Transtforming DAGs into "2-LCA DAGs"
and generating BMGs from "2-LCA DAGs"

Omvandling av DAG:er till "2-LCA-DAG:er" och generering av BMG:er fran "2-LCA
DAG:er"

Emil Eriksson

Handledare: Marc Hellmuth

Examinator: Lars Arvestad

Inlamningsdatum: 2026-01-05

Abstract

The main aim of this paper is to provide a polynomial time algorithm for transforming
an arbitrary evolutionary directed acyclic graph (DAG) into a "2-LCA DAG" (i.e. a
DAG with a unique least common ancestor between all pairs of leaves). We are not
interested in finding a transformation that can preserve graph-related properties in the
underlying evolutionary DAG, but rather in finding an efficient method that can be
repeatedly used in order to generate large datasets of random "2-LCA DAGs". Large
datasets of this kind are of particular interest for researchers who want to study prop-
erties and potentially derive conjectures related to Best Match Graphs (BMGs). Aside
from this, we also derive polynomial time algorithms for generating random DAGs,
identifying "2-LCA DAGs" and generating BMGs. The reader should be well aware
that the underlying biology will not be considered. That is to say, only the mathemat-
ical properties of the evolutionary DAGs are considered of relevance. Nevertheless, we
want to underline that the derived results have practical real-world application.

Smmanfattning

Huvudsyftet med denna artikel &r att tillhandahalla en polynomisk tidsalgoritm for
att transformera en godtycklig evolutionér riktad acyklisk graf (DAG) till en "2-LCA
DAG?" (en riktad acyklisk graf dér varje par av 16v har en unik ldgsta gemensamma
forfader). Vi dr inte intresserade i att finna en transformation som kan bevara graf-
relaterade egenskaper i den underliggande evolutiondra DAG:en, utan snarare att finna
en effektiv metod som kan aterupprepas for att producera stora dataméngder av slump-
missigt genererade "2 LCA DAG:er". Stora dataméngder av denna typ ar av sérskilt
intresse for forskare som vill studera egenskaper och potentiellt hirleda férmodningar
relaterade till Best Match Grafer (BMG:er). Bortsett fran detta, hérleder vi &ven
polynomiska tidsalgoritmer for att generera slumpméssiga DAG:er, identifiera "2-LCA
DAG:er" och generera BMG:er. Lisaren bor vara vl medveten om att den underlig-
gande biologin inte kommer att beaktas. Det vill siga, endast de matematiska egen-
skaperna hos de underliggande evolutiondra DAG:erna anses vara relevanta. Trots
det vill vi understryka att de hérledda resultaten har praktisk tillampning i verkliga
situationer.

Contents

1

Introduction

Assumptions

Preliminaries

Main
4.1

4.2

4.3

44

Generating a random DAG 0oL
4.1.1 Approach 1: Topological sort + root-to-root connections
4.1.2 Approach 2: Extension from Tree
4.1.3 Pseudocode and a comparison in space and time complexity . . .
Recognizing a "2-LCA DAG"o
4.2.1 Pseudocode for verification algorithm
4.2.2 Correctness of verification algorithm
4.2.3 Space and time complexity analysis of verification algorithm . . .
Transforming a random DAG into a "2-LCA DAG"
4.3.1 Extension of Hasse diagram
4.3.2 Pseudocode for Extension algorithm
4.3.3 Correctness of Extension algorithm
4.3.4 Space and time complexity analysis of Extension algorithm .
4.3.5 Tweaking the extension algorithm for leaf coloured input DAGs .
Generating the BMG of a "2-LCA DAG"
4.4.1 Pseudocode for BMG algorithm
4.4.2 Correctness of BMG algorithm
4.4.3 Space and time complexity analysis of the BMG algorithm

Discussion

Conclusion

10
10
10
14
14
18
19
21
23
25
25
30
33
35

41
42
43
43

46
51

1 Introduction

In mathematical biology, directed acyclic graphs (DAGs) are used in order to model
relationships between genes or species that traditional rooted trees can not fully cap-
ture, such as in the case of reticulate processes or horizontal gene transfers [3]. The
leaves in these DAGs (i.e. the subset of vertices with no descendants) model the extant
taxa (genes) while the remaining vertices represent their ancestors [1]. A fundamental
concept that naturally appears when studying these DAGs is the least common an-
cestor, and it plays a vital role in understanding hierarchical relationships [4]. If we
wish to distinguish genes from different species, we may provide leaves belonging to
a distinct species with a unique colour. From these coloured evolutionary DAGs, we
can then derive their corresponding "Best match graphs" which provide information
about the evolutionary relationships between genes of different species. Edges in these
graphs correspond to best matches between pairs of genes from different species, and
they are determined from the underlying evoloutionary DAG. More precisely, given
a DAG G, y € L(G) is sayd to be a best match of € L(G) if and only if y and «
have different colours, and there exists no other leaf 3y € L(G) (with same colour as
y) that has a "lower" least common ancestor with x than y [6]. The definition of best
matches thus requires least common ancestors to be unique between pairs of leaves of
different colours in the underlying evolutionary DAG, something which may not hold
in general.

2 Assumptions

In this paper we restrict our attention to finite DAGs with single roots, more commonly
refered to as finite networks [1]. Thus if nothing else is mentioned, whenever a DAG
G is introduced, it is assumed to be a finite network.

3 Preliminaries

Before diving into the main content of this paper, we encourage the reader to read this
"Preliminaries" section. It collects the definitions of all key mathematical objects and
concepts used throughout the paper.

Definition 3.0.1. Tree

Let T = (V, E) be an undirected graph with vertex set V. and edge set E. We say that
T is a tree if and only if it is connected and acyclic.

Definition 3.0.2. Directed rooted tree

If we instead change T to be a directed graph, we call T a directed rooted tree, if there
exists a single root v € V (a vertex satisfying indegr(r) = 0) such that for every
v € V\ {r}, there is exactly one path from r to v. This definition implies that there
are no upward arcs (directed edges towards the root) and hence no cycles in T.

Definition 3.0.3. DAG
Let G = (V, E) be a directed graph. We say that G is a DAG if it contains no cycles.

Observation 3.0.1. As in the case of a directed rooted tree, a DAG with a single root
r € V has the special property that every vertex v € V' \ {r} is reachable from r [1]. In
particular then, for such a DAG, the single root always serves as a common ancestor
for any pair of vertices u,v € V\ {r}.

From here on, whenver a DAG G is introduced, it is assumed to be finite and to have
a single root unless otherwise specified.

Definition 3.0.4. Topological sort

We say that vy, ...,v, (n=|V|) constitutes a topological sort of the vertex set V, in a
directed graph G, if and only if for every edge (v;,v;) € E it holds that i < j. In other
words, v; must come before v; in the above mentioned list [9]. In lemma 4.1.3, (under
subsection 4.1.1) we prove an equivalence between a topological sort and a DAG.

Definition 3.0.5. Descendant and Ancestor

Let G = (V,E) be a DAG. We say that u € V is a descendant of v € V if and only if
there is a directed path from v to u. If this is the case, we write u =g v. We say that
u 18 an ancestor of v if and only if there is a directed path from u to v. If this is the
case we write v <g U

Observation 3.0.2. Note that two vertices in a DAG may be incomparable, in the
sense that neither is an ancestor nor a descendant of the other. If that is the case, we
write u||v.

Definition 3.0.6. Leaf

Let G = (V,E) be a DAG. We say that 1l € V is a leaf if and only if outdegs(l) = 0.
The set of leaves of G is denoted L(G).

Observation 3.0.3. One may show that since G is finite it follows that |L(G)| > 1
[3]-
Definition 3.0.7. Leaf-coloured DAG

Let G = (V,E) be a DAG. We say that G is a leaf-coloured DAG, if every | € L(G)
has been assigned a colour o(l) where o : L(G) — N. Whenever we want to remark
that G 1is a leaf-coloured DAG, we will write (G, o).

Definition 3.0.8. Least common ancestor

Let G = (V, E) be a DAG and consider A C L(G). A least common ancestor of A is a
vertex v € G that is an ancestor of all leaves in A and that has no descendant satisfying
the same property. The set LC Ag(A) is the set of all such vertices. Throughout the
remainder of this paper we will only concern ourselves with particular subsets A of
leaves. Namely those for which |A| = 2. Supposing A = {u,v} for a distinct pair
u,v € L(G), we write LCAg(u,v) instead of the more general LCAg(A) for denoting
the set of least common ancestors of A. [3]

Definition 3.0.9. "2-LCA DAG"

Let G = (V, E) be a DAG. We say that G is a "2-LCA DAG", if and only if for every
pair of distinct leaves x,y € L(G) it holds that |LCAg(x,y)| = 1.

If G happens to be leaf-coloured according to some map o : L(G) — N, then we
say that (G,0) is a "2-LCA DAG", if and only if for every pair of distinct leaves
z,y € L(GQ) : o(x) # o(y) it holds that |LC Ag(z,y)| = 1.

Observation 3.0.4. Since |LCAg(z,y)| =1 for these types of DAGs, we may abuse
notation slightly and write LCAg(x,y) to represent the unique vertex that is a least
common ancestor of x and y in G

Definition 3.0.10. Cluster
Let G = (V,E) be DAG and take v € V.. The set
Ca(v) ={z € L(G)|x Z¢ v}

is called a cluster of G. More precisely, Cq(v) is the set containing all leaves reachable
from v.

Definition 3.0.11. Clustering system
Let G = (V,E) be a DAG. The set

€ ={Cqg(v)lveV}
is called the clustering system of G. It is the collection of all unique clusters in G

Observation 3.0.5. A clustering system is usually defined as a subset of the powerset
2%, where X is some finite set that is grounded (i.e. {z} € € , 0 ¢ €) and that
contains X [3]. What can be shown is that the set €, introduced above, satisfies both
properties (note in particular that enforcing a single root implies that X € €). Along
with the fact that it is the only clustering system we will consider throughout this paper,
we will simply call it the clustering system of G.

Definition 3.0.12. Inclusion minimal cluster

Let G = (V, E) be a DAG. An inclusion minimal cluster containing a subset of vertices

U C L(G), is a cluster C € € such that
(HYucco

(2) AC'e€?:C"CCandUCC’
Definition 3.0.13. Partial order

We say that the relation R on a set S is a partial order on S, if for all x,y,z € S, the
following three properties hold:

(1) Reflexive: xRx

(2) Antisymmetric: if xRy and yRx then x =y

(3) Transitive: if xRy and yRz then xRz [8]

Definition 3.0.14. Partially ordered set

We call (S, R) a partially ordered set if R is a partial order on S
Definition 3.0.15. Hasse diagram of (S,R)

The Hasse diagram (denoted H) of the partially ordered set (S, R) is a graphical repre-
sentation of (S, R), where the vertices are the elements of S, and a directed edge (u,v)
(from u to v) is present whenever vRu and there is no other element z € S\ {u,v}
such that vRz and zRu. [7]

Definition 3.0.16. Hasse diagram of (¢,Q)

Let G = (V, E) be a DAG and consider the clustering system € of G and the subset
relation C. The fact that (€, C) is a partially ordered set, follows from basic set theory
properties. In particular, the subset relation is reflexive, antisymmetric and transitive.
Thus we can consider the Hasse diagram H of (¢,C). Replacing R with the subset
relation in definition 3.0.13 gives us the following:

For C1,Cy € €, an edge (Cy,Cy) is present in H

=

Cy is a subset of C1 and there exists no Cs € € \ {C1,Cs2} such that Cy C Cs and
Cs C (.

