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1. Recursions and generating series (7 points)

(a)
(b)

Define the term generating series.

Assume that the generating series of a sequence (ay), of real numbers has positive radius of
convergence and denote its generating function by f = f(z). Prove that
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is the generating function of
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Find the generating function for the sequence (n?),. You may freely use knowledge about the
generating function for (n?),.

Use the generating series methods to find the generating function f = f(z) of the unique sequence
(an)n satisfying

Ay = 2apn_1 +n3 forn>1 and ag = 1.

Solution.

(a)
(b)

(c)

Given a sequence of numbers (an)nen, its generating series is the formal power series )\ anz”.

Let f(z) = >, cn @nx™ be the generating series of (ay),, which by assumption has positive radius
of convergence. We know that
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g(x)=71_x=§ x
neN

for all |z| < 1. So g(x) is the generating function of the constant sequence (b,), = (1),. Since
both power series defining f and g have positive radius of convergence, their formal product as
power series equals the product of functions. So
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This is what we had to show.

The generating function for (n?), ey is
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Since this generating series has positive radius of convergence, its formal derivative equals its
analytic derivative. So we obtain
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The right-hand side equals
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Multiplying this function by z, we hence obtain
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(d) The generating series method assumes that the sequence (a,),en has a generating function, say
f(z). For n > 1, we multiply the relation

Ay = 2051 + n3
with 2™ and take the formal sum, in order to obtain the equality of power series

o0 o0 o0
E apx" =2 g ap—1z" + E n3a™.
n=1 n=1 n=1

Making use the computed generating function for (n3),en, using the initial condition ag = 1 and
substituting the generating function f(x) for the generating series of (a,)nen, we obtain

F@) 1 = 2a(f(a) + TLFAT+ )

(1—x)*
Solving this expression for f(x), we obtain
flz) = (1 + 4z + 2?) 1 1-3x+ 102 — 323 +a*
C(l-2)i(1-22) 1-2z (1 —2)%(1 - 27)

2. Graphs (7 points)

(a) Define the terms directed graph and undirected graph.
(b) Draw a planar depiction of the following graphs:
i K,
ii. K5 — e for an arbitrary edge e € E(K5).
fii. Ky
iv. K33 — e for an arbitrary edge e € E(K33).

(¢) Find an Euler circuit in each of the following graphs



nwi

(d) Let G be a graph admitting an Euler circuit. Prove that deg(v) is even for all v € V(G).

(e) Calculate the chromatic polynomial of the n-cycle graph for all n € N>3.
Solution.

(a) A directed graph is a pair (V, F) of a non-empty set V and a subset E C V' x V. An undirected
graph is a pair (V, E) of a non-empty set V and a subset E C {a € P(V) | |a|] € {1,2}}, where
P (V) denotes the set of all subsets of V.

(b) The following drawing indicates the additional vertex when passing from K4 to K5 \ e and from
K35 to K33\ e, respectively.

;) e vertex

(c) Both graphs have a vertex of odd degree, so they do not admit any Euler circuit by the next item.

(d) Let G = (V, E) be a graph admitting an Euler circuit. Since every loop of G contributes 2 to its
adjacent vertex’ degree, we may assume that G has no loops. Let (v1,...,v,) be an Euler circuit
in G. Then for any v € V, we find that

deg(v) =[{ec E|veel=[{ic{l,...,n}|v € {vi,Vit1(modn)}}|

is divisible by 2, since v = v; implies v € {v;_1,v;} and v € {v;, v;y1}.



(e) We claim that P(C,,,z) = (x—1)"+(—=1)"(x —1) for all n € N>3. We will prove this by induction.
For the case n = 3, we calculate the chromatic numbers

x1(C3) =0
x2(C3) =0
X3(C3) =3l=6

which leads us to the chromatic polynomial P(C3,z) = z(z —1)(z —2) = (x — 1) + (=1)3(z - 1).
Let us next denote by L,, the path with n vertices. We know that

P(Ly,,z) = x(x —1)"* n>1.

This is relevant, since choosing any edge e of C,, we have C,, \ e = L, as long as n > 3.
Further, collapsing e, we obtain C,_;. So the following formula holds for all n > 3: P(C,,z) =
P(Ly,x) — P(Cp—_1,2). We thus proceed by induction and assume that the result holds for some
n > 3 and calculate

P(Cpir,z) = 2(x = 1)" = ((z = )"+ (-1)"(@ = 1)) = (z = )" + (-=1)" H(z — 1).
This completes the induction and hence the proof.
3. Networks (6 points)

(a) Define the term flow and the value of a flow on a transport network.

