STOCKHOLMS UNIVERSITET, MATEMATISKA INSTITUTIONEN, Avd. Matematisk statistik

Suggested solutions: Econometric methods (MT5014) 2021-01-07

Problem 1

We use restricted/unrestricted regression (ch. 3.4 in Tyrcha et al.). The unrestricted model is

$$Y_{j} = \beta_{0} + \beta_{1}X_{1j} + \beta_{2}X_{2j} + \beta_{3}X_{3j} + \beta_{4}X_{4j} + \beta_{5}X_{5j} + \varepsilon_{j}$$

Call the RSS of this model RSS_U . The hypothesis can be written as

$$\beta_3 = 3 + 3\beta_2$$

and under this hypothesis we can write the model as

$$Y_j = \beta_0 + \beta_1 X_{1j} + \beta_2 X_{2j} + (3 + 3\beta_2) X_{3j} + \beta_4 X_{4j} + \beta_5 X_{5j} + \varepsilon_j$$

which is equivalent to

$$Y_j - 3X_{3j} = \beta_0 + \beta_1 X_{1j} + \beta_2 (X_{2j} + 3X_{3j}) + \beta_4 X_{4j} + \beta_5 X_{5j} + \varepsilon_j,$$

which is thus the restricted model corresponding to the hypothesis. Call the RSS of this model RSS_R . Under the hypothesis it holds that

$$F = \frac{(RSS_R - RSS_U)/1}{RSS_U/(100 - 6)} = \frac{RSS_R - RSS_U}{RSS_U/94}$$

is F(1, 94)-distributed (cf. p 54); and given the values of RSS_R and RSS_U we can therefore use the usual procedure to see if the data supports rejecting the hypothesis or not.

Problem 2

(A)

$$E[x_t] = a + bE[x_{t-1}] + cE[\epsilon_t] + dE[\epsilon_{t-1}]$$

$$E[x_t] = a + bE[x_t]$$

$$E[x_t] = \frac{a}{1-b}$$

where the second equality follows from $\{\epsilon_t\}$ being a white noise series and $E[x_t] = E[x_{t-1}]$ since $\{x_t\}$ is assumed weakly stationary. Similarly,

$$V[x_t] = V[a + c\epsilon_t] + V[bx_{t-1} + d\epsilon_{t-1}]$$

= $c^2 + b^2 V[x_{t-1}] + d^2 V[\epsilon_{t-1}] + 2bdCov[x_{t-1}, \epsilon_{t-1}]$

where the first equality follows since ϵ_t is independent of ϵ_{t-1} and x_{t-1} , and the second equality follows since $V[\epsilon_t] = 1$. Now

$$Cov[x_{t-1}, \epsilon_{t-1}] = E[x_{t-1}\epsilon_{t-1}] - E[x_{t-1}]E[\epsilon_{t-1}]$$

= $E[x_{t-1}\epsilon_{t-1}]$
= $E[(a + bx_{t-2} + c\epsilon_{t-1} + d\epsilon_{t-2})\epsilon_{t-1}]$
= $cE[\epsilon_{t-1}^2]$
= $cV[\epsilon_{t-1}]$
= c ,

since $E[\epsilon_{t-1}] = 0$ and $V[\epsilon_{t-1}] = 1$. Finally, combining the above expressions we have that

$$V[x_t] = c^2 + b^2 V[x_{t-1}] + d^2 V[\epsilon_{t-1}] + 2bcd$$

= $c^2 + b^2 V[x_t] + d^2 + 2bcd$
= $\frac{c^2 + d^2 + 2bcd}{1 - b^2},$

where we also used the weak stationarity of $\{x_t\}$.

(B) Yes. Since $\{\epsilon_t\}$ is a white noise series, it is strictly stationary. Hence, $\{x_t\}$ consists of a strictly stationary series shifted by a constant, again resulting in a strictly stationary series.