Definition 3.0.17. Best match

Let G = (V,E) be a DAG and suppose (G, o) (for some colour map o : L(G) — N) is
a "2-LCA DAG". We say that y € L(G) is a best match of x € L(G) in G if and only
if the following two properties hold:

(1) o(z) #o(y)
(2) For any z € L(G) witho(z) = o(y) = LCAg(x,y) ¢ LCAg(x,z) or LCAg(x,y)||LCAg(z, 2)

One may informally interpret this as stating that amongst all leaves having the same
colour as y (which is different from the colour of ©), LCAg(x,y) is "closest” to x. [6]

Definition 3.0.18. Best match graph (BMG)

Let G = (V, E) be a DAG. The BMG (G',0) = (V',E'),0) of (G,0) is the directed
graph obtained from (G, o) by taking V' = L(G) and letting e = (u,v) € E' (edge from
u tov) if and only if v is a best match of u in G. [6]

Observation 3.0.6. From the definition of best matches, we may conclude that a
BMG will not have any arcs between pairs of vertices with the same colour. Letting
R(o) be the range of the function o : L(G) — N, one may also show that for every
u € V' and for every colour s € S = R(o)\{o(u)}, there is atleast one edge (u,v) € E’
with o(v) = s, but we leave the verification to the reader. The definitions of BMGs and
best matches also allow for bi-directional edges, since we may have that two vertices
u,v € V' are best matches of each other.

4 Main

4.1 Generating a random DAG

Before any discussion related to the recognition and generation of random "2-LCA
DAGs" or the generation of BMGs could take place, we needed methods for gener-
ating random finite DAGs with single roots. We arrived at two approaches. These
approaches were then compared in terms of their space and time complexity. In section
4.1.1, we discuss the implementation of approach 1, and in section 4.1.2 we discuss the
implementation of approach 2.

4.1.1 Approach 1: Topological sort + root-to-root connections

The first method involved initializing a set of vertices V' (with a pre-defined, finite
size) and an empty edge set E. The vertices in V' were listed in some arbitrary order
v1,...,Up, where n = |V|. E was then expanded by considering random additions of
directed edges of the form (v;,v;) where 1 < i < j < n. That is to say, the directed
edge (v;,v;) was added to E with some pre-defined probability 0 < p < 1. As we will
see in lemma 4.1.3, this algorithm produces a random DAG (with potentially multiple
roots). To enforce a single root, we first considered any single ordering of the roots
T1,...;Tm € V where 1 < m < n and preceded by adding the edges (r,7;) where
2 < j <'m. What follows is a formal justification of the algorithm. The main result is
captured in theorem 4.1.1, but first some useful lemmas.

Lemma 4.1.1. Let G = (V, E) be a DAG (not necessarily having a single root). Then
there exists at least one vertex v € V with indegg(v) = 0. Le. G contains at least one
root verter.

Proof. Assume by contradiction that G has no vertex with in-degree 0. Pick any single
vertex vg € V and construct a walk in the transposed graph GT (same graph as G but
edges are reversed) as follows:

For i € {0,1,2,...} go from v; to v;11 where v;41 is any single vertex in the
out-neighborhood of v;

Consider the infinite walk vg, v1, V2, V3, ..., Un, ...

The constructed walk is well-defined since indegg(v) > 1 for all v € V and hence
outdeggr (v) > 1 for all v € V. Furthermore, the walk must have repetition of vertices,
since G and hence V is finite. Consider the first pair of indices ,j such that ¢ < j

10

and v; = v; = v for some v € V. The walk v;,v;41,...,v; describes a cycle in GT and
hence vj, ..., vi41,v; describes a cycle in G. But G is a DAG. It follows therefore that
our assumption was false and that there must exist at least one vertex in G having
in-degree 0.

O

Lemma 4.1.2. Let G = (V, E) be a DAG (not necessarily having a single root) and
suppose v € V is such that indegg(v) = 0. Then the directed graph G’, obtained from
G by removing v and its outgoing edges, is also a DAG.

Proof. Suppose by contradiction that G’ is not a DAG. Thus there exists a cycle in
G'. But all the edges in G’ are also edges in GG. Therefore there exists a cycle in G,
contradicting the assumption that G is a DAG. Thus we conclude that our hypothesis
was false and that G’ is a DAG.

O

Lemma 4.1.3. Let G = (V,E) (|V| = n for some n € N) be a finite directed graph.
The vertex set Vof G can be topologically sorted if and only if G is a DAG (not
necessarily having a single root).

Proof. (=) Suppose that the vertex set V' of G can be topologically sorted, and let
v1, ..., Uy be one such topological sort. Suppose also by contradiction that there exists
a cycle in G. This cycle must start in one of the vertices v; (1 < j < n) listed above
and end in v;. Furthermore the cycle must contain at least one intermediate vertex,
since otherwise the self-edge (v;,v;) would be present in G' and thus the mentioned
list would not be a topological sort. Now, all intermediate vertices in the cycle are
of the form vy for some j < k < n since vy, ..., v, constitutes a topological sort of V.
Consider the last intermediate vertex in the cycle. The cycle is achieved by moving
from this vertex back to v;. But this would mean that there existed an edge (v;,v;)
for some ¢ > j, contradicting the assumption that vy, ..., v, constitutes a topological
sort of V. Thus it follows that G must be acyclic.

(<) Suppose G is a DAG. Thus G contains no cycles. Let R C V denote the set of
roots in G (i.e. those vertices in V for which indegg(v) = 0) and let m = |R|. From
lemma 4.1.1 we have that m > 1. Consider now Kahn’s algorithm, described in detail
below [5].

1. Initialize a queue @ = R and an empty List 7.
2. While @ is non-empty, do:
a) Pick any v € @) and for each out-going edge (u,v) € E do:
i. Delete (u,v) from E.

ii. If the in-degree of v is now 0, add v to Q.

b) Add u to the end of T and remove it from V.
3. Return T.

We claim that the algorithm terminates and that it returns a topological sort T of V
in G. The former claim is a matter of establishing that () must eventually be empty,
which follows from the observations that a vertex can appear at most once in) and
that V' is finite (note in particular that the first observation leads to the conclusion
that the total number of dequeue operations is bounded above by |V|). The first
observation needs to be formally justified and we argue as follows. Initially Q = R
and when a vertex is dequeued, it is removed from V and can thus not reappear in)
in any later stage. It follows that the algorithm indeed terminates. Now, to establish
that the returned list 7" is a topological sort of V' in GG, we turn to a justification of
the following invariant.

"Let V; be the set of removed vertices after iteration ¢ > 0 of the while loop. Then the
listed vertices in T' (after iteration) constitute a topological sort of V; in the induced
subgraph G[V/]."

First note that the set of removed vertices at a particular time point are precisely
those vertices present in T at that time. For a vertex is present in 7T if and only if it
has been removed from V. Thus T contains precisely the vertices in V; after iteration
i. A formal proof of the invariant is now achieved by means of induction over iteration
1> 0. If © =0, then T is an empty list and obviously T is then a topological sort of
Vg = 0 in G[0]. Now suppose the invariant holds after iteration ¢ = k > 0 has been
completed. During iteration k+1, a new vertex u € V with in-degree 0 is picked. In G
(the starting graph), u can not be a predecessor of any of the listed vertices currently
in T. For if we assume the contrary, then there is some v € T for which there exists
a u ~ v path in G. For any such path, let (z,y) be the first edge whose head (i.e.
y, potentially equal to v) lies in T' (such an edge must exist since u ¢ T but v € T).
Thus y € T but « ¢ T. But if z ¢ T, then the in-degree of y was at least 1 when it
was added to T', since the edge (z,y) have not yet been removed. But the algorithm
only allows for vertices with in-degree 0 to be added to T. Thus we conclude that in
G, u can not be a predecessor of any vertices currently in 7. What follows is that
extending T' by placing v at the end, yields a topological sort of V|, in the induced
subgraph G[V/,].

The invariant, in itself, however, is not sufficient for a complete proof. We need also
to verify that T contains all the vertices in V, after the last iteration of the while
loop is completed. We argue as follows. Each update of G (i.e. a removal of a vertex
with indegree 0 and removal of its out-going edges) yields another DAG and each such
DAG has at least one vertex with in-degree 0. The former claim follows from repeated
use of lemma 4.1.2, whereas the latter follows directly from lemma 4.1.1. Now, notice
that @) contains precisely those vertices having indegree 0 in the latest reduced DAG,
and by previous conclusions, it follows that a new vertex (i.e. a vertex not already in
T) is picked from @, so long as there are 0 < n < |V/| vertices remaining. Therfore,
the number of iterations is precisely |V| and thus T contains all the vertices in V', after

the last iteration is completed. This completes the proof.

O

Lemma 4.1.4. Let G = (V, E) be a DAG (not necessarily having a single root). Then,
for any subset U C V, the induced subgraph G[U] is a DAG.

Proof. Consider a topological sort of V' in G (exists because of lemma 4.1.3). Let
U = {u1,...,un} for some n < |V|, and suppose W.L.G that the vertices in U occur
precisely in the order uq, ..., u, in that particular topological sort. Thus there are no
backward edges of the form (u;,u;) for any 1 < ¢ < j < n in G and hence no such
edges in G[U]. It follows that the list uq, ..., u, is a topological sort of U in G[U] and
hence by lemma 4.1.3, G[U] is a DAG.

O

Lemma 4.1.5. Let G = (V, E) be a DAG with roots 11, ...,Tm, and remaining vertices
V1, eery Up, Such that [V =m+mn. Let V' be the set of remaining vertices and suppose
W.L.G that that the list vy, ..., v, constitute a topological sort of V' in G[V'] (By lemma
4.1.4 such a topological sort exists since G[V'] is a DAG). Then ri, ..., Tm, V1, ..., U 18
a topological sort of V in G.

Proof. Since vy, ..., vy, is a topological sort of V' in G[V'], it follows that there are no
edges of the form (v;,v;) for any j > ¢ in G. Thus the only types of edges that could
cause the list 71, ..., 7, v1, ..., v, to fail being a topological sort of V' in G, are of the
form (r;,r;) and (vg,r;) for @ # j. But since r1,...,7y, are the roots of G, for each
1<i<m,indegg(r;) = 0. Thus no such edges exist in G and it follows that the list
T1y ey Tm, U1, -+, Up 18 & topological sort of V' in G. This completes the proof. O

Theorem 4.1.1. The method described in the opening paragraph of this section, pro-
duces a random finite DAG with a single root.

Proof. First note that the first part of the method, which inolves adding random edges
of the form (v;,v;) : ¢ < j to the list vy, ..., v,, produces a topological sort of V in G,
and hence by lemma 4.1.3, G is a DAG with potentially more than one root. Consider
now the set W = {w1,...,wr} =V \ R, where R = {rq,...,7, } is the set of roots in G.
Suppose W.L.G that the list of vertices wy, ..., wy, constitute a topological sort of W in
G[W] . From lemma 4.1.5, it follows then that rq, ..., 7, w1, ..., wy is a toplogical sort
of V', in the DAG obtained after applying the first step of the method. The second part
of the method involves adding random edges of the form (r1,7;) for 2 < j < m, and it
is not hard to see that the list 71, ..., 7, w1, ..., wy remains a topological sort of V, in
the new directed graph. Thus this new directed graph is also a DAG (lemma 4.1.3).
Moreover it is finite, since V and F are finite and only a finite number of edges were
added to F. Lastly, it has a single root, namely 7, and this completes the proof. [

4.1.2 Approach 2: Extension from Tree

The second method involved randomly inserting edges into a finite directed rooted
tree, which was automatically generated by using the "Networkx" library in python.
The idea was intuitive. If we start with a random directed rooted tree T' = (V, E) with
vetices vy, ..., vp, listed in an arbitrary topological order, then we may add random
edges of the form (v;,v;) for i < j to produce a random DAG with a single root. The
claim is justified in theorem 4.1.2.

Theorem 4.1.2. Let T = (V, E) be a directed rooted tree and v, ...,v, an arbitrary
topological sort of V' in T (which exists because T is a DAG). Then any addition of
new, random edges of the form (v;,v;) for 1 <i < j <n, extends T to a random finite
DAG with a single root.

