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Abstract

Understanding how protein sequences evolve over time is a central problem
in computational biology. Models of amino-acid substitution describe this
process using continuous-time Markov chains, where the accuracy and ef-
ficiency of numerical computations are critical for estimating evolutionary
parameters from large sequence alignments. The modelestimator frame-
work estimates amino-acid substitution rate matrices by aggregating empir-
ical observations from aligned protein sequences. The original modelestima-
tor program was written in 2006 [I]. An updated python implementation,
modelestimator-v2 was created in 2019[2].

This project uses the modelestimator framework as a case study to in-
vestigate the energy and performance implications of using single-precision
(float32) arithmetic in numerical computation. The program was originally
implemented with default NumPy double-precision (float64) arrays; we com-
pare this to a version where the computation is refactored to use float32
representations throughout.

By instrumenting the execution with Linux perf and its energy-related
performance counters, I observe an approximate ~ 3-5% reduction in energy
consumption with minimal loss of numerical fidelity for the target workload.
This essay provides the theoretical motivation for mixed /lowered-precision
numerical computation, analyzes the behavior of NumPy’s type system, and
explains both when and when not precision changes affect energy characteris-
tics. The results demonstrate when carefully chosen numerical precision can
serve as a practical optimization strategy for scientific computing pipelines.

Sammanfattning

Forstaelsen av hur proteinsekvenser utvecklas over tid ar ett centralt prob-
lem inom berdkningsbiologi. Modeller fér aminosyrasubstitution beskriver
denna process med hjilp av kontinuerliga Markovkedjor, dér noggrannheten
och effektiviteten hos de numeriska berdkningarna ar avgérande for att
kunna uppskatta evolutionidra parametrar fran stora linjeringar.

Ramverket modelestimator anviands for att estimera substitutionshastighets-
matriser for aminosyror genom att aggregera empiriska observationer fran
proteinsekvenslinjeringar. Det ursprungliga modelestimator-programmet utveck-
lades ar 2006 [I]. En uppdaterad Python-implementation, modelestimator-
v2, skapades ar 2019 [2].

Detta projekt anvinder ramverket modelestimator som en fallstudie for



att undersoka energi- och prestandakonsekvenserna av att anvinda enkel-
precision (float32) i numeriska berdkningar. Programmet var ursprungli-
gen implementerat med NumPys dubbelprecision (float64), och jamfors har
med en version dar berdkningarna konsekvent har omstrukturerats till att
anvianda float32.

Genom att instrumentera exekveringen med Linux-verktyget perf och
dess energirelaterade prestandardknare observeras en minskning av energifor-
brukningen pa cirka 3-5%, med minimal forsimring av den numeriska nog-
grannheten for den studerade arbetsbelastningen. Arbetet presenterar den
teoretiska grunden for berdkningar med blandad och reducerad precision,
analyserar NumPys typsystem samt forklarar bade nér och néir dndringar i
numerisk precision paverkar energiegenskaper. Resultaten visar att ett med-
vetet val av numerisk precision kan utgéra en praktisk optimeringsstrategi
for vetenskapliga berdkningar.
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1 Introduction

1.1 Mathematical Background on Floating-Point Precision

Numerical computing has undergone a significant transformation in recent
decades. As data volumes increase and computational models become more
complex, the demands placed on commodity hardware — laptops, worksta-
tions, and cloud instances — continue to grow. While algorithmic efficiency
remains paramount, attention has increasingly turned toward numerical pre-
cision as an underexplored performance axis. Many numerical workloads de-
fault to 64-bit floating-point arithmetic, even when such precision exceeds
the stability needs of the underlying mathematical operations. As the energy
expenditure of large-scale computations grows, there emerges a compelling
argument to weight the cost of precision against the cost of electricity.

Floating-point numbers follow the IEEE-754 standard , which defines for-
mats such as single precision (float32) and double precision (float64). A
float64 number provides approximately 15-16 decimal digits of precision,
whereas float32 provides about 6-7 digits[3].

The concept of machine epsilon expresses the smallest representable dif-
ference between 1 and the next floating-point number. For float32 this value
is roughly 1.19 x 10~7, and for float64 it is about 2.22 x 10716 [T3]. A matrix
has property called its conditioning number which roughly states how much
error is introduced through mathematical operations. To properly motivate
the correctness of the float32 version of the algorithm, beyond the fact that
all testing data producing identical results using both float32 and float64
we will also attempt to prove that a reduction in machine epsilon will not
impact the calculation by showing that the algorithm uses well-conditioned
matrices.

