Suggested solutions: Econometric methods (MT5014)
 2021-01-07

Problem 1

We use restricted/unrestricted regression (ch. 3.4 in Tyrcha et al.). The unrestricted model is

$$
Y_{j}=\beta_{0}+\beta_{1} X_{1 j}+\beta_{2} X_{2 j}+\beta_{3} X_{3 j}+\beta_{4} X_{4 j}+\beta_{5} X_{5 j}+\varepsilon_{j}
$$

Call the RSS of this model $R S S_{U}$. The hypothesis can be written as

$$
\beta_{3}=3+3 \beta_{2}
$$

and under this hypothesis we can write the model as

$$
Y_{j}=\beta_{0}+\beta_{1} X_{1 j}+\beta_{2} X_{2 j}+\left(3+3 \beta_{2}\right) X_{3 j}+\beta_{4} X_{4 j}+\beta_{5} X_{5 j}+\varepsilon_{j}
$$

which is equivalent to

$$
Y_{j}-3 X_{3 j}=\beta_{0}+\beta_{1} X_{1 j}+\beta_{2}\left(X_{2 j}+3 X_{3 j}\right)+\beta_{4} X_{4 j}+\beta_{5} X_{5 j}+\varepsilon_{j}
$$

which is thus the restricted model corresponding to the hypothesis. Call the RSS of this model $R S S_{R}$. Under the hypothesis it holds that

$$
F=\frac{\left(R S S_{R}-R S S_{U}\right) / 1}{R S S_{U} /(100-6)}=\frac{R S S_{R}-R S S_{U}}{R S S_{U} / 94}
$$

is $F(1,94)$-distributed (cf. p 54); and given the values of $R S S_{R}$ and $R S S_{U}$ we can therefore use the usual procedure to see if the data supports rejecting the hypothesis or not.

Problem 2

(A)

$$
\begin{aligned}
E\left[x_{t}\right] & =a+b E\left[x_{t-1}\right]+c E\left[\epsilon_{t}\right]+d E\left[\epsilon_{t-1}\right] \\
E\left[x_{t}\right] & =a+b E\left[x_{t}\right] \\
E\left[x_{t}\right] & =\frac{a}{1-b}
\end{aligned}
$$

where the second equality follows from $\left\{\epsilon_{t}\right\}$ being a white noise series and $E\left[x_{t}\right]=E\left[x_{t-1}\right]$ since $\left\{x_{t}\right\}$ is assumed weakly stationary. Similarly,

$$
\begin{aligned}
V\left[x_{t}\right] & =V\left[a+c \epsilon_{t}\right]+V\left[b x_{t-1}+d \epsilon_{t-1}\right] \\
& =c^{2}+b^{2} V\left[x_{t-1}\right]+d^{2} V\left[\epsilon_{t-1}\right]+2 b d \operatorname{Cov}\left[x_{t-1}, \epsilon_{t-1}\right]
\end{aligned}
$$

where the first equality follows since ϵ_{t} is independent of ϵ_{t-1} and x_{t-1}, and the second equality follows since $V\left[\epsilon_{t}\right]=1$. Now

$$
\begin{aligned}
\operatorname{Cov}\left[x_{t-1}, \epsilon_{t-1}\right] & =E\left[x_{t-1} \epsilon_{t-1}\right]-E\left[x_{t-1}\right] E\left[\epsilon_{t-1}\right] \\
& =E\left[x_{t-1} \epsilon_{t-1}\right] \\
& =E\left[\left(a+b x_{t-2}+c \epsilon_{t-1}+d \epsilon_{t-2}\right) \epsilon_{t-1}\right] \\
& =c E\left[\epsilon_{t-1}^{2}\right] \\
& =c V\left[\epsilon_{t-1}\right] \\
& =c,
\end{aligned}
$$

since $E\left[\epsilon_{t-1}\right]=0$ and $V\left[\epsilon_{t-1}\right]=1$. Finally, combining the above expressions we have that

$$
\begin{aligned}
V\left[x_{t}\right] & =c^{2}+b^{2} V\left[x_{t-1}\right]+d^{2} V\left[\epsilon_{t-1}\right]+2 b c d \\
& =c^{2}+b^{2} V\left[x_{t}\right]+d^{2}+2 b c d \\
& =\frac{c^{2}+d^{2}+2 b c d}{1-b^{2}},
\end{aligned}
$$