Proof. First note that v; must be the single root of T'. For if we suppose by contra-
diction that the root is not equal to vy, then indegg(v1) > 1. But then necessarily
there must exist an edge (v, v1) for which j > 1, contradicting the fact that vq, ..., v,
is a topological sort of V' in G. Now, if all the additional random edges added to T’
are of the form (v;,v;) for 1 < ¢ < j < n, then trivially the provided list remains a
topological sort of V' in the new directed graph, after the transformation is complete.
Thus it is a random DAG (lemma 4.1.3). Moreover, v; remains the unique root, since
the transformation preserves the indegree of v1, and either preservers or increases the
indegree of the remaining vertices. Lastly, the new DAG is finite since it contains
precisely the same number of vertices as T' (a finite amount), and only a finite number
of new edges could have been added to the finite set E. This completes the proof. [

4.1.3 Pseudocode and a comparison in space and time complexity

To analyse the space and time complexity of the algorithms used for approach 1 and
approach 2, we provide first, pseudocode for both algorithms.

Algorithm 1 Approach 1
1: The input of the function below is the number of vertices n and the proability of
adding an edge p. The output is a random DAG G on n vertices

2:

3: function DAGAPP1(n, p):

4: Initialize an empty directed graph G = (V, E);
5: Set V. ={0,....,n—1};

6: for i € {0,....,n—1} do

7: forje{i+1,..,n—1} do

8: generate an integer po uniformally on [0, 1];
9: if pg < p then

10: Add the edge (i,7) to Ej

11: end if

12: end for

13: end for

14: Set v; = 0;

15: Create a list R of all roots except v;

16: for r € R do

17: Add the edge (vi,7) to E;

18: end for

19: Return G
20: end function

Algorithm 2 Approach 2

1:

S U

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

Construct an undirected tree T on n vertices, using the networkx library;

The input of the function below is an undirected tree T on n vertices. The output
is a directed rooted tree T', the directed version of T.

function DRT(T):
Set r = 0; (choosing vertex labeled "0" to be the root)
Initialize the directed tree T/ = (V(T), E = 0);
Initialize an empty list 5;

Start a BFS traversal from r, and whenever a new vertezx u is visited, add all
edges of the form (u,v) to the end of the list B, if and only if {u,v} € E(T)
and v has not already been visited (note that the networkz library has a function
which computes B directly. Here we are basically just providing information
about how the function works).

for (u,v) € 8 do
add (u,v) to E;
end for
Return 7"
end function

The input of the function below is a directed rooted tree T on n vertices, and the
probability p of adding an edge between two vertices. The output is a random DAG
on n vertices. The algorithm is in-place, in the sense that we do not make a new
directed graph object. We simply add edges to E and return T in the end.

function DAGAPP2(T, p)
Generate a topological sort oy of the vertex set V in T';
(Noting here that oy = {v1,...,v,} where n =|V])
forie {1,...,n} do
forje{i+1,..,n} do
generate an integer py uniformally on [0,1];
if pg < p then
Add an edge (v;,v;) to Ej
end if
end for
end for
Return T
end function

The correctness of both algorithms have for the most part already been established
in subsections 4.1.1 and 4.1.2. But note that we have not discussed the correctness

of the "DRT" function, used for approach 2. The primary reason being that the
transformation of turning an undirected tree into a directed rooted tree, was not
originally intended to be implemented manually. Rather, we thought that the networkx
library would support a direct method for it. Thus before analyzing the space and time
complexity of both algorithms, we provide first a formal justification of the correctness
of the "DRT" function, used for approach 2.

Theorem 4.1.3. The "DRT" function, used for approach 2, converts an undirected
tree T on n wvertices to a directed rooted tree T' on n vertices.

Proof. The list 8 was generated using an built-in method (nx.bfsedges) from the net-
workx library. Therefore, we can assume that S contains the edges of T', ordered based
on when they were traversed during a BF'S traversal , starting from the chosen root r.
Since T = (V, E) is generated by taking V = V(T') and E = {(u,v) : (u,v) € B}, it
follows that T” is at least a directed graph on n vertices. To prove that T” is a directed
rooted tree, we must show that

e The only root of T" is r.
e For each v € V' \ {r}, there is a single r ~ v path in 7".

Now, r is a root in 7", because starting a BFS traversal from r ensures that we will
never add an edge of the form (v,r) to E for some v € V. This follows from the fact
that r will have been marked as visited before visiting any other v € V. Moreover, for
each v € V'\ {r}, there is a unique vertex v # v € V (possibly equal to r) closer to
r in the unique r ~ v path in T, such that {u,v} € E(T). Thus u is visited before v
and, upon visiting u € V, the edge (u,v) is added to E. Therefore indegy (v) > 1,
verifying that r is indeed a unique root. The last claim follows immediately from the
fact that the unique undirected » ~ v path in T, appears as a directed r ~ v path in
T’, completing the proof.

O

We now turn to a formal justification of the space and time complexity of both algo-
rithms.

Theorem 4.1.4. Consider the algorithms used for approach 1 and approach 2 above.
The worst case space and time complexity for both algorithms is O(n?).

Proof. We analyze first the space complexity of algorithm 1. Creating a directed
graph object which stores all vertices and edges requires O(n?) space in the worst case
(recalling that the number of edges in a DAG is bounded above by W) Storing
the uniformally generated real number pg requires O(1) space. Storing v; requires
O(1) space. Storing R requires O(n) space in the worst case, since the number of
roots is bounded above by n. What follows is that the worst case space complexity
of algorithm 1 is O(n?). As for the time complexity of algorithm 1, initializing G as

an empty directed graph is done in O(1) time. Setting V = {1,...,n} is done in O(n)

time. Iterating over all pairs of vertices is done in O(n?) time. Generating pg is done
in O(1) time. Adding the single edge (4,7) is done in O(1) time. Setting v; = 0 is
done in O(1) time. Creating a list R that stores all roots except vy is done in (the
worst case) O(n) time. Iterating over all r € R is done in (the worst case) O(n) time.
Adding the single edge (v1,7) to E is done in O(1) time. What follows is that the
worst case time complexity of algorithm 1 is O(n?).

We now justify that the space and time complexity of algorithm 2 is also O(n?), starting
with the space complexity. First note that total amount of space required by algorithm
2 is the maximum of the space complexities of the two functions. We start by analyzing
the "DRT" function. Storing r = 0 requires O(1) space. Storing the directed rooted
tree T” requires O(n) space, since a directed rooted tree on n vertices has exactly
n — 1 edges. Generating 8 requires O(n) space, O(n) space for the BFS traversal and
O(n) space for storing all the edges in 5. Thus the worst case space complexity of
the DRT function is O(n). As for the DAG 4pp2 function, generating and storing the
topological sort oy requires O(n) space. Storing the temporary variables v;, v; and pg
requires O(1) space. Lastly, note that since T is expanded to a DAG on a single root,
storing T now requires O(n?) space. Thus the total space complexity for algorithm
2 is O(n?). The total running time of algorithm 2 is the sum of the running time of
the "DRT" and the "DAG spp2" function. We start by analyzing the running time of
the "DRT" function. Storing r = 0 is done in O(1) time. Creating the directed graph
object T" = (V(T),E = 0) is done in O(n) time. Generating 3 is done in O(n) time
(since BF'S runs in O(n) time whenever the input is a tree). Iterating over all the
edges in f is done in O(n) time. Adding the single edge (u,v) to E is done in O(1)
time. What follows is that the time complexity of the "DRT" function is O(n). As for
the "DAG app2" function, we note first that generating a topological sort oy is done
in O(n) time. Iterating over all pairs of vertices is done in O(n?) time . Generating
an integer uniformally on [0,1] is done in O(1) time. Lastly, adding the single edge
(vs,v5) to E is done in O(1) time. What follows is that the worst case time complexity
of algorithm 2 is O(n?), completing the proof.

O

The conclusion that may be drawn from theorem 4.1.4 is that approach 1 or approach
2 can not be prefered over the other, on the basis of space and time complexity.

4.2 Recognizing a "2-LCA DAG"

The BMG of a leaf-coloured DAG (G, o) is only well-defined, whenever, for any two
distinct leaves z,y € L(G) with o(z) # o(y) it holds that |LCAg(z,y)| = 1. But this
may of course not hold in general. Consider for instance the following leaf-coloured
DAG:

Figure 4.1: A leaf-coloured DAG (G,) with uniqueness criteria not satisfied

The two leaves are u and v and they have different colours (blue and red respectively).
However, LCAg(u,v) = {y,z} and hence |LCAg(u,v)| = 2 > 1. This sort of ob-
servation motivated use to find a polynomial time algorithm that takes as input any
coloured DAG (G, o) and returns a modified version of (G, o) , namely (G’, o), where
the uniqueness criteria is fulfilled. That is to say, our attention was directed towards
finding a polynomial time algorithm for generating a special kind of "2-LCA DAG"
from an arbitrary coloured DAG (G, o). But before finding such an algorithm, we first
justified that recognizing a "2-LCA DAG" could be done in polynomial time. The
vericiation was done in 4 steps

1. Create a function that computes the set of all ancestors of a vertex v € V'

2. Create a function that uses the previous function, in order to compute the com-
mon ancestor graph G[A, N A,] of two distinct vertices v and v, where A,, and
A, denote the set of all ancestors of u and v respectively.

3. Create a function that uses the previous function, in order to compute the set
LCAg(u,v) for any two distinct vertices u,v € V

4. Create a function that uses the previous function, in order to do the final check.
Le. iterating over all pairs of distinct leaves u,v € L(G) with different colours
and checking whether |LC'Ag(u,v)| = 1 holds or not.

4.2.1 Pseudocode for verification algorithm

Having described the basic idea behind the recognition algorithm, we provide below,
pseudocode for it.

Algorithm 3 Verification algorithm

12:

15:

18:

21:

24:

27:

30:

33:

36:

39:

42:

45:

The input of the function below is a vertexr v € V', the underlying DAG G, an
ancestor set A and a set of visited vertices V'. Note that A and V' are initialised
as "None" objects. The output of the function is the set of all ancestors A of the
vertex v in G.

function ALLANCESTORSOF(v, G, A, V'):
if A = None then

Set A = 0;
end if
if V' = None then
Set V' = 0;
end if

for u: (u,v) € E do
if uw ¢ V' then
AU{u};
V' U {u};
AllAncestorsOf(u, G, A, V’);
end if
end for
return A
end function

The input of the function below are two distinct vertices u,v € V and the underlying
DAG G. The output of the function is the induced subgraph G[A, N A,], where A,
and A, denote the set of all ancestors of u and v respectively.

function CANCESTORGRAPH(u,v, G):

A, + AllAncestorsO f(u, G);
A, + AllAncestorsO f(v, G);
S« 0;
for r € A, do

if z € A, then

SU{zh;

end if

end for

(Note that S = A, N A, after the above for loop is complete.)

Initialize an empty DAG G’;
Set V(G') = S;

for x € S do
for y € S do
if there exists an edge (z,y) € F then
E(G) U{(x,y)};
end if
end for
end for
return G’
end function

The input of the function below are two distinct leaves u,v € L(G) and the under-
lying DAG G. The output of the function is the set L = LCAg(u,v).

function LCA(u,v, G):
L« 0;
G[A, N A,] + CAncestorGraph(u,v,G);
4: forr e A,NA, do
if outdeggia,na,)(7) = 0 then
Lu{x};
end if
8: end for
return L
end function

12: The input of the function below is a leaf-coloured DAG (G,0). The output of the
function is True if (G,0) is a "2-LCA DAG" and False otherwise.

function ISVALIDDAG(G, o):
for u € L(G) do
16: for v € L(G) do
if o(u) # o(v) then
LCAg(u,v) + LCA(u,v,G);
if |LCAg(u,v)| # 1 then

20: return False
end if
end if
end for
24: end for

return True

OBS! The above function does some repeated checks. More precisely, for every
pair of distinct vertices u,v € L(G), 2 identical checks are done. This can be easily
fized by replacing the double for loop with "for u,v in combinations(L(G),2)". Also
one may modify it for an input DAG that is not leaf-coloured. Then the LCA check
is done over all pairs of distinct leaves.