(C) We have

$$\begin{aligned} x_{t+2} &= a + bx_{t+1} + c\epsilon_{t+2} + d\epsilon_{t+1} \\ &= a + b(a + bx_t + c\epsilon_{t+1} + d\epsilon_t) + c\epsilon_{t+2} + d\epsilon_{t+1} \\ &= a(1+b) + b^2 x_t + bd\epsilon_t + (bc+d)\epsilon_{t+1} + c\epsilon_{t+2}. \end{aligned}$$

Conditioned on x_t and ϵ_t , the sum of the first three terms on the right hand side of the last equality is a constant. Further, the sum of the two last terms is Gaussian, since the sum of two Gaussian random variables again is Gaussian. Hence, we have that

$$x_{t+2}|x_t, \epsilon_t \sim N(\mu, \sigma^2), \text{ with}$$

$$\mu = a(1+b) + b^2 x_t + b d\epsilon_t$$

$$\sigma^2 = (bc+d)^2 + c^2$$

since ϵ_{t+1} and ϵ_{t+2} are independent, $E[\epsilon_{t+1}] = E[\epsilon_{t+2}] = 0$ and $V[\epsilon_{t+1}] = V[\epsilon_{t+2}] = 1$.

Problem 3

Using $\tilde{X}_j = aX_j$, we write the model fitted with measurement error as $Y_j = \hat{\alpha} + \hat{\beta}\tilde{X}_j + e_j$. It is now clear that the OLS-estimate for β with measurement error is given by

$$\begin{split} \hat{\beta} &= \frac{\sum_{j} (\tilde{X}_{j} - \tilde{X}) (Y_{j} - \overline{Y})}{\sum_{j} (\tilde{X}_{j} - \overline{X})^{2}} \\ &= \frac{\sum_{j} (aX_{j} - a\overline{X}) (Y_{j} - \overline{Y})}{\sum_{j} (aX_{j} - a\overline{X})^{2}} \\ &= \frac{1}{a} \frac{\sum_{j} (X_{j} - \overline{X}) (Y_{j} - \overline{Y})}{\sum_{j} (X_{j} - \overline{X})^{2}} \\ &= \frac{1}{a} \hat{\beta}_{\text{no error.}} \end{split}$$

where $\hat{\beta}_{no\ error}$ is the OLS estimate without measurement error. Similarly, the OLS estimate for α with measurement error is given by

$$\begin{split} \hat{\alpha} &= \overline{Y} - \hat{\beta}\overline{X} \\ &= \overline{Y} - \hat{\beta}\overline{aX} \\ &= \overline{Y} - \hat{\beta}\overline{aX} \\ &= \overline{Y} - \hat{\beta}\overline{aX} \\ &= \overline{Y} - \frac{1}{a}\hat{\beta}_{\text{no error}}\overline{aX} \\ &= \overline{Y} - \hat{\beta}_{\text{no error}}\overline{X} \\ &= \hat{\alpha}_{\text{no error}}. \end{split}$$

(We conclude that the measurement error affects only the estimate of β .)

Problem 4

•

(A) The 1 step ahead forecast is

$$\hat{r}_8(1) = E[r_9|F_8]$$

= $E[0.2 + 0.4r_8 + 1a_8 + a_9|F_8]$
= $0.2 + 0.4r_8 + a_8 + E[a_9|F_8]$
= $0.2 + 0.4r_8 + a_8$
= $0.2 + 0.4 * 0.4 + 0.1 = 0.4600.$

(B) The 2 step ahead forecast is

$$\hat{r}_8(2) = E[r_{10}|F_8]$$

= $E[\phi_0 + 0.4r_9 + \theta a_9 + a_{10}|F_8]$
= $0.2 + E[0.4r_9|F_8]$
= $0.2 + 0.4E[r_9|F_8]$
= $0.2 + 0.4\hat{r}_8(1)$
= $0.2 + 0.4 * 0.4600 = 0.3840.$