where we also used the weak stationarity of $\left\{x_{t}\right\}$.
(B) Yes. Since $\left\{\epsilon_{t}\right\}$ is a white noise series, it is strictly stationary. Hence, $\left\{x_{t}\right\}$ consists of a strictly stationary series shifted by a constant, again resulting in a strictly stationary series.
(C) We have

$$
\begin{aligned}
x_{t+2} & =a+b x_{t+1}+c \epsilon_{t+2}+d \epsilon_{t+1} \\
& =a+b\left(a+b x_{t}+c \epsilon_{t+1}+d \epsilon_{t}\right)+c \epsilon_{t+2}+d \epsilon_{t+1} \\
& =a(1+b)+b^{2} x_{t}+b d \epsilon_{t}+(b c+d) \epsilon_{t+1}+c \epsilon_{t+2}
\end{aligned}
$$

Conditioned on x_{t} and ϵ_{t}, the sum of the first three terms on the right hand side of the last equality is a constant. Further, the sum of the two last terms is Gaussian, since the sum of two Gaussian random variables again is Gaussian. Hence, we have that

$$
\begin{aligned}
x_{t+2} \mid x_{t}, \epsilon_{t} & \sim N\left(\mu, \sigma^{2}\right), \quad \text { with } \\
\mu & =a(1+b)+b^{2} x_{t}+b d \epsilon_{t} \\
\sigma^{2} & =(b c+d)^{2}+c^{2}
\end{aligned}
$$

since ϵ_{t+1} and ϵ_{t+2} are independent, $E\left[\epsilon_{t+1}\right]=E\left[\epsilon_{t+2}\right]=0$ and $V\left[\epsilon_{t+1}\right]=$ $V\left[\epsilon_{t+2}\right]=1$.

Problem 3

Using $\tilde{X}_{j}=a X_{j}$, we write the model fitted with measurement error as $Y_{j}=$ $\hat{\alpha}+\hat{\beta} \tilde{X}_{j}+e_{j}$. It is now clear that the OLS-estimate for β with measurement error is given by

$$
\begin{aligned}
\hat{\beta} & =\frac{\sum_{j}\left(\tilde{X}_{j}-\overline{\tilde{X}}\right)\left(Y_{j}-\bar{Y}\right)}{\sum_{j}\left(\tilde{X}_{j}-\tilde{\tilde{X}}\right)^{2}} \\
& =\frac{\sum_{j}\left(a X_{j}-a \bar{X}\right)\left(Y_{j}-\bar{Y}\right)}{\sum_{j}\left(a X_{j}-a \bar{X}\right)^{2}} \\
& =\frac{1}{a} \frac{\sum_{j}\left(X_{j}-\bar{X}\right)\left(Y_{j}-\bar{Y}\right)}{\sum_{j}\left(X_{j}-\bar{X}\right)^{2}} \\
& =\frac{1}{a} \hat{\beta}_{\text {no error }} .
\end{aligned}
$$

where $\hat{\beta}_{\text {no }}$ error is the OLS estimate without measurement error. Similarly, the OLS estimate for α with measurement error is given by

$$
\begin{aligned}
\hat{\alpha} & =\bar{Y}-\hat{\beta} \overline{\tilde{X}} \\
& =\bar{Y}-\hat{\beta} \overline{a X} \\
& =\bar{Y}-\hat{\beta} a \bar{X} \\
& =\bar{Y}-\frac{1}{a} \hat{\beta}_{\text {no error }} a \bar{X} \\
& =\bar{Y}-\hat{\beta}_{\text {no error }} \bar{X} \\
& =\hat{\alpha}_{\text {no error }} .
\end{aligned}
$$

(We conclude that the measurement error affects only the estimate of β.)

Problem 4

(A) The 1 step ahead forecast is

$$
\begin{aligned}
\hat{r}_{8}(1) & =E\left[r_{9} \mid F_{8}\right] \\
& =E\left[0.2+0.4 r_{8}+1 a_{8}+a_{9} \mid F_{8}\right] \\
& =0.2+0.4 r_{8}+a_{8}+E\left[a_{9} \mid F_{8}\right] \\
& =0.2+0.4 r_{8}+a_{8} \\
& =0.2+0.4 * 0.4+0.1=0.4600 .
\end{aligned}
$$

(B) The 2 step ahead forecast is

$$
\begin{aligned}
\hat{r}_{8}(2) & =E\left[r_{10} \mid F_{8}\right] \\
& =E\left[\phi_{0}+0.4 r_{9}+\theta a_{9}+a_{10} \mid F_{8}\right] \\
& =0.2+E\left[0.4 r_{9} \mid F_{8}\right] \\
& =0.2+0.4 E\left[r_{9} \mid F_{8}\right] \\
& =0.2+0.4 \hat{r}_{8}(1) \\
& =0.2+0.4 * 0.4600=0.3840 .
\end{aligned}
$$

