WSP

One can think of the WSP in two different ways, where both solutions still
convey the same findings.

The first one being a VRP where one treats each pre-optimized route as one
single customer instead of a route consisting of several customers. The problem
is then treated as a regular VRP with the additions of green thinking, a hetero-
geneous fleet, capacity constraints, time windows and multiple depots, with the
multi-objective of minimizing the fleet size and total cost. It would therefore
conclude in the Green multi-depot capacitated heterogeneous fleet VRP with
time windows (GMDCHFVRPTW).

On the other hand one can think of the WSP as a scheduling problem and
therefore as a VSP. In this formulation it is also necessary to include green
thinking, multiple depots, multiple vehicle types (also referred to as heteroge-
neous fleet in the VRP case), vehicle type groups (in this case equivalent to a
capacity constraint in the VRP case) and time windows and. The problem then
becomes the Green multi-depot multi-vehicle type vehicle type group VSP with
time windows (GMDMVTVTGVSPTW).

These formulations are equivalent, since they portray the same problem (the
WSP), but they differ in the way one might experience and approach the prob-
lem.

1.5 Solution techniques for VRP and VSP
There are several different solution approaches to the VRP including exact al-
gorithms, heuristics and meta-heuristics [7], the latter being solution methods
that combine local improvement and higher level strategies to search the so-
lution space in a robust way and being capable of escaping local optima [8].
Some of the best known exact algorithms can solve for up to 200 customers, but
for real life scenarios that has to be solved in reasonable time and with large
instances heuristics are required [7].

In the years following 2004 the majority of the evolution of heuristic techniques
focused almost exclusively on meta-heuristics, which have been able to solve
problems with up to 500 customers. In general these meta-heuristic approaches
can be categorized into local search methods, such as simulated annealing, tabu
search, iterated local search and variable neighborhood search, and population-
based heuristics, such as ant colony optimization, genetic algorithms, scatter
search and path relinking. Today, hybrids of these meta-heuristic approaches
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are becoming increasingly common, making it hard to determine any leading
method [7].

For the VSP, and especially regarding the MDVSP, the most common solution
methods are neighborhood search, tabu search, iterated local search and integer
linear programming [9].

A computational comparison of meta-heuristics is, because of the uniqueness
in functionality, in several ways more difficult compared to other algorithmic
comparisons. For example, one can focus solely on runtime when comparing
two exact solution techniques, but for meta-heuristics the solution quality also
need to be considered. Another aspect is that meta-heuristics can be difficult
to replicate for other researchers [8].

1.5.1 Branch-and-Cut-and-Price

The evolution of exact algorithms for the VRP has concluded in methods based
on the idea of a Branch-and-Cut-and-Price algorithm (BCP). This algorithm
combined the earlier Branch-and-Cut algorithms and column generation [7].

1.5.2 Tabu Search

Tabu Search (TS) is a local search method [7] that, in the large amount of
research papers published regarding the VRP, include several implementations
and are considered to be the top ranked ones [8][5]. The idea of TS is to avoid
local optimum by occasionally accepting non-improving moves through the use
of memory, namely a tabu list. This can avoid the circling back to previously
visited solutions and instead exploring more of the search space [8].

1.5.3 Simulated Annealing

Simulated annealing (SA) is based on the idea of physical annealing of materials
where a material is heated to the melting point and then cooled according to
a specific temperature scheme. It has been applied to a variety of combinato-
rial problems, including both scheduling and routing problems and it is widely
applied to real-life problems. The simplicity is the main benefit of SA [8].

1.5.4 Genetic Algorithm

Genetic algorithms (GA) are also a common approach to the VRP [5] and have
also been shown to be particularly useful for scheduling problems, and more
precisely resource scheduling applications [8].

The GA explores adaptiveness and diversity though the idea of natural evolution
and the algorithm starts with a population of solutions and moves to the next
generation through selected mutation and selection methods. Often, GA have
been used as function optimizers even though some have argued that it instead
is a system that adaptively finds competitive solutions in an environment where
there might not be a clear static optimal solution [8].
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1.5.5 Iterated Local Search

Iterated Local Search (ILS) has been a common and successful approach to
scheduling problems both on its own and in combination with other meta-
heuristics [8].

2 Preliminaries

In this section some notations used in the report will be explained.