The forecast error is

$$e_8(2) = r_{10} - \hat{r}_8(2)$$

= (0.2 + 0.4r_9 + \theta_9 + a_{10}) - (0.2 + 0.4 * 0.4600)
= (0.4r_9 + a_9 + a_{10}) - 0.4 * 0.4600
= 0.4r_9 + a_9 + a_{10} - 0.4 * 0.4600
= 0.4(0.2 + 0.4r_8 + a_8 + a_9) + a_9 + a_{10} - 0.4 * 0.4600
= 0.4(0.2 + 0.4 * 0.4 + 0.1 + a_9) + a_9 + a_{10} - 0.4 * 0.4600
= C + 1.4a_9 + a_{10}

where *C* is an easily found constant that we do not need (C = 0). Hence, $V(e_8(2)) = V(1.4a_9 + a_{10}) = (1.4^2 + 1)\sigma^2 = 2.96\sigma^2$.

(C) Using the parameter values in the problem we find $r_9 = 0.4r_8 + a_9$. Similarly, $r_{10} = 0.4r_9 + a_{10} = 0.4(0.4r_8 + a_9) + a_{10} = 0.4^2r_8 + 0.4a_9 + a_{10}$ and then $r_{11} = 0.4(0.4^2r_8 + 0.4a_9 + a_{10}) + a_{11} = 0.4^3r_8 + 0.4^2a_9 + 0.4a_{10} + a_{11}$. Continuing this way we find, for arbitrary large l,

$$r_{8+l} = 0.4^{l}r_{8} + 0.4^{l-1}a_{9} + 0.4^{l-2}a_{10} + 0.4^{l-3}a_{11} + \dots + 0.4^{0}a_{8+l}.$$

The forecast $\hat{r}_8(l)$ can be computed recursively (cf. p. 56 in Tsay) as a constant depending on $r_8 = 0.4$ (we do not need to know the value of this constant however). Hence, the variance of the forecast error with lag l is given by

$$\begin{split} V(e_8(l)) &= V(r_{8+l} - \hat{r}_8(l)) \\ &= V(0.4^l r_8 + 0.4^{l-1} a_9 + 0.4^{l-2} a_{10} + 0.4^{l-3} a_{11} + \dots + 0.4^0 a_{8+l}) \\ &= V(0.4^{l-1} a_9 + 0.4^{l-2} a_{10} + 0.4^{l-3} a_{11} + \dots + 0.4^0 a_{8+l}) \\ &= 0.16^{l-1} V(a_9) + 0.16^{l-2} V(a_{10}) + 0.16^{l-3} V(a_{11}) + \dots + 0.16^0 V(a_{8+l}) \\ &= \sigma^2 (0.16^{l-1} + 0.16^{l-2} + 0.16^{l-3} + \dots + 0.16^0). \end{split}$$

Since the sum in the parenthesis above converges to 1/(1 - 0.16) = 1.1905 as $l \to \infty$, it holds that $\lim_{l\to\infty} V(e_8(l)) = 1.1905\sigma^2$.

Problem 5

The GLS formula (p. 89 in the compendium) is in this case

$$[\hat{\alpha}_{GLS}, \hat{\beta}_{GLS}]^T = (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{Y}$$

where $\boldsymbol{\Omega} = \text{diag}(1^2, 2^2, ..., n^2)$, and

$$\boldsymbol{X} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$$

$$oldsymbol{Y} = egin{bmatrix} Y_1 \ dots \ Y_n \end{bmatrix}.$$

Let $\boldsymbol{\beta} = [\alpha, \beta]^T$. Using the introduced notation we may write the model as $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$. We find

$$\begin{aligned} [\hat{\alpha}_{GLS}, \hat{\beta}_{GLS}]^T &= (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{Y} \\ &= (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} (\boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}) \\ &= \boldsymbol{\beta} + (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{\varepsilon} \\ &= [\alpha, \beta]^T + (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{\varepsilon} \end{aligned}$$