The forecast error is

$$
\begin{aligned}
e_{8}(2) & =r_{10}-\hat{r}_{8}(2) \\
& =\left(0.2+0.4 r_{9}+\theta a_{9}+a_{10}\right)-(0.2+0.4 * 0.4600) \\
& =\left(0.4 r_{9}+a_{9}+a_{10}\right)-0.4 * 0.4600 \\
& =0.4 r_{9}+a_{9}+a_{10}-0.4 * 0.4600 \\
& =0.4\left(0.2+0.4 r_{8}+a_{8}+a_{9}\right)+a_{9}+a_{10}-0.4 * 0.4600 \\
& =0.4\left(0.2+0.4 * 0.4+0.1+a_{9}\right)+a_{9}+a_{10}-0.4 * 0.4600 \\
& =C+1.4 a_{9}+a_{10}
\end{aligned}
$$

where C is an easily found constant that we do not need $(C=0)$. Hence, $V\left(e_{8}(2)\right)=V\left(1.4 a_{9}+a_{10}\right)=\left(1.4^{2}+1\right) \sigma^{2}=2.96 \sigma^{2}$.
(C) Using the parameter values in the problem we find $r_{9}=0.4 r_{8}+a_{9}$. Similarly, $r_{10}=0.4 r_{9}+a_{10}=0.4\left(0.4 r_{8}+a_{9}\right)+a_{10}=0.4^{2} r_{8}+0.4 a_{9}+a_{10}$ and then $r_{11}=0.4\left(0.4^{2} r_{8}+0.4 a_{9}+a_{10}\right)+a_{11}=0.4^{3} r_{8}+0.4^{2} a_{9}+0.4 a_{10}+a_{11}$. Continuing this way we find, for arbitrary large l,

$$
r_{8+l}=0.4^{l} r_{8}+0.4^{l-1} a_{9}+0.4^{l-2} a_{10}+0.4^{l-3} a_{11}+\ldots+0.4^{0} a_{8+l} .
$$

The forecast $\hat{r}_{8}(l)$ can be computed recursively (cf. p. 56 in Tsay) as a constant depending on $r_{8}=0.4$ (we do not need to know the value of this constant however). Hence, the variance of the forecast error with $\operatorname{lag} l$ is given by

$$
\begin{aligned}
V\left(e_{8}(l)\right) & =V\left(r_{8+l}-\hat{r}_{8}(l)\right) \\
& =V\left(0.4^{l} r_{8}+0.4^{l-1} a_{9}+0.4^{l-2} a_{10}+0.4^{l-3} a_{11}+\ldots+0.4^{0} a_{8+l}\right) \\
& =V\left(0.4^{l-1} a_{9}+0.4^{l-2} a_{10}+0.4^{l-3} a_{11}+\ldots+0.4^{0} a_{8+l}\right) \\
& =0.16^{l-1} V\left(a_{9}\right)+0.16^{l-2} V\left(a_{10}\right)+0.16^{l-3} V\left(a_{11}\right)+\ldots+0.16^{0} V\left(a_{8+l}\right) \\
& =\sigma^{2}\left(0.16^{l-1}+0.16^{l-2}+0.16^{l-3}+\ldots+0.16^{0}\right)
\end{aligned}
$$

Since the sum in the parenthesis above converges to $1 /(1-0.16)=1.1905$ as $l \rightarrow \infty$, it holds that $\lim _{l \rightarrow \infty} V\left(e_{8}(l)\right)=1.1905 \sigma^{2}$.

Problem 5

The GLS formula (p. 89 in the compendium) is in this case

$$
\left[\hat{\alpha}_{G L S}, \hat{\beta}_{G L S}\right]^{T}=\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{Y}
$$

where $\boldsymbol{\Omega}=\operatorname{diag}\left(1^{2}, 2^{2}, \ldots, n^{2}\right)$, and

$$
\begin{gathered}
\boldsymbol{X}=\left[\begin{array}{cc}
1 & X_{1} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right] \\
\boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] .
\end{gathered}
$$

Let $\boldsymbol{\beta}=[\alpha, \beta]^{T}$. Using the introduced notation we may write the model as $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$. We find

$$
\begin{aligned}
{\left[\hat{\alpha}_{G L S}, \hat{\beta}_{G L S}\right]^{T} } & =\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{Y} \\
& =\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \\
& =\boldsymbol{\beta}+\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{\varepsilon} \\
& =[\alpha, \beta]^{T}+\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{\varepsilon}
\end{aligned}
$$