The original modelestimator paper presents a Markov-model framework
for estimating how related protein sequences evolve over time[I]. Aligned
sequences of common ancestry are treated as a continuous-time substitu-
tion process, and the software infers the rate matrix that best explains the
observed amino-acid changes. There are a lot of different observed rate
matrices and in the literature they are divided into different models, for ex-
ample the WAG [7] and JTT [6] model. This thesis preserves the biological
model and focuses on analyzing how the same computation behaves when
implemented using different floating-point precisions.



This project examines energy efficiency in practice by studying the relative
energy usage of a refactored version of the Python-based modelestimator
project [2] and the original. The original implementation uses 64 bit floats,
and the refactored fork replaces these with 32 bit floats whenever possible.
By benchmarking both versions using Linux perf and then quantifying the
energy we see the impact of halving the storage, memory and arithmetic
width. The research questions are as follows

e Does reduced precision affect energy consumption?

e Dose it affect runtime?

e Does it preserve numerical correctness?

Previous research on this topic has shown that reduced precision does not
harm the correctness of many scientific and machine-learning workloads.
Studies on mixed precision, particularly in GPU computing, demonstrate
that reduced precision often yields substantial performance benefits with-
out compromising results. In a 2022 paper Micikevicius, P et al. showed
techniques for using mixed precision when training and running a neural
network. The paper discusses that this approach could almost halve the
memory requirements and that on modern GPUs it could lead to a 2x to 8x
speed up without significantly affecting the accuracy of the model[S].
Similarly Baboulin, M et al. showed in 2009 that many scientific com-
putations could be accelerated using mixed precision algorithms without
significant loss of accuracy[I2]. The paper presents the speed differences,
both in memory access and computation time, between single, double and
quadruple precision.



2 Methods
2.1 Background: Markov Models and the BW-Method

The mathematical foundations of the modelestimator software are grounded
in Markov models of amino-acid evolution. As described in the original
Modelestimator-V2 thesis [2], proteins of common ancestry are modeled as
sequences evolving under a continuous-time Markov process governed by a
rate matrix (). The BW-method decomposes the problem of estimating @
into two subproblems:

1. Estimating its eigenvectors using aggregated frequency matrices de-
rived from aligned protein pairs.

2. Estimating its eigenvalues by clustering divergence-weighted sequence
pairs.

A rate matrix () satisfies the standard properties of a generator of a continuous-
time Markov chain: off-diagonal entries are non-negative, diagonal entries
are negative row-sums, and P(t) = e®?* defines transition probabilities. The
BW-method exploits the fact that ) and all associated transition matrices
share eigenvectors, enabling stable eigenvector estimation through aggre-
gated empirical counts. This of course allows one to generate an estimation
of @ from an estimated P(t)

This project does not modify the mathematical model but evaluates how
its computational realization behaves under reduced precision.

2.2 Mathematical Formulation of Core Operations

The computations in the modelestimator project rely heavily on linear
algebra operations, including matrix multiplication, vector transformations,
and least squares style updates.

For linear systems of the form Az = b, classical numerical analysis pro-
vides an upper bound on the forward error: the relative error in the com-
puted solution Z is bounded by the condition number of A multiplied by
machine epsilon[I3]. So if our matrix A has a conditional number that when
multiplied by machine epsilon is lower than 1073 (i.e., the chosen threshold
for acceptable precision), then even using float32 arithmetic will not signifi-
cantly degrade the accuracy of the solution. Because many operations in the
project take the form y = Az +b and A- B [2], small rounding errors will not
meaningfully influence the output so long as input matrices are reasonably
well scaled.



Stage Time (s)

Building matrix from input (integer-only) 25
Floating-point operations
Output handling 1

Table 1: Approximate runtime breakdown isolating the floating point work
from I/0O and preprocessing.

2.3 Code Refactoring

To complement the theoretical expectations, I conducted a detailed analysis
of hardware performance counters for two versions of the modelestimator
codebase.
e The original modelestimator project, implemented using NumPy float64
arrays.
e A modified fork that replaces all instances of NumPy float64 with
float32.
This study compares the two codebases, from now on referred to V2 and V3
respectively.

I refactored modelestimator-v2 [2] with a few things in mind.

1. Type Assertions: Through detailed code review and debug state-
ments ensure that all initialized numbers and arrays are float32.

