Suggested solutions:
 Econometric methods (MT5014)

$$
2021-02-24
$$

Problem 1

Set

$$
\boldsymbol{\Omega}=\left[\begin{array}{ccc}
1 & 0.5 & 0 \\
0.5 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{X}=\left[\begin{array}{ll}
1 & X_{1} \\
1 & X_{2} \\
1 & X_{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
1 & 2
\end{array}\right]
$$

Use the formula on p. 90 in Tyrcha et al. (in this case $\sigma^{2}=1$) to find, with tedious but standard calculations,

$$
V\left(\left[\hat{\alpha}_{G L S}, \hat{\beta}_{G L S}\right]^{T} \mid \mathbf{X}\right)=\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1}=[\ldots]=\left[\begin{array}{cc}
2.5 & -1 \\
-1 & 0.5
\end{array}\right] .
$$

Hence, $\operatorname{Cov}\left(\hat{\alpha}_{G L S}, \hat{\beta}_{G L S} \mid \boldsymbol{X}\right)=-1$ and $\operatorname{Var}\left(\hat{\beta}_{G L S} \mid \boldsymbol{X}\right)=0.5$.
Set also

$$
\boldsymbol{Y}=\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right]
$$

Using the formula for the GLS estimator (p. 89 in Tyrcha et al.) and using standard calculations we find

$$
\left[\begin{array}{l}
\hat{\alpha}_{G L S} \\
\hat{\beta}_{G L S}
\end{array}\right]=\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{Y}=[\ldots]=\left[\begin{array}{c}
10.5 \\
-2.5 .
\end{array}\right]
$$

Problem 2

The OLS estimator can in this case be derived (similarly to how it is done in Tyrcha et al ch. 2) as

$$
\hat{\beta}=\frac{\sum X_{i} Y_{i}}{\sum X_{i}^{2}}
$$

so that with $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ it holds that

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Hence, if we also set $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, then $Y=X \beta+\varepsilon$ and

$$
\begin{aligned}
E(\hat{\beta}) & =E\left(\left(X^{T} X\right)^{-1} X^{T} Y\right) \\
& =E\left(\left(X^{T} X\right)^{-1} X^{T}(X \beta+\varepsilon)\right) \\
& =\beta
\end{aligned}
$$

and $\hat{\beta}$ is unbiased.
To show that $\hat{\beta}$ is BLUE means showing that any other linear unbiased estimator has a larger variance. Let $\hat{\gamma}$ be a linear estimator, meaning that for some column vector C (dimension n), it holds that $\hat{\gamma}=C^{T} Y$. Suppose moreover that $\hat{\gamma}$ is unbiased so that $E(\hat{\gamma})=E\left(C^{T} Y\right)=E\left(C^{T}(X \beta+\varepsilon)\right)=C^{T} X \beta=\beta$, implying that

$$
\begin{equation*}
C^{T} X=\sum C_{i} X_{i}=1 \tag{1}
\end{equation*}
$$

Also,

$$
\begin{align*}
V(\hat{\gamma}) & =V\left(C^{T}(X \beta+\varepsilon)\right) \\
& =V\left(C^{T} X \beta+C^{T} \varepsilon\right) \\
& =V\left(\sum C_{i} \varepsilon_{i}\right) \\
& =\sigma^{2} \sum C_{i}^{2} \tag{2}
\end{align*}
$$

Hence, to find the estimator that is BLUE we simply must the solve problem of minimizing (2) with respect to the variables C_{i} given the constraint (11). This is a standard constrained optimization problem that is easily solved using the Lagrange multiplier method, which yields $C_{i}=X_{i} / \sum X_{i}^{2}$; which is directly seen to be equivalent to $\hat{\beta}$ as defined above. In other words, $\hat{\beta}$ is indeed BLUE.

Problem 3

We have the classical model under heteroskedasticity and the GLS estimator is BLUE (Tyrcha et al p. 90). The data corresponds to $\boldsymbol{\Omega}=\operatorname{diag}\left(a_{1}^{2}, \ldots, a_{100}^{2}\right)$,

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
1 & X_{1,2} & X_{2,1} \\
\vdots & \vdots & \vdots \\
1 & X_{1,100} & X_{2,100}
\end{array}\right], \boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{100}
\end{array}\right]
$$

Using the same formula as in Problem 1 we can, using the data as described above, calculate

$$
\hat{\boldsymbol{\beta}}_{\boldsymbol{G L S}}=\left(\boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{Y}
$$

Using that $n=100$ and $k=3$, we have now have all ingredients for the formula for $\hat{\sigma}^{2}$ in Tyrcha et al. p. 91.

We will use an F-test to test the hypothesis against H_{1} : any $\beta_{i} \neq 0, i=1,2$ (cf. Tyrcha et al. ch 3.3), which corresponds to $q=2$,

$$
\boldsymbol{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{r}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We thus have all ingredients for the formula for F (Tyrcha et al. p. 91) which is distributed according to $F(q, n-k)$ under H_{0}. Using our data, as described above, and the formulas above we may (using the formula for F) calculate $F_{o b s}$. A table gives $F_{0.01}(2,97)=4.8309$. If $F_{o b s}>4.8309$ we reject H_{0} in favor of H_{1}.