28:
end function

4.2.2 Correctness of verification algorithm

The correctness of algorithm 3 is mostly a matter of establishing that the set LC' A (u, v),
for two distinct vertices u,v € V, contains precisely those vertices x € V for which
outdegreegia,na,](r) = 0 (see lemma 4.2.3). That is,

LCAg(u,v) = {x € V : outdegga,na,)(x) = 0}.

But for a complete proof of correctness, we turn to formal justification of each of the

functions.

Lemma 4.2.1. The "AllAncestorsOf" function, correctly computes all ancestors of a
vertex v € V in the DAG G = (V, E).

Proof. Let A(v) be the set of all ancestors of v in G, and let us introduce the following
parameter:

L(v) = max,c () (length of longest x ~ v path).

Then for a complete proof, we may induct over L(v) > 0. Note that since G is finite,
L(v) < co. Now if L(v) = 0, then consequently v has no ancestors and in particular
no parents. Thus upon the first call of the function, the for loop is never entered and
A(v) is returned as an empty set, which is the correct output. Suppose now that the
statement holds for all w € V' for which L(u) < k for some k € N, and consider the
case when L(v) = k+ 1. Let P(v) be the set of all parents of v, then the logic of the
algorithm is to take

A(v) = P(v) U (Uue p(o) A(w))-

This is correct since each ancestor of v is either a parent of v or an ancestor of a
parent of v. Thus to complete the proof, we need only to verify that the set A(u), for
each u € P(v) is correctly computed by the algorithm. But this follows immediately
from the observation that L(u) < k whenever u € P(v) (note that if L(u) > k + 1
then consquently L(v) > k + 2, a contradiction) and the induction hypothesis. This
completes the proof.

O

Lemma 4.2.2. The "CAncestorGraph" function correctly computes the common an-
cestor graph G[A, N A,] of two distinct vertices u,v € V, in the DAG G = (V, E).

Proof. By definition, the common ancestor graph G’ = G[A,NA,] is such that V(G') =
A, N A, and such that E(G') = {(z,y) € E(G) : z,y € V(G')}. The function
generates V(G’') and E(G’) according to their definitions above. Moreover, they are
both correctly computed, since 4, and A, and hence V(G’) = A, N A, are correctly
computed. This completes the proof. O

Lemma 4.2.3. The "LCA" function correctly computes the set of least common an-
cestors LC' Ag(u,v) of two distinct vertices u,v € V, in the DAG G = (V, E).

Proof. The underlying logic of the function is that

LCAg(u,v) = {z € V : outdegga,na,)(z) = 0}.

We justify the above claim through the following series of equivalences

x € LCAg(u,v) <= x is a common ancestor of v and v and there is no descendant
of z in G with the same property <= z € A, N A, and there is no descendant y of

rstye AyNA, < =z € A,NA, and there is no child y of z s.t y € A, N A,
<= outdeggia,na,)(z) = 0. This completes the proof.

O

Theorem 4.2.1. The "IsValidDAG" function correctly identifies whether a given DAG
G is a "2-LCA DAG" or not.

Proof. The correctness follows immediately from the correctness of the "LC A" func-
tion. O

4.2.3 Space and time complexity analysis of verification algorithm

Our space and time complexity analysis will be similar to that of the space and time
complexity analysis in subsection 4.1.3. But because we are now dealing with four
functions, we make a seperate analysis for each, for the sake of clarity. In the end, our
goal is to deduce the space and time complexity of the "IsValidDAG" function. We
let n = |V]|.

Lemma 4.2.4. The worst case space complexity of the "AllAncestorsOf" function is
O(n) and the worst case time complexity is O(n?).

Proof. The total space used, is the space allocated for storing vertices in A and V'’
as well as the space allocated for the recursive call stack. A and V' contain at most
n — 1 vertices (all except v itself). The space allocated for the recursive call stack is
proportional to the maximum recursion depth, which is n in the worst case. What
follows is that the total space complexity of the function is O(n) in the worst case.

As for the running time, note that in the worst case, all n — 1 remaining vertices (all
vertices except v) are ancestors of v, each one visited once. When each such ancestor
is visited, all its in-going edges are traversed. Since all checks are done in constant
time, it follows that the total worst case time complexity is O(n + |E|). Lastly, since
|E| < n?, we deduce that the total time complexity is O(n?) in the worst case.

O

Lemma 4.2.5. The worst case space complexity of the "CAncestorGraph" function is
O(n?) and the worst case time complezity is O(n?).

Proof. The total space used, is the space allocated for storing vertices in A,,, A,, S
as well as the space allocated for storing G’. The worst case space complexity for
storing A,, and A, is equal to O(n), which follows from the previous lemma. As for S,
notice that S contains at most n — 2 vertices (since in the worst case S contains all the
vertices in G except for u and v), and hence requires O(n) space to store in the worst

case. The number of edges in G’ is bounded above by (";2) < n?. What follows is

that space complexity for storing G is in the worst case O(n?). Thus the total worst
case space complexity is equal to O(n?).

The running time of the function is the addition of the amount of time needed to
generate A,, A, , S and G’. From previous results we know that generating A, and
A, requires O(n?) time in the worst case. Intitializing S as an empty set requires
O(1) time. To expand S, we iterate over all pairs of elements from A, and A,, which
is done in O(n?) time in the worst case, followed by a constant time operation of
potentially expanding S. Thus generating S requires O(n?) time in the worst case.
Lastly, generating G’ is achieved by first initializing it as an empty directed graph
object, which is done in O(1) time. Setting V(G') = S is done in O(n) time in the
worst case. To generate the set E(G’), we iterate over all pairs of elements from
S, perform a constant time lookup and a potential constant time insertion. Thus
generating G’ also requires O(n?) time in the worst case. It follows that the worst case
time complexity of the function is O(n?).

O

Lemma 4.2.6. The worst case space complexity of the "LCA" function is O(n?) and
the worst case time complezity is O(n?)

Proof. The worst case space complexity of the function is equal to the maximum
of the worst case space complexities for storing L and G[4, N A,]. Notice that L
contains at most n — 2 vertices, which occurs in the case where |4, N A,| =n —2 and
all the vertices in G[A, N A,] have out-degree 0. Thus in the worst case, storing L
requires O(n) space. Storing G[A, N A,] requires first calling the "CAncestorGraph"
function and then assigning the result of the function to a variable. The former step
requires O(n?) space in the worst case (follows from the previous lemma) and the
latter also requires O(n?) space in the worst case (because the result of the function is
a DAG where the number of edges is bounded above by n?). Thus storing G[A, N A,]
requires O(n?) space in the worst case. What follows is that the total worst case space
complexity of the function is equal to O(n?).

The worst case time complexity of the function is equal to the sum of the worst case
time complexity for generating L and the worst case time complexity for generating
G[A. N A]. From the previous lemma, we know that the latter is equal to O(n?).
The former is equal to O(n), because generating L requires iterating over the elements
of A, N A, and then performing constant time checks and constant time operations.
Thus the total worst case time complexity of the function is equal to O(n?).

O

The worst case space/time complexity of algorithm 3 is equal to the worst case
space/time complexity of the "IsValidDag" function. Thus, we close off this subsection
by formulating the worst case time/space complexity of this function as a theorem.

Theorem 4.2.2. The worst case space complexity of the "IsValidDag" function is
O(n?) and the worst case time complezity is O(n*).

Proof. The worst case space complexity is equal to the worst case space complexity
of storing LC'Ag(u,v) , for each pair of leaves u,v such that o(u) # o(v). To store
LCAg(u,v), we first need to call the "LCA" function which will require O(n?) space in
the worst case (follows from previous lemma). Assigning the result of the function to
a variable, will then require an additional O(n) space, because the number of vertices
in the LCA-set is bounded above by n — 2. Thus it follows that the total worst case
space complexity of the function (and hence the algorithm) is equal to O(n?).

As for the worst case time complexity, notice that we first iterate over all pairs of
leaves, which is achieved in O(n?) time. This is then followed up with a constant
time check (i.e. checking if colours match or not) and then potentially computing
the LCA-set and the size of the LCA-set (depending on if the the "if" condition was
passed or not). Computing the LCA-set is done in O(n?) time in the worst case (by
the previous lemma) and checking its size is done in O(n) time. Overall the worst case
time complexity is therefore equal to O(n%(n? + n)) = O(n* + n3) = O(n*). What
follows is that the worst case time complexity of the entire algorithm is O(n?). O

4.3 Transforming a random DAG into a "2-LCA
DAG"

For transforming a random DAG into a "2-LCA DAG", we first considered applying an
iterative procedure, which would involve repeatedly using the so-called O— operator.
An operator which removes a vertex from a directed graph and connects all its parents
to all its children [3]. The basic idea was to iterate over all distinct pairs {u,v} C
L(G) and remove all but one vertex from the set LC Ag(u,v), by applying the O—
operator. Indeed, this would locally help achieve the desired uniqueness criteria, but
because future removals of vertices in other iterations could potentially change the set
LCAg(u,v), we knew that this kind of method would face complications. Thus, we
ruled it out.

4.3.1 Extension of Hasse diagram

The method we arrived at, involved deriving a specific extension €’ of the clustering
system % (definition 3.0.11) followed by deriving the Hasse diagram of (4”, C). This
Hasse diagram would then correspond to the transformed DAG.

Before we describe the details of the transformation, let us recall the definitions of a
cluster and a clustering system. For any DAG G, the set C(v) is a cluster in G and
it contains all reachable leaves from v € V. The clustering system % of G, is the set
of all such clusters. A useful way to illustrate the clustering system in a DAG, is to
write down the set C(v) next to each vertex v € V. Consider now the hasse diagram

H of (¢,C). Some natural questions are whether H is a finite DAG with a single root
or not and whether it is a "2-LCA DAG" or not? As we now see, the answer to the
first question turns out to be yes.

Lemma 4.3.1. Let H be the Hasse diagram of the partially ordered set (¢,C), where
€ s the clustering system the DAG G = (V, E), then H is finite.

Proof. First observe that
17| < 211G < 2V < o

where the first inequality follows from the fact that € is a subset of the power set
P(L(@Q)), the second from the fact that |L(G)| < |V] and the third from the fact that
V is finite. By means of the number of edges being bounded above by |4|? in H, we
deduce that the edge set of H is also finite. It follows that H is finite.

O

Lemma 4.3.2. Let H be the Hasse diagram of the partially ordered set (¢, C), where
€ is the clustering system of the DAG G = (V, E), then C € € is an ancestor of
C'"e € in H if and only C' C C.

Proof. (=) Suppose that C is an ancestor of C’. Thus there exists a finite path
C—-Ci—..—C,—C:neN(C,...C,e%.

By the definition of H, we may therefore conclude that
c'cCc,c..CcCcpccC.

Thus C’' C C.

(<) Suppose instead that C' C C and consider the following set
1(C',C)={Ce¥%:C'cCcC}

Expressed in words, I(C”, C') contains the set of clusters in € that are proper subsets
of C and proper supersets of C’. From lemma 4.3.1, we know that ¢ is finite and
hence also I(C’, C) (note that I(C’,C) C ¥). We now establish that C' is an ancestor
of C’ through induction over the size of I(C’,C). If |I(C',C)| = 0, then there is no
larger subset of C' than C” itself. Thus it follows from the definition of H, that C' is a
parent of C’, and hence also an ancestor of C’. Suppose now that C is an ancestor of
C’ whenever |I(C’,C)| < n for some n € N, and consider the case |I(C’,C)| =n + 1.
Pick a cluster C” € I(C’,C) and introduce the sets I(C’,C") and I(C”,C) (defined
in the same way as for I(C’,C)). By means of |I(C',C")|,|I(C",C)| < n , we deduce
from our induction hypothesis that C” is an ancestor of C’ and that C is ancestor of
C"”. Since the ancestral relation is transitive, it follows that C' is an ancestor of C’ and
this completes the proof.

O

Theorem 4.3.1. Let G = (V,E) be a DAG and vy € V its single root. Let H be the
Hasse diagram of the partially ordered set (¢, C), where € is the clustering system of
G, then H is a finite DAG with a single root. Moreover L(H) = {{v} :v € L(G)}}.