Capacity violations are the number of times a vehicle is assigned a route with a
demand that overrides the vehicle capacity. A depot violation or time violation
occurs when a pair of routes with different depots or overlapping time interval,
respectively, are assigned the to the same vehicle. The number of coverage
violations indicate how many routes that are not covered by any vehicle and the
assignment violations indicate when a vehicle is marked as used, but have not
been assigned any route.

Lastly, type penalties indicate how good the vehicle selection is, considering the
order of preference of vehicles. A type penalty of zero would indicate that only
electrical vehicles have been used, since they do not result in any penalty. A
penalty of 1, 2 and 3 are added for every use of a non-electrical vehicle with
euro class 6, 5 and 4, respectively.

3 Method

The algorithms chosen to evaluate the WSP together with the method of com-
parison are presented in the following section.

3.1 Chosen methods
The methods chosen to attempt to solve the WSP are Simulated Annealing,
Tabu Search and Genetic Algorithms. They have been chosen both arbitrar-
ily and based on easy implementation, interesting concept and frequency of
appearance when researching similar problems to the WSP.

3.2 Method of computation and comparison
To enable conclusion the route set is divided into seven subsets that contain
all routes of a specific day of the week. The subset-size ranges from six to 151
routes, with an average of approximately 101 routes and median of 133 routes.

The methods are implemented in Python, where the SA algorithm uses the li-
brary "simanneal" [13], GA uses the library "pygad" [12], and TS is constructed
without libraries.

The three heuristic methods will all be evaluated following the same structure.
For every subset of routes, explained above, the algorithm will run 5 times. The
best solution and an average solution will then be retrieved. The parameters
of the algorithms were chosen such that the algorithm terminates within 20
minutes for the largest subset. The initial solution or solution population for
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SA, TS and GA are all computed via a greedy algorithm (GRA), that prioritizes
depot matching and time constraints, starting at a random route and random
vehicle each time. The GRA is constructed without libraries.

The whole set will also be evaluated with each method, but the parameters will
be altered so that the algorithm terminates within 25 minutes. This will be
done twice and then choosing the best solution for comparison.

When comparing the solutions and solution methods all attributes will be com-
pared, namely the number of vehicles, capacity violations, type penalties, depot
violations, time violations, coverage violations and assignment violations. The
attributes will be prioritized in the following order.

1. Assignment and Coverage violations

2. Depot and Time violations

3. Capacity violations

4. Number of vehicles

5. Type penalties

Furthermore, a comparison of the heuristics and the initial greedy solution will
also be made in the same way. In addition a comparison of the original fleet
size and the estimated fleet size, resulting from the computed solutions, will be
made. This to conclude if the fleet can be reduced or not, and hence also the
overcapacity.

4 Results

In this section the result of both the computational work and the way of oper-
ating at WoS will be presented. Neither one of GRA, SA, TS or GA produced
any depot, time, coverage or assignment violations. Therefore these will not be
presented since they do not differ between the methods.

4.1 Original solution at the company
The original numbers of vehicles, based on the solution retrieved from WoS, are
presented in Table 2. The actual capacity violations from the original solution
is also presented in the same table. From the original data there is a few
capacity violations to be expected regardless of vehicle assignment, since the
route demand of certain routes override the capacity of every vehicle in the
fleet. The original assignment of routes also result in a type penalty for each
subset. All of this is also presented in Table 2.
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Day Number vehicles Actual capacity violations Expected capacity violations Type penalties
Day 1 97 4 1 85
Day 2 95 2 2 82
Day 3 98 4 3 86
Day 4 92 2 2 78
Day 5 96 3 1 81
Day 6 7 0 0 3
Day 7 5 1 1 4

Whole week 115 16 10 101

Table 2: Actual number of vehicles used, actual capacity violations, expected
capacity violations and actual type penalties from the original data and solution

The results from the original solution in Table 2 show that even if there were
only 10 expected capacity violations the original solution has 16 violations.
Furthermore, the solution used 115 vehicles with a total of 101 type penalties.