Using classical assumption $E[\varepsilon \mid \mathbf{X}]=\mathbf{0}$ we find that $E\left[\left[\hat{\alpha}_{G L S}, \hat{\beta}_{G L S}\right] \mid \mathbf{X}\right]=[\alpha, \beta]$, and it follows that the estimators are unbiased. We use the formula on p. 90 (and that in our case $\sigma^{2}=1$) to find

$$
V\left(\left[\hat{\alpha}_{G L S}, \hat{\beta}_{G L S}\right]^{T} \mid \mathbf{X}\right)=\left(\mathbf{X}^{T} \mathbf{\Omega}^{-1} \mathbf{X}\right)^{-1}
$$

Using the expressions for $\boldsymbol{\Omega}$ and \mathbf{X} above with $n=3$ and the values for X_{i} given in the question, and basic matrix calculations we find: $\boldsymbol{\Omega}^{-1}=\operatorname{diag}\left(1 / 1^{2}, 1 / 2^{2}, 1 / 3^{2}\right)=$ $\operatorname{diag}(1 / 2,1 / 4,1 / 9)$ and

$$
\boldsymbol{X}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right]
$$

More calculations give

$$
\left(\mathbf{X}^{T} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)=\left[\begin{array}{cc}
\frac{49}{36} & \frac{70}{36} \\
\frac{70}{36} & \frac{136}{36}
\end{array}\right]
$$

and we conclude that

$$
V\left(\left[\hat{\alpha}_{G L S}, \hat{\beta}_{G L S}\right]^{T} \mid \mathbf{X}\right)=\left(\mathbf{X}^{T} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1}=\left[\begin{array}{cc}
\frac{136}{49} & \frac{-10}{7} \\
\frac{-10}{7} & 1
\end{array}\right]
$$

Hence, $V\left(\hat{\beta}_{G L S} \mid \boldsymbol{X}\right)=1$.

Problem 6

Using basic probability (see also p. 111 in Tyrcha et al.) theory we find the moment conditions corresponding to the first and second moments to be

$$
\mathbb{E}\left(V_{j}-\frac{\theta_{0}+15}{2}\right)=0, \quad \mathbb{E}\left(V_{j}^{2}-\frac{\theta_{0}^{2}+15 \theta_{0}+15^{2}}{3}\right)=0
$$

where we know that $\theta_{0}<15$ (since the RV is distributed uniformly on the interval $\left[\theta_{0}, 15\right]$ this must be so).

Using the first moment as moment condition means that we estimate θ_{0} by setting $\sum_{j=1}^{10} \frac{1}{10}\left(v_{j}-\frac{\hat{\theta}_{0}+15}{2}\right)=0$, where the summation is taken over the sample, i.e. $v_{1}=8.87, v_{2}=5.99$ and so on (note that 10 is the sample size). Solving this equation gives $\hat{\theta}_{0}=2 \sum_{j=1}^{10} \frac{v_{j}}{10}-15=2 \bar{v}-15=2.514$.

Using notation from p. 115 (Tyrcha et al.) we find that the moments above correspond to $f_{1}\left(v_{j}, \theta\right)=v_{j}-\frac{\theta+15}{2}$ and $f_{2}\left(v_{j}, \theta\right)=v_{j}^{2}-\frac{\theta^{2}+15 \theta+15^{2}}{3}$. When W is the identity matrix we find (similar to Example 7.8 in Tyrcha et al.)

$$
\begin{aligned}
Q_{10}(\theta) & =\left(\sum_{j=1}^{10} v_{j}-\frac{\theta+15}{2}\right)^{2}+\left(\sum_{j=1}^{10} v_{j}^{2}-\frac{\theta^{2}+15 \theta+15^{2}}{3}\right)^{2} \\
& =\left(8.7570-\frac{\theta+15}{2}\right)^{2}+\left(88.3580-\frac{\theta^{2}+15 \theta+15^{2}}{3}\right)^{2}
\end{aligned}
$$

The estimate that we are looking for is now given by $\hat{\theta}_{0}=\operatorname{argmin}_{\theta<15} Q_{n}(\theta)$ (easily solved with a computer); where the restriction $\theta<15$ comes from the fact that 15 is the upper limit of the interval on which V_{j} is uniformly distributed (we could also have used the restriction $\theta \leq 4.27$ which is the smallest value in the sample).