Proof. Lemma 4.3.1 already establishes that H is finite. The fact that H is a DAG
can be established through a proof by contradiction. Thus assume that H is cyclic
and that it contains a cycle of the form

Ci—-0Cy—...—»C,—Ci:neN and Cy,...C, €F.

By the definition of H, and the fact all clusters in ¥ are different, we may therefore
conclude that

cicCc,cCp_1C..CCC.

But then C'; € C7 and hence no such cycle can exist in H. Consider now the cluster
C' € % that contains all the elements of L(G). C is well-defined, for one may show that
all leaves in GG are reachable from the single root vy. Moreover C' can not be a subset of
any of the other clusters in %, because each such cluster contains fewer elements from
L(G). It follows that C' does not have any ancestors and in particular no parents in H.
Indeed then C is a root. C'is the only root in H, beacuse each cluster C' € €\ {C} is
a subset of C' and from lemma 4.3.2, a descendant of C, implying that indeggC’ > 1.
Lastly, the leaf set of H is precisely the set L(H) = {{v} : v € L(G)}}, because the
singleton clusters (each containing a single leaf in G) are the smallest clusters in €,
and hence the only clusters that are not supersets of any other clusters in €.

O

Though the Hasse diagram H of (¢, C) turns out to be DAG with a single root, it
is not true in general that it is a "2-LCA-DAG". Consider for instance, the following
input DAG.

The Clustering system % for the DAG depicted in figure 4.2 is
% = {{U}’ {.’E}, {y}7 {U}, {Ua x, y}7 {xa Y, U}, {’Uv x,Y, U}}

and one can easily show that the Hasse diagram H of (¢, C), is isomorphic to the
DAG depicted in figure 4.2, and hence not a "2-LCA DAG". However, notice that the
extension ¢’ = ¢ U {x,y} would turn H into a "2-LCA DAG", an observation that
laid out the foundation for the algorithm described in theorem 4.3.2. Before turning
to a formal justification of theorem 4.3.2, we first establish equivalence between an
inclusion minimal cluster and a least common ancestor.

Lemma 4.3.3. Let H be the Hasse diagram of the partially ordered set (¢, C), where
€ is the clustering system of the DAG G. C € ¥ is an inclusion minimal cluster
containing two distinct x,y € L(G), if and only if it is a least common ancestor of the

clusters {z},{y} € L(H) in H.

Figure 4.2: DAG for which the Hasse Diagram of (¢, C) fails to be a "2-LCA DAG".

Proof. The proof is divided into two parts. The first part consists of showing that C
is a cluster containing z and y, if and only if it is a common ancestor of {z} and {y}.
The second part consists of showing that there is no smaller cluster C’ C C' containing
x and y, if and only if there is no descendant of C' that is a common ancestor of both
{z} and {y}. We have that

C' is a cluster containing z and y <= The clusters {z} and {y} are subsets of C
<= (' is an ancestor of both {z} and {y} <= C is a common ancestor of {z} and

{y}

, where the first equivalence is a matter of basic set theory, the second a consequence
of lemma 4.3.2, and the third a result of applying the definition of a common ancestor.
Now,

3C’" € € such that C' C C and {z,y} C C' <= HC’ € € such that C’ < C and
{z,y} CC" < HC’" € € such that ¢’ < C and C’ is a common ancestor of {z} and

{y}

where the first equivalence is a consequence of lemma 4.3.2, and the second a matter of
applying the result for the first part of the proof. Combining both parts of the proof,
now gives us that C' is a least common ancestor of the clusters {z} and {y}, and we
are done. O

Theorem 4.3.2. Let H be the Hasse diagram of the partially ordered set (¢, C), where
€ is the clustering system the DAG G. Consider the following algorithm that extends
H to a new Hasse diagram H':

1. For all distinct {z},{y} € L(H) do:

If there is no unique inclusion minimal cluster containing x and y, then add
the cluster {x,y} to €.

2. Return the Hasse diagram H' of (€¢',C), where €' is the new clustering system
obtained after the preceding for-loop.

The algorithm above produces a finite "2-LCA DAG" H' , with the same single root
as H and that satisfies L(H') = L(H).

Proof. The first part of the proof consists of showing that H' remains a finite DAG
with the same single root and that L(H') = L(H). The fact that H’ is finite follows
from the fact that at most (I“/)) new clusters were added to H. Thus both the vertex
set (the extended clustering system) and the edge set of H' remain bounded above by
some constant. The proof that H is a DAG in theorem 4.3.1, remains valid for any
Hasse diagram and thus H’ is a DAG. The element C' € % that contains all leaves
in G, remains in %”’, and moreover it remains the only root, because the new clusters
that were potentially added to € , are also subsets of C. L(H) = L(H') because of
the same reasoning as in the proof of theorem 4.3.1.

What remains to show is that H' is a "2-LCA DAG". That is, we want to show that
|LCAp ({x},{y})| = 1 for each distinct pair {«},{y} € L(H'). To do this, we consider

two cases:
(1) There was a unique inclusion minimal cluster in H containing x and y
(2) There was at least two inclusion minimal clusters in H containing x and y.

First observe that from lemma 4.3.3, we know that an inclusion minimal cluster is the
same thing as a least common ancestor. Suppose now that (1) holds. Thus there was
a unique least common ancestor C € € of {z} and {y} in H, and we argue that it
remains a unique least common ancestor in H’ after the algorithm is complete, because
of the following reasons:

o C {z},{y} are all elements of ¥’ and since C is a superset of {z}, {y} it follows
that C' remains a common ancestor of {z} and {y} in H' (lemma 4.3.2).

e Any descendant of C' in H, remains a descendant in H’, and since none of them
were common ancestors of {z} and {y} in H, the same holds in H'. Any potential
new descendant of C' added through the algorithm, contains a pair of leaves of
which at least one of them is not x or y. Note in particular that the since (1)
holds, the cluster {x,y} is not included in H'. Thus it follows that any such new
descendant is not a common ancestor of {z} and {y} in H’. What follows is that
there can be no descendant of C' that is a common ancestor of {z} and {y} in
H'. This result, combined with the previous conclusions, gives us that C' is least
common ancestor.

e (C'is a unique least common ancestor of {z} and {y}, because none of the potential
new clusters in H' are common ancestors of {z} and {y}, and the set of all other
common ancestors of {x} and {y} (excluding C) are the same as in H, none of

which are inclusion minimal, and hence (lemma 4.3.3) none of which are least
common ancestors.

From the above we deduce that any pair of leaves in H’ satisfying (1), has a unique
least common ancestor. Now suppose (2) holds. Thus the cluster {x,y} is present in
H'. We now argue that {z,y} is a unique least common ancestor of {z} and {y} in
H’, because of the following reasons:

e {z,y} is a superset of {z} and {y}, and hence a common ancestor of them in H’
(lemma 4.3.2)

e {z,y} is a least common ancestor of {z} and {y} in H’, because any proper
subset of {x,y} can not be a superset of both {z} and {y}.

e {x,y} is a unique least common ancestor, because it is the unique inclusion
minimal cluster containing z and y in H'.

Thus for all distinct pairs {z}, {y} € L(H’), it holds that |LC Ay ({z},{y})| =1, and
thus H' is "2-LCA DAG" and the proof is complete.

O

4.3.2 Pseudocode for Extension algorithm

The procedure described in theorem 4.3.2 , captures the bulk of the algorithm that
we will soon provide pseudocode to. Naturally, the algorithm involves defining three
main functions. One which outputs the clustering system %', another which outputs
the Hasse Diagram H, and a last function which outputs the extended Hasse Diagram
H'. As we will see, the function which computes %, uses a recursive strategy, which
is quite intuitive. Note in particular that

Ca(v) = {v}

whenever v € L(G) and

CG (U) = Uyuen+ (U)CG (’U,)

whenever v ¢ L(G) (obs! Here we define N (v) to be the out-neighbourhood of v).

The function which computes the Hasse Diagram H, simply takes the clustering system
% and builds H through an iterative procedure, corresponding to that described in
definition 3.0.16. Lastly, the extended Hasse Diagram H’ is built by deploying an
iterative procedure corresponding to that described in theorem 4.3.2.

Algorithm 4 Extension algorithm
The input of the function below is « DAG G = (V, E), a vertex v € V, a mem-
oization table M (initialized in such a way that M[u] = None for every u € V)
and a list "visited" which tracks all visited vertices (initialized in such a way that
visited[u] = False for every u € V). The function outputs the tuple (Cq(v), M),
where M has been updated to satisfy the property: Mu] = Cg(u) for every u € V
such that u < v.

function CG(G, v, M, visited):

4: visited|[v] + True;
if outdegg(v) = 0 then
Ca(v) « {u};
Mv] «+ Cg(v);
8: return (Cg(v), M)
else
Calv) « {}
for u e N*(v) do
12: if visited[u] = True then
Ca(u) < Mlul;
else
Ca(u) < Ca(G, u, M, visited)[0];
16: end if
Ca(v) + Ca(v) U Cq(u);
end for
M{v] < Cg(v);
20: return (Cg(v), M)
end if

end function

24: The input of the function below is a DAG G = (V, E). The output is the clustering
system € of G

function CLUSTERINGSYSTEM(G):
Initialize a list visited of n False entries;

28: Initialize a hashmap M such that M[v] = None for every v € V;
r < 0;

(r corresponds to the root in G)
Ca(G, r, M, visited);

32: (Above line calls for the previous function)
Initialize an empty set handledclusters;
Initialize an empty list €;
for v € M do

36: if M[v] ¢ handledclusters then

Add M|v] to the set handledclusters;
Append M[v] to €;
end if

40: end for
return ¢

end function

The input of the function below is a clustering system €. The output is the Hasse
diagram H of (¢,C).

function H(%):
Initialize an empty DAG H;
Set V(H) = %;
for C; € ¥ do
for Cs € ¥ do
edgebool « True;
if C2 gZ Cl then
edgebool < False;
else
for C3 € ¥ do
if Cy c C3 C Cy then
edgebool < False;
break
end if
end for
end if
if edgebool = True then
E(H) « B(H) U{(C1,C2)};
end if
end for
end for
return H
end function

The input of the function below is a DAG G = (V, E) and the clustering system €
of G. The output is the extended Hasse diagram H' of (¢”',C).

function HPRIME(G, %):
Initialize ¢’ = €;
Set L = L(G);
for x,y in combinations(L,2) do
(Above line means that we are iterating over all pairs of leaves)
Initialize an empty list A;
(The list above is going to store all clusters in €, containing both x and y)
for C € ¢ do
if x € C and y € C then
Append C to A;
end if
end for
countincmin ¢ 0;
(countinemin := number of inclusion minimal clusters containing x and y)
for C1 € A do
inclminbool < True;
for Cs € A do
if Cy C Cq then
inclminbool + False;
break
end if
end for
if inclminbool = True then
countincmin < countincmin + 1;
end if
end for
if countincmin > 1 then
¢ ¢ U{{z,y}};
end if
end for
return H(%")

We now turn to a formal justification of the Extension algorithm.

4.3.3 Correctness of Extension algorithm

Algorithm 4 relies heavily on the result of theorem 4.3.2. Thus it suffices to prove that
the "Hprime" function, defined above, follows the iterative approach described in this
theorem. That is to say,

e For each distinct z,y € L(G) pair, the "Hprime" function correctly decides
whether to add the cluster {z,y} to € or not.

e The "Hprime" function takes this extended clustering system %”, and correctly
derives the Hasse diagram of (%", C).

The first claim is justified if we can show that the inclusion minimality check is done
correctly. The second claim is justified by verifying correctness of the "H" function (the
function which returns the Hasse Diagram of (¢, C), where % is some input clustering
system). As per usual, the correctness of one function relies heavily on the correctness
of the prior. Thus to make the proof complete, we provide proofs for the first three
functions, to then finish off by justifying the correctness of the "Hprime" function in
a theorem.