4.2 Initial Greedy Algorithm
In Table 3 the result of the computations using only GRA is presented.

Number of: Vehicles Capacity violations Type penalties

Day 1
Best Solution 112 4 104

Average Solution 112 4.6 104.2

Day 2
Best Solution 112 2 105

Average Solution 112.8 2 104

Day 3
Best Solution 103 3 94

Average Solution 104 3.6 96.8

Day 4
Best Solution 92 2 80

Average Solution 91.6 3 85.6

Day 5
Best Solution 95 2 83

Average Solution 95 2.6 87.2

Day 6
Best Solution 7 0 5

Average Solution 7 0.2 7.4

Day 7
Best Solution 5 1 4

Average Solution 5 1 4.6

Whole week 128 20 118

Table 3: Result of GRA
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The solutions for each subset are fairly consistent considering the number of
vehicles, since the average solutions and best solutions vary at most one vehicle.
The same is true for the capacity violations, that also have a small deviation on
the average from the best solution. In contrast, the type penalties include more
variation, up to 5.6 in difference, and therefore do not have the same level of
consistency as for the number of vehicles or capacity violations.

For the whole time period, the whole week, the GRA would set the minimum
fleet size to 128, including 20 capacity violations and 118 type penalties, to cover
the given week of routes.

4.3 Simulated Annealing
In Table 4 the result of the computations using SA is presented.

Number of: Vehicles Capacity violations Type penalties

Day 1
Best Solution 112 4 106

Average Solution 112.2 5.2 104.6

Day 2
Best Solution 112 2 101

Average Solution 112.2 2.2 103.8

Day 3
Best Solution 105 3 97

Average Solution 104.6 3.6 97

Day 4
Best Solution 91 2 79

Average Solution 91.6 2.8 83.2

Day 5
Best Solution 95 1 88

Average Solution 95 2.2 88

Day 6
Best Solution 7 0 3

Average Solution 7 0 4.4

Day 7
Best Solution 5 1 0

Average Solution 5 1 1.8

Whole week 128 17 118

Table 4: Result of SA

The average number of vehicles does not differ more than one vehicle from
the best solution making the deviance small and therefore the method fairly
consistent regarding its solutions for each subset. The capacity violations differ
at most 1.2, but is also rather consistent. The type penalty variation is larger,
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at most 4.2, compared to the number of vehicles and capacity violations.

Furthermore, SA determines the minimum fleet to consist of 128 vehicles with
17 capacity violations and 118 type penalties.

4.4 Tabu Search
In Table 5 the result of the computations using TS is presented.

Number of: Vehicles Capacity violations Type penalties

Day 1
Best Solution 112 3 104

Average Solution 112 5.2 101.4

Day 2
Best Solution 112 2 97

Average Solution 112 2.4 102.4

Day 3
Best Solution 104 3 97

Average Solution 104.6 3.8 96.4

Day 4
Best Solution 92 2 87

Average Solution 92.2 2.8 87.4

Day 5
Best Solution 96 1 89

Average Solution 95.2 2.4 86.8

Day 6
Best Solution 7 0 1

Average Solution 7 0 1.8

Day 7
Best Solution 5 1 0

Average Solution 5 1 0.6

Whole week 128 12 117

Table 5: Result of TS

The TS solutions for each subset have a small variation in vehicle numbers, at
most 0.8, and a larger variation in capacity violations, at most 2.2, and type
penalties, at most 5.4.

In total for the whole week TS sets the minimum fleet to 128 vehicles, containing
12 capacity violations and 117 vehicle penalties.

4.5 Genetic Algorithm
In Table 6 the result of the computations using GA is presented.
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Number of: Vehicles Capacity violations Type penalties

Day 1
Best Solution 112 2 105

Average Solution 112 3 103.2

Day 2
Best Solution 112 2 98

Average Solution 112.4 2 99

Day 3
Best Solution 104 3 91

Average Solution 104.6 3 93

Day 4
Best Solution 91 2 79

Average Solution 91.8 2 79.6

Day 5
Best Solution 95 1 82

Average Solution 95 1 86.4

Day 6
Best Solution 7 0 4

Average Solution 7 0 5

Day 7
Best Solution 5 1 2

Average Solution 5 1 2.8

Whole week 128 13 118

Table 6: Result of GA

The deviance in the number of vehicles for each subset were small, 0.8, for the
GA. In addition the capacity violations were very consistent, with only one
subset including a deviation between the average and best solution with one
violation. In contrast, the type penalties had a larger variation of at most 4.4.

In total, the GA algorithm sets the minimum fleet size to 128 vehicles with 13
capacity violations and 118 type penalties.