(b) Find a maximal flow and a minimal cut of the following transport network:
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(c) Let N = (G, ¢) be a transport network and f : E(G) — N a flow on N. Show that for every cut
(P, P°) of N the following equality holds:

Solution.

(a) Given a transport network N = (G, ¢), a flow on N is a function f : V(G) x V(G) — N such that
o f(v,w) < e(v,w) for all v,w € V(G), and
* > evie) f(vw) =3 ey f(w,v) for all w € V(G) which are neither source nor sink of V.
The value of f is

val(f) = Y f(a,v)

veV(G)

where a denotes the source of N.



(b) The following flow has value 5.
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We find a cut with capacity 5 too. One such cut is (P, P®) where P° contains exactly the sink z
and the unique adjacent vertex v such that (v, z) has capacity 5. The two vertices are marked in

the graphic. By the max-flow-min-cut theorem, this already shows that the found flow is maximal
and the indicated cut is minimal.

(¢c) We adopt the notation of the question and denote the source of N by a. Then

val(f) = Z f(a,v) (definition)
veEV(Q)

= Z fla,v) — f(v,a) (no incoming edges at the source)
vEV(Q)

= f(a,v)—f(v,a)—i— Z Z f(wav)_f(vvw)

veV(G) weP\{a} veV(Q)
(equilibrium condition at non-terminal vertices)
= Z f(w,v) = f(v,w) (simplification)
weP
veV(G)

= Z + Z flw,v) — Z + Z flu,w) (splitting the sum)

weP  weP wEP weP
veEP  weP¢ veEP  veP¢
= Z f(w,v) — Z fv,w) (cancellation)
weP weP
veP* veEP°
=Y flwv) = f(v,w).
weP
veP¢

This is what we had to show.
4. Algorithms (4 points)

(a) Define the terms tree and spanning tree.

(b) Describe how the depth-first algorithm starting at vertex (0,0,0,0) runs on the 4-cube with the
lexicographical ordering of vertices.

Solution.

(a) A tree is a connected, loop-free graph without cycles. Given a graph G, a spanning tree of G is a
subgraph T of G that is a tree and satisfies V(T') = V(G).



(b) Recall that the vertices of the 4-cube are 4-tuples {0, 1}*, which are adjacent if and only if they
differ in exactly one coordinate. The lexicographical order on 4-tuples is given by a > b if and only
if a # b and the first entry of a which differs from the respective entry of b is bigger. Formally, the
latter condition can be described as a; > b; for ¢ = min{j € {1,...,4}a; # b;}. The depth-first
algorithm then visits the following sequence of vertices, which defines a spanning tree (which is a

path) of Qq:

5. Finite geometry (6 points)

(a) Define the term finite affine plane.
(b) Define formally and illustrate with a graphic the examples of the affine planes of rank 2 and 3.

¢) Show that every finite affine plane admits at least three parallelity classes of lines.
Solution.

(a) A finite affine place is a pair (P, L) of a set P and a subset L C P(P) such that

e for every pair of distinct points py,ps € P there is a unique [ € L such that p1,ps € [,
e for every [ € L and every p € P\ [ there is a unique I’ € L such that p € I’ and [N’ =, and
e there are points pi,...,ps € P such that for all [ € L we have [{p1,...,ps} NI| < 2.

(b) For a finite field k, we have Ag(k) = (k2, L) where L consists of the lines
lo={(z,y) €k* |z =a}
lop ={(2.y) €K |y = az + b}

for a,b € k. Taking k = Fo and k = F3, we obtain finite affine planes of rank 2 and 3, respectively.
They are illustrated by the following drawing.
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(c¢) Let (P, L) be afinite affine plane and take py, ..., ps such that for alll € L we have [{p1,...,ps} NI| <
2, whose existence is guaranteed by the definition of a finite affine plane. Denote by [;,1s,13 the
lines through the pairs of points (p1,p4), (p2,ps) and (ps,ps), respectively. Then Iq,ls,13 have
pairwise non-empty intersection, but they are not equal thanks to the condition on pq,...,ps.
They are hence from three different parallelity classes.