Lemma 4.3.4. Given a DAG G = (V,E) and any v € V, the "Cg" function in
Algorithm 4 outputs the tuple (Cq(v), M), where M is a memoization table satisfying
Mu] = Cg(u) for allu € V such that u < v.

Proof. Let ég(v) be the first part of the function’s output when called on input v.
What we wish to show is that Cz(v) = Ce(v) and that M|u] = Ca(u) = Cq(u) for
all u € V such that u < v. Note that the notation é@(v) is introduced in order to not
confuse it with the true value Cg(v).

Define for any u € V' the function ¢ : V' — N such that

d(u) =0if uw € L(G)

and

0(u) = 14+ maz,en+@w)d(w) otherwise.

Thus 6(u) measures the maximum distance from u to a leaf.
We now prove the lemma by induction over §(v).

Suppose 8(v) = 0, then v € L(G), and the function sets Cq(v) = {v} and updates
M[v] = {v}. It then returns the pair (Cq(v), M). Indeed Cg(v) = Cg(v) because
if v is a leaf, v itself is the only reachable leaf from v. Moreover, there is no strict
descendant of v and so the required property of M is also satisfied. This verifies the
base case.

Now assume the statement holds for all w € V such that §(w) < k for some k € N.
That is to say, suppose for such a vertex w, that ég(w) = Cg(w) and that M is
updated in such a way that M[u] = Cg(u) for all w € V such that u < w. Consider
now a vertex v satisfying 6(v) = k+ 1. Since k > 0, we can be sure that v is an
inner vertex and hence that N*(v) # (). Thus when v is explored, the "else" block is
entered. What follows is an implementation of the recursive strategy discussed in the
introduction of section 4.3.2. That is,

CG (U) = UwweN+ (U)CG (’U})

The above identity holds because a leaf is reachable from v if and only if it is reachable
from at least one of v’s children. Thus to verify that Cq(v) = Ca(v), it suffices to
show that Cg(w) = Cg(w) for each w € N*(v). The function computes Cg(w) in
exactly one of two ways. If w has already been explored, the memoization table M
satisfies M[w] = Ca(w), and we extract this value. If w has not been explored, we
make a recursive call to retrieve Cy(w). Because w € Nt (v) and §(v) = k + 1, it
follows that §(w) < k. Applying the induction hypothesis now gives Cg(w) = Ca(w),
and it follows immediately that C(v) = C(v). Using the induction hypothesis again,
we may conclude that after iterating over w € N*(v), M satisfies M[u] = Cg(u) for
all u € V such that v < w. Since u =< v if and only if v < w for at least one of
w € NT(v), it follows that M stores M|[u] = Cg(u) for all w € V such that u < v.
Thus the statement holds for all £ > 0, completing the proof.

O

Lemma 4.3.5. The "Clusteringsystem" function in Algorithm 4, correctly computes
the clustering system € of the input DAG G = (V, E).

Proof. By the previous lemma, we know that after the call "Cg(G, r,M, visited)" has
been made, M satisfies the property M[u] = Cg(u) for all w € V such that u < r. But
since G is a DAG with a single root r, the condition u < r is true for all w € V. Thus
M stores the values of Cg(u) for all w € V. The remainder of the function simply
filters out any duplicates in M to retrieve the final output .

O

Lemma 4.3.6. The "H" function in Algorithm 4, correctly computes the Hasse dia-
gram H of (€,C), where € is some input clustering system.

Proof. The function starts by setting V/(H) = €, which is correct because the vertices
of H are precisely the clusters in ". The remainder of the function builds the edge set
E(H) by making use of definition 3.0.16. Namely, for each pair of clusters Cy,Cy € E,
an edge (C1,C2) is added to E(H), if and only if C5 C C1, and there is no intermediate
cluster C3 € € such that Cy C C3 C C7. This establishes correctness. O

Theorem 4.3.3. The "Hprime" function in Algorithm 4, correctly computes the ex-
tended Hasse diagram H' of (€',C).

Proof. What needs to be shown is that the implemented algorithm inside the "Hprime"
function, aligns with the algorithm described in theorem 4.3.2. This amounts to prov-
ing that the extension of % is done correctly. For if this holds, the final return statement
will return the extended Hasse Diagram H' of (4", C), based on the correctness of the
"H" function, established in the previous lemma.

The function begins by iterating through all distinct pairs of leaves x,y € L(G) and
for each such pair it computes the list A, containing those clusters C € ¥ for which
z,y € C. Then for each cluster C; € A, it checks whether C is an inclusion minimal
cluster or not. The implemented logic being that C is an inclusion minimal cluster
if and only if there is no other cluster Co € A such that Cy C Cy. This is precisely
the definition of an inclusion minimal cluster (see definition 3.0.12). Thus we can be
sure that the counter "countincmin" corresponds to the number of inclusion minimal
clusters containing both x and vy, after the for loop across all C; € A is complete. If
this counter is strictly greater than 1, we add the cluster {z,y} to €, aligning with
step 1 in theorem 4.3.2. It follows that the function correctly extends € to €’. The
correctness of the "Hprime" function now follows immediately from the correctness of
the "H" function. O

4.3.4 Space and time complexity analysis of Extension algorithm

We now turn to a formal analysis of the worst case space and time complexity of
algorithm 4. Our approach is as usual, we conclude the worst case space and time
complexity of all functions before deducing the overall worst case space and time
complexity. The main result is captured in theorem 4.3.4. We remark again that
n=|V|.

Lemma 4.3.7. The worst case space complexity of the "Cq" function is O(n?) and
the worst case time complexity is O(n?3)
Proof. There are three main sources contributing to the space complexity of the "Cg"
function. These include:

1. The list "visited", which tracks visited /unvisited vertices.

2. The memoization table M, storing C¢(u) for each u € V such that v < v. OBS!
If u A v then M satisfies M[u] = None.

3. The recursive call stack.

The first requires O(n) space , since the "visited" list contains n False/True entries.
The second requires O(n?) space in the worst case, and we argue as follows: For each
u € V it holds that

|Co(u)] =1if n=1 (u is the single vertex in V' and hence also the only leaf.)

and

|Co(u)] < n—1 otherwise (A finite DAG G = (V, E) with a single root has at most
n — 1 leaves whenever n > 2).

Thus we are lead to the concluson |Cq(u)| < n, and the claim follows from the fact
that there are n keys in M mapping to sets of size < n. At any time point during
execution, the size of the recursive call stack is bounded above by n, meaning that it
requires a worst case space complexity of O(n) to maintain. Summarizing this analysis,
we arrive at the conclusion that the worst case space complexity is

maz(0(n),0(n?),0(n) = O(n?).

Regarding the time complexity, the total time cost can essentially be divided into two
components:

1. Traversal cost. L.e. the time it takes to iterate over all vertices and edges

2. Union cost. ILe. the time it takes to perform all the updates Cg(v) + Cg(v) U
Ca(u)

The implemented traversal method is recursive DF'S and therefore the worst case
traversal cost is O(n?) (keeping in mind that |E| < n?). As for the union cost, we argue
that since |Cg(u)| < n, each union operation has a worst case time complexity of O(n).
Since there are |E| edges in G and each vertex v € V' is visited exactly once, |E| such
union operations are performed. This gives a worst case union cost time complexity
of O(n?). Thus the overall worst case time complexity is O(n?) + O(n?) = O(n?).

O

Lemma 4.3.8. The worst case space complexity of the "Clusteringsystem” function
is O(n?) and the worst case time complexity is O(n3)

Proof. For the "Clusteringsystem" function, there are two additional sources of space
introduced, aside from the three listed in lemma 4.3.7. These include the set "han-
dledclusters" as well as the the list 4. Both of which, in the worst case, can store up
to n clusters, contributing to O(n) space. Thus the total worst case space complexity
remains at O(n?).

As for the running time, note that initializing the list "visited" and the memoization
table M are both O(n) operations. Setting the root = 0 is O(1). Calling the "Cg"
function is in the worst case O(n?) (which follows from previous the previous lemma).
Lastly, computing "handledclusters" and % is O(n) (we need only to iterate over the
n keys in M and perform constant time lookups and insertions). It follows that the
total worst case time complexity is

O(n) + O(n) + O(1) + O(n?) 4+ O(n) = O(n®).
Completing the proof.

Lemma 4.3.9. The worst case space complexity of the "H" function is O(n?) and the
worst case time complexity is O(n*), whenever the input is the clustering system € of

a DAG G = (V, E).

Proof. The space complexity of the "H" function is completely determined based on
how much space is required to store H. The vertex set V(H) = % requires O(n) space
in the worst case (recalling |€| < n). As for the edge set E(H), we may still conclude

that |E(H)| < %, since H is a DAG on at most n vertices. It follows that the
worst case space complexity of the function is O(n?). (OBS! Because of the properties
imposed on H, there is reason to believe that the bound for |E(H)| could be lowered
significantly. If such is the case, the worst case space complexity might be of lower
order than n?. We discuss this briefly in chapter 5, the discussion section.)

As for the running time, note that the first two lines together is O(n), O(1) for ini-
tializing an empty DAG H and O(n) for setting V(H) = %. The double for loop over
the set ¢ is O(n?) and this proceeds in the following way

1. The first subset condition is checked in O(n) time.

2. If the first "if" condition was not sastified, we initiate another for loop over ¥
and perform two subset checks, checking whether both Cy C C3 and C3 C C;
holds or not. Thus the code inside the "else" statement is O(n?).

3. If the "edgebool" variable is set to True after the two preceding steps, we add
an edge in O(1) time.

It follows that the total worst time complexity is
O(n) + O(n%(n+n?+1)) = O(n) + O(n® + n* + n?) = O(n) + O(n*) = O(n?).
Completing the proof.

O

Lemma 4.3.10. The worst case space complexity of the "Hprime" function is O(n?)
and the worst case time complezity is O(n").

Proof. There are 4 main sources contributing to the space complexity of the "Hprime"
function. These include:

1. The list .

2. The list of leaves L.

3. The local list A, stored when iterating over a single pair of leaves.

4. The function call H(%").

The first requires O(n?) space, because in the worst case, we may add up to (g) < n?
new clusters to ¢. The second requires O(n) space because |L(G)| < n. The third
requires O(n) space because |A| < n — |L(G)| < n (A is a subset of ¢, which has size

at most n, and all singleton sets {u}, v € L(G) are contained in % and non of these
contain both x and y). The fourth requires O(n*) space. For if we change the input
% to ¢’ in lemma 4.3.9, then by means of |4”| < n?, an upper bound for the number
of edges in the Hasse diagram H’ of (¢”,C) is n* (again, this bound could potentially
be much lower). Thus we deduce that the overall worst case space complexity is

maz(0O(n?),0(n),0(n),0(n*)) = O(n?).
As for the running time, we also have 4 contributing factors. These include:
1. Initializing the list ¢’ by setting ¥’ = %.
2. Storing the set of leaves in the list L.
3. Expanding % to %".
4. Calling H(%¢").

The first and second factors are both executed in O(n) time in the worst case (note
that for the first, we need to make a copy of ¢ in python, so as to not overwrite the
contents of ¥). As for the third, iterating over pairs of distinct leaves z,y € L(G)
is done in O(n?) time in the worst case. The for loop is then followed up with the
following:

1. An iteration over all elements C' € € (O(n)), a check if z,y € C' (O(n), recalling
that |C] < n) and then potentially appending C' to A (O(1)). Overall this
procedure is done in O(n?) time.

2. A double for loop over the elements of A (O(n?), recalling the bound |A| < n) , a
check if Cy C Cy (O(n)), a check if "inclminbool = True" or not (O(1)), followed
by potentially incrementing "countincmin" by 1 (O(1)). Overall this procedure
is done in O(n?) time.

3. Appending the set {z,y} to € if "countincmin" > 1 (O(1)).
Thus the third contributing factor has a worst case time complexity of
O(n?(n? +n3+1)) = O(n* + n® + n?) = O(nd).