4.6 Method comparison
When comparing the computed solutions and the original solution it is impor-
tant to note one significant limitation. The original vehicle numbers or assign-
ment of routes does not allow for an accurate comparison with the generated
solutions. This is due to the lack of original start-times, which would entail
that a computation of time deviations on the original data with the created
start-times could be very extreme only because the time intervals have shifted.
In the same way the number of vehicles needed can differ greatly if the time
intervals are shifted, making more or less routes overlap. Another aspect is that
the random assignment did not consider which routes that might be more likely
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to be executed during the day or evening. This also makes the created solution
deviate from reality and further making this comparison not be representative
of how good a solution is. Although, since the start-times were created based
on their general distribution the solutions generated from the algorithms should
not deviate extremely from the actual solution. This would then enable some
type of comparison between the methods and the original assignment of vehicles.
Therefore, the number of vehicles, capacity violations and type penalties will be
evaluated based on the original data but with this limitation in consideration.

When comparing the type penalties it is important to note that these are depen-
dent on the number of vehicles. There is a limited number of electrical vehicles,
which result in the need to incorporate other vehicle types. Then, if the solu-
tion requires more vehicles than there are electrical ones it is not possible to not
have any addition in type penalty. Therefore, a comparison of the type penalty
relative to the number of vehicles is more representative of the solution quality.

Starting by evaluating the number of vehicles, first only considering the subsets,
all methods (GRA, SA, TS and GA) were consistent in how many vehicles that
was used. It differs at most one vehicle in the average solutions compared to
the best solution for all subsets, strengthening the conclusion that this is a
good approximation of the minimum number of vehicles needed for each day.
If the whole set is considered, all methods concluded the same number, 128, of
vehicles.

Comparing the vehicle fleet size to the original solution, all solution methods
resulted in a larger fleet size than the original solution. As mentioned above,
it is difficult to make any conclusions regarding the performance of the method
solely based on these results due to the lack of original start times. Therefore, a
fleet size of 128, stated by all the methods, could be a good approximate solution
for the given set of start times, or it could be so that all methods produced the
same not well adapted solution (only regarding fleet size).

Continuing, considering type penalty relative to the fleet size, again only for the
subsets, the GA performs better than the other methods. Its solutions include
less type penalties relative the fleet size for the larger sets, day 1-5, but is only
better than the GRA for the two smaller sets, day 6-7. SA and TS performs
slightly better than the GRA on the larger sets, but both optimizes the smaller
sets better than both the GRA and the GA, with TS performing the best.
Considering the solutions for the whole set all methods perform approximately
the same.

Comparing the type penalties for the methods with the original type penalties,
the GA performs only slightly worse than the original solution on the subsets,
but better than any of the other methods as stated above. Instead, looking at
the whole set, all solution methods perform worse than the original solution,
but not drastically.

Furthermore, regarding the subsets capacity penalties the GA is the most con-
sistent in both finding the best solution among the methods, but also regarding
the consistency in solutions. The average capacity penalty only deviates from
the best solution on day 1, otherwise it is the same. Moreover, GRA, TS and
SA also find good solutions, when comparing the methods, but they are not
consistent since the average deviates more from the best solution than for the
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GA. The GRA marginally performed worse than the other methods, which is
to be expected since it is only a method of finding an initial solution and not
an optimal solution.

Continuing by evaluating the methods compared to the original solution on
the subsets, the capacity violations were improved by all methods, including
the initial GRA. If, instead, the methods are evaluated by comparing their
performance for the whole time period only TS and GA performed better than
the original solution in regards to capacity penalties.

Taking all considerations into account the best performing and most consistent
method was the GA. This is followed by TS, SA and lastly the GRA.

4.7 The company’s way of operating compared to theory
The data received from WoS does not show any organized method or strategy in
regards to the way of organizing their vehicle fleet. Therefore it is not possible
to determine the similarities or differences compared to established methods. If
this comparison is desired, new data must be received to enable conclusion.

5 Conclusion

In conclusion, the GA has the best performance. It was also shown that it is
possible to reduce the existing capacity violations in the WoS solution, but no
conclusion can be made regarding the fleet size due to the limitations in the
dataset. In order to determine if the overcapacity can be reduced the original
start times have to be implemented, and preferably more iterations have to be
done to provide the best conditions for the chosen method.

In general, the methods were able to adapt well to the real life problem at WoS
and show potential to produce a satisfactory solution for the WSP.

Further research should focus on implementing the original start times as well
as examining the solution at depot-level. This could then determine if the
overcapacity is rooted in one depot location or in several.
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