Using classical assumption $E[\boldsymbol{\varepsilon}|\mathbf{X}] = \mathbf{0}$ we find that $E[[\hat{\alpha}_{GLS}, \hat{\beta}_{GLS}]|\mathbf{X}] = [\alpha, \beta]$, and it follows that the estimators are unbiased. We use the formula on p. 90 (and that in our case $\sigma^2 = 1$) to find

$$V([\hat{\alpha}_{GLS}, \hat{\beta}_{GLS}]^T | \mathbf{X}) = (\mathbf{X}^T \mathbf{\Omega}^{-1} \mathbf{X})^{-1}$$

Using the expressions for Ω and \mathbf{X} above with n = 3 and the values for X_i given in the question, and basic matrix calculations we find: $\Omega^{-1} = \text{diag}(1/1^2, 1/2^2, 1/3^2) = \text{diag}(1/2, 1/4, 1/9)$ and

$$\boldsymbol{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \end{bmatrix}.$$

More calculations give

$$(\mathbf{X}^{T}\mathbf{\Omega}^{-1}\mathbf{X}) = \begin{bmatrix} \frac{49}{36} & \frac{70}{36} \\ \frac{70}{36} & \frac{136}{36} \end{bmatrix}$$

and we conclude that

$$V([\hat{\alpha}_{GLS}, \hat{\beta}_{GLS}]^T | \mathbf{X}) = (\mathbf{X}^T \mathbf{\Omega}^{-1} \mathbf{X})^{-1} = \begin{bmatrix} \frac{136}{49} & \frac{-10}{7} \\ \frac{-10}{7} & 1 \end{bmatrix}$$

Hence, $V(\hat{\beta}_{GLS}|\boldsymbol{X}) = 1.$

Problem 6

Using basic probability (see also p. 111 in Tyrcha et al.) theory we find the moment conditions corresponding to the first and second moments to be

$$\mathbb{E}\left(V_j - \frac{\theta_0 + 15}{2}\right) = 0, \qquad \mathbb{E}\left(V_j^2 - \frac{\theta_0^2 + 15\theta_0 + 15^2}{3}\right) = 0,$$

where we know that $\theta_0 < 15$ (since the RV is distributed uniformly on the interval $[\theta_0, 15]$ this must be so).

Using the first moment as moment condition means that we estimate θ_0 by setting $\sum_{j=1}^{10} \frac{1}{10} \left(v_j - \frac{\hat{\theta}_0 + 15}{2} \right) = 0$, where the summation is taken over the sample, i.e. $v_1 = 8.87, v_2 = 5.99$ and so on (note that 10 is the sample size). Solving this equation gives $\hat{\theta}_0 = 2 \sum_{j=1}^{10} \frac{v_j}{10} - 15 = 2\bar{v} - 15 = 2.514$. Using notation from p. 115 (Tyrcha et al.) we find that the moments above correspond to $f_1(v_j, \theta) = v_j - \frac{\theta + 15}{2}$ and $f_2(v_j, \theta) = v_j^2 - \frac{\theta^2 + 15\theta + 15^2}{3}$. When W is the identity matrix we find (similar to Example 7.8 in Tyrcha et al.)

$$Q_{10}(\theta) = \left(\sum_{j=1}^{10} v_j - \frac{\theta + 15}{2}\right)^2 + \left(\sum_{j=1}^{10} v_j^2 - \frac{\theta^2 + 15\theta + 15^2}{3}\right)^2.$$
$$= \left(8.7570 - \frac{\theta + 15}{2}\right)^2 + \left(88.3580 - \frac{\theta^2 + 15\theta + 15^2}{3}\right)^2.$$

The estimate that we are looking for is now given by $\hat{\theta}_0 = \operatorname{argmin}_{\theta < 15} Q_n(\theta)$ (easily solved with a computer); where the restriction $\theta < 15$ comes from the fact that 15 is the upper limit of the interval on which V_j is uniformly distributed (we could also have used the restriction $\theta \leq 4.27$ which is the smallest value in the sample).