Lastly, we argue that the function call H(%”) has a worst case time complexity of
O(n"). For if we change the input € to ¢’ in lemma 4.3.9, then we must take into
account that 47| < n?, but that the size of every C' € ¢ remains bounded above by
n. What follows is that the overall worst case time complexity is

O(n) +0O(n) +0(n°) +0(n") = O(n7)
and the proof is complete.
O

Theorem 4.3.4. The worst case space complexity of Algorithm 4 is O(n*) and the
worst case time complezity is O(n")

Proof. Retrieving H' from the DAG G = (V, E) consists of two steps. These are as
follows:

1. Extract the clusteringsystem % by calling "Clusteringsystem(G)" (O(n?) space,
O(n?) time)

2. Derive H' by calling "Hprime(G,)" (O(n?) space, O(n") time).
Thus it follows immediately that the total worst case space complexity is
maz(0(n?),0(n*)) = O(n*)
and that the total worst case time complexity is
O(n3) +0(n™) = O(n")

and the proof is complete.

4.3.5 Tweaking the extension algorithm for leaf coloured input
DAGs

So far, we had derived a method for transforming a randomly generated DAG G =
(V,E) into a "2-LCA DAG" (namely the extended Hasse diagram H') , where the
leaves of G had not yet been coloured. But before we could head into finding an
algorithm for generating "BMGs", we needed to consider such input DAGs. For any
randomly generated, leaf-coloured input DAG (G, o) (not necasarily a "2-LCA DAG"),
we thus considered a transformation which involved generating an extended Hasse
diagram H' with the following extra condition:

|[LCAp ({z},{y})| =1 for all distinct pairs {z},{y} € L(H') : o(z) # o(y).

Indeed this was already attained by algorithm 4, since it achieved the above uniqueness
property for all pairs of leaves in H'. However, we wanted to remove redundant fixes,
so as to speed up the average running time. In particular, given the leaf-coloured
DAG (G, 0), it was not of interest to achieve |LC Ag: ({z},{y})| = 1 for distinct pairs
x,y € L(G) for which o(z) = o(y). To this end, we considered the following tweak of
the "Hprime" function in algorithm 4.

Algorithm 5 Extension algorithm with a small tweak

5:

10:

15:

20:

25:

30:

35:

A leaf-coloured DAG (G, o) and the clustering system € of G.

function HPRIMETWEAK(G, o0, €):
Initialize ¢’ = €;
Set L = L(G);
for x,y in combinations(L,2) do

(Above line means that we are iterating over all pairs of distinct leaves)
if o(z) = o(y) then
Continue
end if
Initialize an empty list A;
(The list above is going to store all clusters in €, containing both x and y)
for C € ¥ do
if x € C and y € C then
Append C to A;
end if
end for
countincmin = 0;
(countinemin := number of inclusion minimal clusters containing x and y)
for C7 € A do
inclminbool < True;
for C5 € A do
if Cy C C; then
inclminbool < False;
Break
end if
end for
if inclminbool = True then
countincmin < countincmin + 1;
end if
end for
if countincmin > 1 then
¢ ¢ U{{z,y}};
end if

end for
return H(%")
end function

Correctness is easily established by considering a distinct leaf pair {z},{y} € L(H")
such that o(x) # o(y) , and applying the same strategy used in theorem 4.3.2 to
prove that |LC A ({z},{y})| = 1. The reader may also convince themselves that the
remaining properties imposed on H’, namely that H’ is finite, has the same single root
as H and satisfies L(H') = L(H), still hold.

It should be mentioned that this tweak of the "Hprime" function does not lower the
worst case space or time complexity. Because in the case where each leaf has been
provided a unique colour, algorithm 5 is completely equivalent to algorithm 4.

Lastly, let ' € L(H') be such that ' = {a} for z € L(G), then by defining the
function ¢’ : L(H') — N as

o'(¢') = o'({a}) = o(x)

it holds that

|[LCAp (2’ y')| =1 for all «’,y' € L(H') : o' (2") # o' ().

Indeed then, the leaf coloured DAG (H',0’) is a "2-LCA DAG" and in particular, the
BMG of (H',0’) is well-defined.

4.4 Generating the BMG of a "2-LCA DAG"

At this point, our method for generating a random "2-LCA DAG" could be described
as follows:

1. Generate a random DAG G = (V, E) by either using approach 1 or approach 2,
described in detail in subsections 4.1.1 and 4.1.2 respectively.

2. Check if G ((G,0)) is a "2-LCA DAG" by applying the "Verification algorithm",
described in section 4.2.

3. If G ((G, o)) succeeds in being a "2-LCA DAG", then return it. Otherwise, run

the "Extension algorithm" described in section 4.3 to produce a new DAG H’
((H',0")) that is a "2-LCA DAG".

To construct the BMG of a randomly generated, leaf-coloured "2-LCA DAG" (G, o),
we reverted to definitions 3.0.17 and 3.0.18. We arrived at the following algorithm.

4.4.1 Pseudocode for BMG algorithm

Algorithm 6 BMG algorithm

12:

18:

24:

30:

36:

The input of the function below is a DAG G = (V, E) and two distinct vertices
x,y € V. The output is True if y is a strict descendant of x in G and False
otherwise.

function ISSTRICTDESC(G, z, y):
Ay < AllAncestorsO f(y, G);
if x € A, then

return True
end if
return False
end function

)

The input of the function below is a "2-LCA DAG" (G,0). The output is the BMG
(G',0) of (G,0).

function BMG(G, 0):
Initialize an empty DAG G' = (V' =0, E' = 0);
Set V' = L(G);
for x € L(G) do
for y € L(G) do
if o(x) # o(y) then
edgebool < True;
for z € L(G) do
if 2 # y and o(y) = o(2) then
u:= LCA(z,y, G)[0];
v:= LCA(z, z,G)[0];
(Calling the LC A function, mentioned in section 4.2)
if IsStrictDesc(G,u,v) then
edgebool < False;
break
end if
end if
end for
if edgebool = True then
E' + F' U{z,y};
end if
end if
end for
end for
return (G',0)
end function

We now turn to a formal justification of the BMG algorithm.

4.4.2 Correctness of BMG algorithm

The correctness of the BMG algorithm is established by proving correctness of the
"BMG" function. But first we must verify correctness of the "IsStrictDesc" function.
The main result is captured in theorem 4.4.1

Lemma 4.4.1. Let G = (V,E) be a DAG. The "IsStrictDesc" function correctly
checks if y € V is a strict descendant of x € V in G or not.

Proof. The correctness follows immediately from the correctness of the "AllAncestor-
sOf" function and the fact that

y <« if and only if x € A,,.
O

Theorem 4.4.1. The "BMG" function correctly computes the BMG (G',0) of the
"2-LCA DAG" (G, o).

Proof. Tt suffices to show that the function constructs V' and E’ correctly. Since it
sets V' = L(G), the vertex set is correct. As for the edge set, we want to show that for
all z,y € L(G), the arc (x,y) is added to E’ if and only if y is a best match of z. But
this follows immediately from the fact that the best match check is done in accordance
with definition 3.0.17. Note in particular that the second condition in definition 3.0.17
may be exchanged with

There exists no z € L(G) for which o(z2) = o(y) and LCAg(z, z) < LCAg(z,y).

Thus E’ is correctly computed and the proof is complete.

4.4.3 Space and time complexity analysis of the BMG algorithm

As per usual, we derive the space and time complexity of the algorithm by deducing
the space and time complexity of each function.

Lemma 4.4.2. The worst case space complexity of the "IsStrictDesc" function is O(n)
and the worst case time complezity is O(n?).

Proof. The amount of space used is determined entirely from the amount of space used
when calling the "AllAncestorsOf" function, which has a worst case space complexity of
O(n) (lemma 4.2.4). Thus the worst case space complexity of the "IsStrictDesc" func-
tion is O(n). To determine the running time, notice that calling the "AllAncestorsOf"
function is in the worst case O(n?) (lemma 4.2.4), and that checking whether z € A, or

not, is in the worst case O(n) (the size of A, is at most n—1). It follows that the total
worst case time complexity of the "IsStrictDesc" function is O(n) + O(n?) = O(n?).

O

Theorem 4.4.2. The worst case space complexity of the "BMG" function is O(n?)
and the worst case time complexity is O(n’).

Proof. There are three main factors contributing to the space complexity of the "BMG"
function. These include:

1. Storing G'.

2. Storing the set of leaves in G.

3. The space required when calling the LC' A function.

The first has a worst case space complexity of O(n?) ,which follows from the observation
that the number of leaves in G is bounded above by n — 1 for n > 1. These leaves
make up the vertex set of G’, and in the case where all have a unique colour and are
best matches of each other, the size of E(G’) is at most 2 (";") < n? (bound holds
for n > 1). The second has a worst case space complexity of O(n) and the third O(n?)
(follows from lemma 4.2.6). Thus it follows that the total worst case space complexity
of the "BMG" function is

max(0(n?),0(n),0(n?)) = O(n?).

In terms of the time complexity, we remark that initializing an empty DAG is done in
O(1) time and that setting V' = L(G) is done in O(n) time. As for the remainder of
the code, the double for loop over the set of leaves is done in O(n?) time, and this is
followed up with the following:

1. Checking whether o(z) # o(y) holds or not (O(1)).
(All steps below conditioned on previous check holding True.)
2. Storing the variable "edgebool" which is initially set to True (O(1)).
3. Iterating over the set of leaves a third time (O(n)).
(Steps 4 — 7 are done inside the for loop entered in step 3.)
4. Checking whether both z # y and o(z) = o(y) hold or not (O(1)).
(Steps 5 — 7 conditioned on the previous check holding True.)

5. Storing u and v, where u is the unique least common ancestor of x and y, and v
the unique least common ancestor of z and z (O(n?), follows from lemma 4.2.6).

6. Checking whether v is a strict descendant of u (O(n?), follows from lemma 4.4.2).
(Step 7 conditioned on previous check holding True.)

7. Resetting the value of "edgebool" to False (O(1)).

8. Checking whether the value of the "edgebool" variable is True ((O(1)).
(Step 9 conditioned on previous check holding True.)
9. Adding the edge (z,y) to E(G’) (O(1)).
Thus we deduce that this part of the code, in the worst case, runs in
O(n?(n(n? +n?) + 1)) = O(n® + n® + n?) = O(n®) time.
From which it follows that that the total worst case time complexity is
O(1) + O(n) + O(n®) = O(n®)

and the proof is complete.

5 Discussion

Though we have sucessfully derived an algorithm for transforming a random DAG into
a "2-LCA DAG", we remark again that the transformation does not take into account
in preserving properties in the underlying evolutionary DAG, something which may
be of relevance, depending on the situation at hand. Suppose for instance that a
researcher which to remove redundancies in a large dataset of DAGs (so as to produce
"2-LCA DAGs") that otherwise contain important evolutionary information. To this
end, an open research topic is to find a polynomial time algorithm for achieving this
kind of transformation, given a set of structures/relationships to be preserved.