2. Type Consistency: Ensuring that intermediate computations do
not implicitly cast float32 arrays back to float64. Built in NumPy
functions often upcast inputs unless explicitly given a type.

3. Algorithmic Preservation: Maintaining identical algorithmic struc-
ture ensures that performance differences arise only from type changes.

4. Program Reduction: Trimming both versions to isolate the core
mathematical operations from I/O overhead.

The first three points are trivial but to conduct the measurements certain
changes to the program had to be done. The naive approach of running the
benchmarks of the whole program would not properly answer the question
of the change caused by the floating point precision change. This is because
the majority of the program’s run time is spent on creating the matrices
representing the transitions between the various protein alignments in the
sequence, see table 1. These are integer matrices, and are therefore not
affected by our floating point change . To circumvent this I precomputed
those matrices for all of the testing data and simply loaded the variable
from file during testing. Cutting away the output handling was also crucial



in getting only the raw mathematical operations on display. But to ensure
that both programs gave the same result, before cutting the output step
I ran the two versions on the input data and compared the given results.
Once they were shown to be identical, only then could I remove the output
parsing and only run the calculations.

2.4 Performance and Energy Measurement

Energy data was collected using perf with Running Average Power Limit
(RAPL) counters on a Linux machine[4][5]. All extraneous processes were
shut down during the testing to ensure as little noise as possible. This
includes all graphical processes as well as background services such as the
Network Manager. Because of the limits in the perf program you can only
measure the energy usage of the whole CPU, not a singular process. So
depending on how heavy the program is computationally even the smallest
background noise such as the screen and OS being turned on could dominate.
To account for this, a regular system benchmark was conducted, to see the
energy usage per unit time for the already stripped Linux machine. When all
these precautions were taken, I could in good confidence run the benchmarks
of the two programs. Specifically, the following command was used to gather
performance and energy metrics:

$ sudo perf stat -a -e cycles,instructions, cache-references,
cache-misses,branches,branch-misses, cpu-clock,task-clock,
stalled-cycles—-frontend, stalled-cycles—backend,
uops_issued.any, uops_executed.core,lld.replacement,
12_rqgsts.references, 12_rqgsts.miss,
mem_load_uops_retired.ll_miss, mem_load_uops_retired.l2_miss,
mem_load_uops_retired.13_miss,power/energy-pkg/,
power/energy-cores/,power/energy-ram/

The measurements include a lot of different performance metrics, but we are
mostly interested in the following:

o Execution time

e Energy consumed by CPU cores

e Energy consumed by DRAM

e Cache metrics
Measurements were taken over repeated runs to ensure statistical stability.
To gather the benchmark data, I used the phylogenetic simulation software
iqtree3 [10] to generate amino acid sequence alignments|I1]. I generated ten
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sequences of length 500, ten of 510, all the way up to ten sequences of length
1000, for a total of 500 sequences. CPU frequency scaling was disabled to
avoid confounding results.

2.5 Numerical Stability Evaluation

To evaluate numerical differences between float32 and float64 results, I
compared outputs elementwise using relative error metrics and assessed
whether discrepancies meaningfully affected downstream model behavior.
The threshold for acceptable numerical deviation was set at 0.001, consis-
tent with the original modelestimator’s tolerance.
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3 Numerical Conditioning Analysis

To be able to properly motivate that the change from float64 to float32 is
acceptable in this case we need to look at the mathematical properties of the
operations being done in the program. The main operations being done are
matrix multiplications, dot-products, eigenvalue decompositions and least
squares fitting[2]. All of these operations have been studied extensively in
numerical analysis literature and it has been shown that they can be per-
formed in lower precision without significant loss of accuracy, provided that
the underlying matrices are well-conditioned.[I3]. To properly motivate this
we can look at the condition number of a matrix, which is defined as the ra-
tio of the largest singular value to the smallest singular value[I3]. A matrix
with a low condition number is said to be well-conditioned, meaning that
small changes in the input will result in small changes in the output. Con-
versely, a matrix with a high condition number is said to be ill-conditioned,
meaning that small changes in the input can result in large changes in the
output. All the matrices the program works with do not contain floating
point numbers [2], so we will only be discussing the conditional numbers for
certain matrices.