Problem 4

Repeated substitution gives

$$
\begin{aligned}
r_{t} & =0.3 r_{t-1}+a_{t} \\
& =0.3^{2} r_{t-2}+0.3 a_{t-1}+a_{t} \\
& =0.3^{3} r_{t-3}+0.3^{2} a_{t-2}+0.3 a_{t-1}+a_{t} \\
& =\ldots \\
& =a_{t}+0.3 a_{t-1}+0.3^{2} a_{t-2}+\ldots
\end{aligned}
$$

Hence, $E\left(r_{t}\right)=0$,

$$
\begin{aligned}
V\left(r_{t}\right) & =V\left(a_{t}+0.3 a_{t-1}+0.3^{2} a_{t-2}+\ldots\right) \\
& =\sum_{i=0}^{\infty}\left(0.3^{2}\right)^{i} \\
& =\frac{1}{1-0.3^{2}}
\end{aligned}
$$

and (using e.g. $E\left(r_{t}\right)=0$ and the independence of a_{t+1} and r_{t})

$$
\begin{aligned}
C\left(r_{t}, r_{t+1}\right) & =E\left(r_{t} r_{t+1}\right) \\
& =E\left(r_{t}\left(0.3 r_{t}+a_{t+1}\right)\right) \\
& =0.3 E\left(r_{t}^{2}\right) \\
& =0.3 V\left(r_{t}\right) \\
& =\frac{0.3}{1-0.3^{2}}
\end{aligned}
$$

while similar calculations yield $C\left(r_{t}, r_{t+L}\right)=\frac{0.3^{L}}{1-0.3^{2}}$ for $L>1$. Since the expectation, variance and covariances are independent of t, the time series is weakly stationary.

Problem 5

Define

$$
I_{t-1}=\left\{\begin{array}{l}
0.4 \text { if } r_{t-1} \geq 1 \\
0.2 \text { if } r_{t-1}<1
\end{array}\right.
$$

so that the model can be written as $r_{t}=I_{t-1} r_{t-1}+a_{t}$.
Note that $I_{1}=0.4$ so that $r_{2}=I_{1} r_{1}+a_{2}=0.4+a_{2}$. Hence, the 1 step ahead forecast is

$$
\hat{r}_{1}(1)=E\left[r_{2} \mid F_{1}\right]=0.4
$$

Note that

$$
\begin{aligned}
\hat{r}_{1}(2) & =E\left[r_{3} \mid F_{1}\right] \\
& =E\left[I_{2} r_{2}+a_{3} \mid F_{1}\right] \\
& =E\left[I_{2}\left(0.4+a_{2}\right) \mid F_{1}\right] \\
& =0.4 E\left[I_{2}\right]+E\left[I_{2} a_{2} \mid F_{1}\right] .
\end{aligned}
$$

Note that $I_{2}=0.4$ if $a_{2}=1$ and $I_{2}=0.2$ if $a_{2}=-1$. Hence, $E\left[I_{2}\right]=$ $\frac{1}{2} * 0.4+\frac{1}{2} * 0.2=0.3$. Note that $I_{2} a_{2}=0.4$ if $a_{2}=1$ and $I_{2} a_{2}=-0.2$ if $a_{2}=-1$. Hence, $E\left[I_{2} a_{2}\right]=\frac{1}{2} * 0.4 * 1+\frac{1}{2} * 0.2 *-1=0.1$. It follows that

$$
\hat{r}_{1}(2)=0.4 * 0.3+0.1=0.22 .
$$

Problem 6

The absolute value of the coefficient in front of x_{t-1} is smaller than 1. Hence, $\left\{x_{t}\right\}$ is a weakly stationary (ARMA) time series (compare p. 36-37 in Tsay). Hence,

$$
\begin{aligned}
E\left(x_{t}\right) & =E\left(0.3 x_{t-1}+a_{t}+0.5 a_{t-1}\right) \\
& =E\left(0.3 x_{t-1}\right) \\
& =0.3 E\left(x_{t}\right)
\end{aligned}
$$

so that $E\left(x_{t}\right)=0$.
Set $b=0.3$ and $d=0.5$ and let B denote the backshift operator. Then, the time series can be expressed as

$$
\begin{equation*}
(1-b B) x_{t}=(1+d B) a_{t} . \tag{3}
\end{equation*}
$$

To express $\left\{x_{t}\right\}$ as an MA process means that we want to write it on the form

$$
\begin{equation*}
x_{t}=\sum_{j=0}^{\infty} \psi_{j} B^{j} a_{t} \tag{4}
\end{equation*}
$$

(and our mission is therefore to find constants $\psi_{0}, \psi_{1}, \psi_{2}, \ldots$ such that (4) holds). This means that

$$
\begin{equation*}
(1-b B) x_{t}=(1-b B) \sum_{j=0}^{\infty} \psi_{j} B^{j} a_{t} \tag{5}
\end{equation*}
$$

From (3) and (5) we obtain

$$
\begin{aligned}
1+d B & =(1-b B) \sum_{j=0}^{\infty} \psi_{j} B^{j} \\
& =(1-b B)\left(\psi_{0}+\psi_{1} B+\psi_{2} B^{2}+\ldots\right) \\
& =\psi_{0}+\left(\psi_{1}-b \psi_{0}\right) B+\left(\psi_{2}-b \psi_{1}\right) B^{2}+\left(\psi_{3}-b \psi_{2}\right) B^{3} \ldots
\end{aligned}
$$

which directly implies

$$
\begin{aligned}
& 1=\psi_{0} \\
& d=\psi_{1}-b \psi_{0} \\
& 0=\psi_{j}-b \psi_{j-1} \quad \text { for } j \geq 2
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=d+b \\
& \psi_{j}=b \psi_{j-1}=b^{j-1}(d+b) \quad \text { for } j \geq 2
\end{aligned}
$$

Plugging in the numbers (i.e. using $d+b=0.8$) and simplifying a bit yields

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{j}=0.3^{j-1} 0.8 \quad \text { for } j \geq 1
\end{aligned}
$$

Using this in (4) yields

$$
x_{t}=a_{t}+0.8 \sum_{j=1}^{\infty} 0.3^{j-1} B^{j} a_{t}
$$

and we have thus rewritten $\left\{x_{t}\right\}$ as an MA process (of infinite order).