With regards to the running time of the various functions, the reader might raise
immediate suspicion. Especially since functions like "IsValidDAG", "H", "Hprime"
and "BMG" all have worst case time complexties equal to or exceeding O(n?), with
"Hprime" reaching as high as O(n"). However, because of structual dependencies, a
formal average case analysis would most likely result in deriving lower time complex-
ities. To provide some insight into this argument, consider for instance the "IsValid-
Dag" function. A worst case analysis of this function builds on the idea that both
the number of leaves and the maximum number of ancestors of a leaf in an under-
lying DAG G can be considered to be O(n). Roughly speaking, the combination of
these factors describe a very specific DAG type. Namely a DAG with the following
structural properties:

e Wide at the bottom (a lot of leaves).
e Tall (long ancestral chains)

While it is possible for such DAGs to be generated under both approaches, the under-
lying structural dependencies make their simultaneous occurence unlikely in practice.
Especially for large values of n. For if the number of leaves is close to n, then a high
fraction of the vertices are leaves, and we can expect a wide but shallow DAG (short
ancestral chains). On the other hand, if the maximum number of ancestors of a leaf is
close to n, then a high fraction of the vertices are internal vertices, and we can expect
a narrow but tall DAG. While this is in no way a rigorous argument , it provides
motivation to derive the average case time complexity of the "IsValidDAG" function,
using either approach 1 or approach 2 as a probabilisitc model, and potentially prove
that the average case time complexity is lower than the worst case time complexity.
However, we do want to emphasise that there are known quicker algorithms for de-
termining whether or not each pair of vertices in a DAG have a unique least common
ancestor or not. In [2], Mirsolaw Kowaluk and Andrzej Lingas prove the problem to be
solveable in O(n“log(n)) time where w < 2.376 is the exponent of the fastest known

46

algorithm for multiplication of two nxn matrices. As for the "Hprime" function, note
that the factor n” arises as a consequence of |4”| < n?, where the worst case is one
for which |L(G)| = O(n) and all the clusters of the form {z,y} (for distinct leaf pairs
x,y € L(G)) are added to €. A natural question however, is if for an average case,
the size of C’ can be considered of lower order than n2? To this end, let us construct
an experiment that goes as follows:

1. for p € {0.1,0.3,0.6,0.9} do:
a) for n € {20,50, 100,400} do:

i. for each pair (p,n), generate 100 random non-"2-LCA DAGs" on n
vertices and where the probaility of adding an edge is p . Let G pp
denote the -th (1 <4 < 100) generated DAG on n vertices and where
the probability of adding an edge was p.

ii. For each DAG G pn, compute the extended clustering system %7, ,
and store the value of %], |.

Hp,n
n2

. ,
iii. For each pair (p,n) compute p, ,, = where i, n, = avg1gi§100|(5i7p7n|-

b) For fixed p, investigate the behaviour of p,,, as n grows. If it tends to 0 or
decreases rapidly, we have reason to believe that on average, the size of €”
can be considered of lower order than n?, whenever edges are added with
proability p.

2. Start by generating DAGs using approach 1 and then repeat the experiment by
generating DAGs using approach 2.

We summarize the result of our experiment in four tables:

P Hp5 | Hp,10 | Hp,20 | Hp,50
0.1 | 3.00 7.44 14.25 | 40.82

0.3] 3.00 | 5.65 6.76 7.10
0.6 | 3.00 | 3.60 3.50 3.72
0.9 | 3.00 | 3.02 3.02 3.03

Table 5.1: Values of 1, , when DAGs are generated under approach 1

1Y Hp,5 | Mp,10 | Bp,20 | Hp,50
0.1 | 3.00 5.44 8.92 11.28

0.3 | 3.00 | 4.30 4.38 4.74
0.6 | 3.00 | 3.29 3.40 3.26
0.9 | 3.00 | 3.01 3.00 3.00

Table 5.2: Values of jip,, when DAGs are generated under approach 2

P Pp,5 | Pp,10 | Pp,20 | Pp,50
0.1] 0.12 | 0.07 0.04 0.02

0.3] 012 | 0.06 | 0.02 | 0.003
0.6 | 0.12 | 0.04 | 0.009 | 0.001
0.9 | 0.12 | 0.03 | 0.008 | 0.001

Table 5.3: Values of p, ,, when DAGs are generated under approach 1

P | Pp,5 | Pp,10 | Pp,20 | Pp,50
0.1]0.12 | 0.05 | 0.02 | 0.005
0.3 |0.12 | 0.04 | 0.01 | 0.002
0.6 | 0.12 | 0.03 | 0.008 | 0.001
091 0.12 | 0.03 | 0.007 | 0.001

Table 5.4: Values of p, ,, when DAGs are generated under approach 2

Clearly, the empirical results captured in tables 5.3 and 5.4 suggest that on average,
the size of €’ is of lower order than n2, no matter the probability p of adding an
edge, and whether approach 1 or 2 was used to generate a DAG (noting in particular
that all p,, tend to 0 as the value of n increases). Consequently, it seems to be
the case that the average case time complexity is lower than O(n”). But once again,
the claim can only be verified with a theoretical proof and we leave such matters as
a topic for future research. Nevertheless, our current algorithm for generating the
extended Hasse diagrams, need significant improvements in running time if one wishes
to construct large datasets of "2-LCA DAGs" with a high number of vertices (For
such a purpose, however, there is a method that involves not using the "Hprime"
function at all. We discuss this in the last paragraph of this section). To close off our
discussion on the running time of some of our implemented functions, let us consider
the implementation of the BMG function, which was proven to run in O(n°) time in
theorem 4.4.2. As in the case of the "IsValidDAG" function, the factor n® arises partly
because both the number of leaves and the maximum number of ancestors of a leaf
can be considered to be O(n). However, we have already intuitevely argued that these
bounds may be reduced in an average case analysis. Thus it seems reasonable that a
rigorous average case analysis of the BMG function, would result in concluding that
the average case time complexity is lower than O(n®). We also remark that optimizing
the "LCA" function and the "AllAncestorsOf" function would help reduce even the
worst case time complexity.

On the topic of space complexity, we concluded that the worst case space complexity
of the "Hprime" function is O(n?). The reason being that if € (|%| < n) is the input
clustering system when calling the "H" function, then by means of H being a DAG,
an upper bound for the number of edges in H is simply n?. Consequently, if the the
input is the extended clustering system %¢”(|¢”| < n?), the upper bound increases to

n*. This analysis, however, ignores additional structural constraints imposed on H.

For example that:
o {2} €% for all z € L(G).

e For C1,C5 € €, (C1,C5) € E(H) if and only if there is no intermediate cluster
03 S %\ {01,02} such that Cy C 03 C (.

Since singleton clusters are pairwise incomparable under set inclusion, the first con-
straint together with the second greatly reduces the number of possible edges in H,
suggesting that the naive bound for |E(H)| (and hence also |E(H')|) may be much
lower than n? (n for |E(H’)|). But we leave a formal justification as an open research
topic.

In the aim of deriving conjectures and results related to BMGs, one would most cer-
tainly demand some sort of control over the types of underlying "2-LCA DAGs" gen-
erated. Especially if one wishes to detect patterns. Some natural questions are:

e For fixed values of p and n, are there any significant differences between an
average "2-LCA DAG" generated using approach 1 and one generated using
approach 2, in terms of expected number of edges or the types of subgraphs
present?

e If we fix an approach for generating the starting DAGs, how does varying p and
n affect what kind of "2-LCA DAG" we can expect to generate on average? How
many vertices and edges does it have? What subgraphs are present? etc.

e For fixed values of p and n , are there any significant differences between the
induced probability distributions of approach 1 and approach 27 For instance,
is it more likely to generate a certain family of DAGs using approach 1 than
approach 27

Answering these types of questions would provide a researcher with a toolbox for
generating datasets of DAGs (in particular "2-LCA DAGs") of desired type.

We have already mentioned the major limitation of the "Hprime" function, whose
purpose is to transform a non-"2-LCA DAG" into a "2-LCA DAG". Namely that
it runs in O(n”) time in a worst case scenario. However, we may add that for the
purpose of generating large datasets of "2-LCA DAGs", the "Hprime" function may
be completely ignored. Another much more intuitive method is as follows:

1. Decide values of N,n and p where N is the size of the dataset to be generated
(i.e. the number of "2-LCA DAGs"), n the number of vertices that each "2-LCA
DAG" will contain and p the probability of adding an edge.

2. Produce a DAG (using either approach 1 or approach 2) and check whether it is
a "2-LCA DAG" or not (achieved by running the "IsValidDAG" function). If it
satisfies the condition, store the DAG. If not, disgard it.

3. Keep applying step 2 until N "2-LCA DAGs" have been stored.

The iterative procedure captured by steps 2 and 3 could easily be achieved by using
a while loop. Moreover, since in each step, the probability of generating a "2-LCA
DAG" is non-zero, we can be sure that the while loop eventually terminates. However,
a question arises regarding the expected number of iterations, which depend entirely
on the values of p and n as well as the induced probability distributions of the two
approaches. Letting I be the number of iterations, it may be the case that E[I]
(expected number of iterations) is large. Perhaps large enough to diqualify the method
entirely. Thus deriving E[I] remains an open research problem of interest.

6 Conclusion

We summarize the results of our research as follows:

In the aim of constructing a method for converting a random DAG into a "2-LCA
DAG", we have successfully derived a polynomial time algorithm:

1. Generate a random DAG G on a specified number of vertices n and on a specified
probability p of adding an edge, using either approach 1 or approach 2.

2. Check whether G is a "2-LCA DAG" or not by running the "IsValidDAG" func-
tion.

a) If it is a "2-LCA DAG", then simply return G

b) If not, then extend the Hasse diagram H of (¥,C) to H' by running the
"Hprime" function. The result of theorem 4.3.2 ensures that H' is a "2-LCA
DAG". Thus we can return H'.

Our current implementations of the "IsValidDAG" and"Hprime" functions , however,
are not efficient in terms of their running time, which was proven to be O(n*) (theorem
4.2.2) and O(n7) respectively (lemma 4.3.10). Thus, it is of relevance to optimize these
functions if one wishes to use them for recognizing and transforming large DAGs (i.e.
DAGs on many vertices and edges).

Aside from deriving a method for transforming DAGs into "2-LCA DAGs", we have
also briefly discussed "Best match graphs" and how they may be generated from leaf-
coloured "2-LCA DAGs". The provided algorithm (Algorithm 6) quite literally follows
definitions 3.0.17 and 3.0.18. However, just as in the case with the "IsValidDAG" and
"Hprime" function, the "BMG" function has a high worst case time complexity, O(n?),
and this would need to be reduced if one wishes to generate the "BMG" of a large
leaf-coloured "2-LCA DAG" .

51

References

(1]
2]

13l

[4]

[5]
[6]

7]
18]

19]

Marc Hellmuth, David Schaller, and Peter F. Stadler. Clustering systems of phy-
logenetic networks. Theory in Biosciences, 142:301-358, 2023.

Miroslaw Kowaluk and Andrzej Lingas. Unique lowest common ancestors in dags
are almost as easy as matrix multiplication. volume 4698, pages 265-274, 2007.

Anna Lindeberg and Marc Hellmuth. Simplifying and characterizing dags and phy-
logenetic networks via least common ancestor constraints. Bulletin of Mathematical
Biology, 87, 2025.

Anna Lindeberg, Bruno J. Schmidt, Manoj Changat, Ameera Vaheeda Shanavas,
Peter F. Stadler, and Marc Hellmuth. Global least common ancestor (lca) networks,
2025.

Bianca De Melo. Topological sorting. Cs560 research paper, Illinois Institute of
Technology, Computer Science Department, 2012.

David Schaller, Peter F. Stadler, and Marc Hellmuth. Complexity of modification
problems for best match graphs. Theoretical Computer Science, 865:63-84, 2021.

Eric W. Weisstein. Hasse diagram. From MathWorld—A Wolfram Resource, 2025.

Chih-Cheng Rex Yuan and Bow-Yaw Wang. Sat-solving the poset cover problem.
arXiv, 2025.

Hao Zuo, Jinshen Jiang, and Yun Zhou. Dagor: Learning dags via topological sorts
and qr factorization. Mathematics, 12, 2024.

52

Datalogi
www.math.su.se

Berékningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

	Introduction
	Assumptions
	Preliminaries
	Main
	Generating a random DAG
	Approach 1: Topological sort + root-to-root connections
	Approach 2: Extension from Tree
	Pseudocode and a comparison in space and time complexity

	Recognizing a "2-LCA DAG"
	Pseudocode for verification algorithm
	Correctness of verification algorithm
	Space and time complexity analysis of verification algorithm

	Transforming a random DAG into a "2-LCA DAG"
	Extension of Hasse diagram
	Pseudocode for Extension algorithm
	Correctness of Extension algorithm
	Space and time complexity analysis of Extension algorithm
	Tweaking the extension algorithm for leaf coloured input DAGs

	Generating the BMG of a "2-LCA DAG"
	Pseudocode for BMG algorithm
	Correctness of BMG algorithm
	Space and time complexity analysis of the BMG algorithm

	Discussion
	Conclusion