To be able to determine if the matrices are well-conditioned or not we
will work backwards from a theoretical output. We start by taking a given
rate matrix, let’s say WAG[L0][7]. Then by the assumption of the original
modelestimator paper [2] we know that the calculated eigenvectors from
the observed frequency matrix are the same as its rate matrix. So the
eigenvector matrices, which are the matrices we are primarily interested in,
can for any given rate matrix be shown to be well conditioned. This by
simply calculating the eigenvectors of that rate matrix. So working from
the theoretical result matrix, we can construct the matrices we use in the
modelestimator program and show that they are well conditioned. The used
float based matrices used in matrix multiplication operations are as follows

e The right eigenvector of Q

e The left eigenvector of Q

e The matrix created by putting the frequency list on the diagonal

(np.diag(eq))
e The matrices created by raising Q to different powers between 0 and
400.
So by reconstructing Q from the rate matrix and frequency list we can
calculate the conditional numbers of all of these matrices.

The error is relative in size to the product of the condition number and

the machine epsilon of the used floating point representation[I3]. In our
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Matrix Condition Number

Right Eigenvector of Q 2.24
Left Eigenvector of Q 2.24
Diagonal Frequency Matrix 6.02
Powers of Q (biggest) 6.18

Table 2: Condition numbers of key matrices used in modelestimator for
the WAG model.

Matrix Condition Number
Right Eigenvector of Q 1.96
Left Eigenvector of Q 1.96
Diagonal Frequency Matrix 6.44
Powers of Q (biggest) 6.81

Table 3: Condition numbers of key matrices used in modelestimator for
the JTT model.

case this means that the conditional number far below 10° will not cause
any significant error when using float32, as the machine epsilon for float32
is roughly 10~7. All of the calculated conditional numbers are below this
threshold, meaning that we can be confident that using float32 will not cause
any significant numerical errors in the calculations. This has also been shown
to be true for JTT, vt, mtArt and flu.

4 Results and Discussion

4.1 Perf-Based Quantitative Comparison of V2 (float64) and
V3 (float32)

The V2 and V3 perf outputs reveal several trends consistent with precision-
driven performance improvements.

4.1.1 Execution Time

When comparing the average time the two programs took to run we see the
following results:

e V2 total task-clock: ~ 5665 ms.

e V3 total task-clock: ~ 5531 ms.
A modest ~ 2.4% speedup was observed. This is a lot smaller than the
halving of memory access would imply. But this is however expected for a
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few reasons. To begin with, even after stripping the code, modelestimator
still contains substantial Python-level overhead not accelerated by narrower
types. This could be remediated by once again rewriting the program into
a lower level language such as C++ or Rust, but that is outside the scope
of this project (See appendix A for a Rust based implementation of the
first part of the algorithm). The expectation of improved performance when
using float32 arises from two main considerations. First, single-precision
numbers occupy half the memory of double-precision numbers, which theo-
retically reduces memory bandwidth requirements and improves cache effi-
ciency. Second, on many hardware architectures, single-precision operations
can be executed more rapidly than double-precision operations because vec-
torized instructions can process more elements per cycle [9].

The assumption of smaller precision being faster holds on modern GPUs,
which are heavily optimized for single-precision workloads[§]. However, on
CPUs, the situation is more nuanced. Furthermore, many NumPy opera-
tions are limited by memory bandwidth rather than arithmetic speed. Re-
ducing the precision of stored values from 64 to 32 bits only marginally
affects performance unless the working dataset is large enough to exceed the
CPU cache and saturate memory throughput. The size of the floating point
matrices that were worked on are also only 20 x 20. This is a relatively small
size and does not leave a significant memory footprint. The theorized energy
savings would have come from needing to read half as much from memory.
In the case of the hardware the tests were run on, an Intel(R) Core(M) i3-
4030u CPU. This particular CPU, despite being over a decade old at this
point, has an L1 data cache of 32 KBs and an L3 of 3 MB. Which is several
orders of magnitudes bigger than the 1.6 KBs required to store the 400 dou-
ble precision floating point numbers in the matrix that the program uses.
So in the case of 'modelestimator’ all of the floating point numbers can fit
in the CPU cache, regardless of if they are four or eight bytes. This largely
eliminates the need for memory access and thus diminishes the potential
decrease of energy expenditure from accessing memory.

4.1.2 Instruction and Cycle Behavior

The change in instruction and cycle counts between V2 and V3 is slight:
o Total CPU instructions decreased minimally (~ 10.74B — ~ 10.38B).
o Instructions per cycle decreased by a similar amount (~ 1.03 —~
1.01).
This suggests that the control-flow structure of the program is similar, and
any gains originate from memory and vectorization effects rather than algo-
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rithmic changes. Wich alignes with the fact that no changes to the algorithm
were made.

4.1.3 Cache Behavior

The change in cache statistics are as follows:

e L1 miss rates unaffected.

o L2 miss rates decreased by about 8.4 %

e L3 cache miss rates unaffected.
This indicates some improvement stemming from the cache usage of the
program decreasing. But, as the L3 cache miss rate is unaffected it shows
that the working set still fits in the cache regardless of precision. This
means that the both programs read about as much data from memory. So
the hypothesised energy saved from reducing memory access, is naught. And
while the float64 version more often has to go to the L3 cache this is not a
significant decrease and thus didn’t have a large effect the observed energy
usage.

4.1.4 Energy Consumption (System-Wide)

The energy consumption as measured by the RAPL energy-cores is as fol-
lows:

e V2 energy-cores: 11.25 J.

e V3 energy-cores: 10.82 J.
This is an ~ 3.8% reduction for the full testing data. For individual runs
in I observed energy decreases around ~ 3-5%. It is worth noting however
that short perf stat windows often underestimate energy deltas because
baseline OS activity dominates [9], but V3 consumed less energy than V2 in
all the testing data.

4.2 Numerical Error Analysis

Numerical deviations between float32 and float64 outputs were assessed
using relative error metrics. Across all tested workloads, errors remained
within the expected range for float32 arithmetic, generally around one part
in a million. These deviations did not accumulate excessively across itera-
tions, indicating numerical stability. For all the testing data and using the
default threshold of 0.001 V2 and V3 produced identical results.
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4.3 Summary and Interpretation of Findings

The refactoring yielded an approximate ~ 3-5% reduction in energy con-
sumption as measured by perf. Execution time also improved modestly, al-
though the primary benefit was energy efficiency. Although modern GPUs
can handle float32 operations more efficiently, due to SIMD packing density
and increased vectorization [9], this was not the case for the V2 and V3
implementations, due to using NumPys CPU native calculations. Energy
savings slightly exceeded the speedup because energy correlates not only
with elapsed time but also with how energy intensive the instruction are
each cycle. Float64 operations tend to demand more from execution units
and memory controllers, increasing power even if runtime differences appear
small.

Overall, the findings support a precision-aware computing strategy for
scientific workloads that can tolerate single-precision arithmetic without sac-
rificing correctness.
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5 Conclusion

Using the modelestimator project as a case study, I show that the transition
reduced energy usage by approximately ~ 3-5%, primarily due to marginally
lower memory-bandwidth. For this specific program however the particular
floating point matrices that are being worked with are not big enough for
the memory saved to have any real effect. The findings do however hint
that for more memory intensive programs as well as programs written in
languages with a higher degree of type control would see higher speed ups.
See appendix A for a Rust based implementation of the first part of the
algorithm.

Through calculating the conditional numbers of the matrices used in the
program for different rate matrices, we can show that the numerical accuracy
will not be noticably affected by the change in precision. These mathemati-
cal results also proved correct in theory when the change in precision didn’t
change any of the result the program produced, calculated with a threshold
of 0.001.

Beyond the specific codebase, this work highlights the broader impor-
tance of aligning numerical precision with algorithmic needs. Tools such
as NumPy provide flexible control over types, and system-level utilities like
perf enable quantitative evaluation of their impact. As energy efficiency be-
comes an increasingly important concern in scientific computing, precision-
aware numerical methods offer a practical and effective optimization strat-

egy.
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7 Appendix A. Rust Implementation of Modeles-
timator

In modelestimator-v2 and 3, all float based calculations are done using highly
optimized cpython NumPy code. This, together with the fact that 90% of
the runtime was spent on creating the count matrices, made it obvious that
the room for improvement was in the calculating of the count matrices. To do
so I wrote a Rust based implementation of the core algorithm. Rewriting it
in Rust meant eliminating slow python overhead, and the possibility of using
enums instead of strings for the protein types. Also allowing for a SIMD
implementation of the matching_letters function, among other algorithmic
speed ups. Local non rigorous testing showed that this implementation was
around 100x faster than the python version for the same input data, V2
took 2.6 seconds and the rust version took 0.018 seconds.
The code can be found at:

https://github.com/Poacatat/modelestimator-v4.
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