STOCKHOLMS UNIVERSITET, MATEMATISKA INSTITUTIONEN, Avd. Matematisk statistik

Suggested solutions: Econometric methods (MT5014) 2021-02-24

Problem 1

 Set

$$\boldsymbol{\varOmega} = \begin{bmatrix} 1 & 0.5 & 0 \\ 0.5 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{bmatrix}$$

and

$$\boldsymbol{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ 1 & X_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix}$$

Use the formula on p. 90 in Tyrcha et al. (in this case $\sigma^2 = 1$) to find, with tedious but standard calculations,

$$V([\hat{\alpha}_{GLS}, \hat{\beta}_{GLS}]^T | \mathbf{X}) = (\mathbf{X}^T \boldsymbol{\Omega}^{-1} \mathbf{X})^{-1} = [...] = \begin{bmatrix} 2.5 & -1 \\ -1 & 0.5 \end{bmatrix}.$$

Hence, $Cov(\hat{\alpha}_{GLS}, \hat{\beta}_{GLS} | \mathbf{X}) = -1$ and $Var(\hat{\beta}_{GLS} | \mathbf{X}) = 0.5$.

Set also

$$\boldsymbol{Y} = \begin{bmatrix} 4\\3\\7 \end{bmatrix}$$
.

Using the formula for the GLS estimator (p. 89 in Tyrcha et al.) and using standard calculations we find

$$\begin{bmatrix} \hat{\alpha}_{GLS} \\ \hat{\beta}_{GLS} \end{bmatrix} = (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{Y} = [\dots] = \begin{bmatrix} 10.5 \\ -2.5. \end{bmatrix}$$

Problem 2

The OLS estimator can in this case be derived (similarly to how it is done in Tyrcha et al ch. 2) as

$$\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2},$$

so that with $X = (X_1, ..., X_n)^T$ and $Y = (Y_1, ..., Y_n)^T$ it holds that

$$\hat{\beta} = (X^T X)^{-1} X^T Y.$$

Hence, if we also set $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$, then $Y = X\beta + \varepsilon$ and

$$E(\hat{\beta}) = E((X^T X)^{-1} X^T Y)$$

= $E((X^T X)^{-1} X^T (X\beta + \varepsilon))$
= β ,

and $\hat{\beta}$ is unbiased.

To show that $\hat{\beta}$ is BLUE means showing that any other linear unbiased estimator has a larger variance. Let $\hat{\gamma}$ be a linear estimator, meaning that for some column vector C (dimension n), it holds that $\hat{\gamma} = C^T Y$. Suppose moreover that $\hat{\gamma}$ is unbiased so that $E(\hat{\gamma}) = E(C^T Y) = E(C^T (X\beta + \varepsilon)) = C^T X\beta = \beta$, implying that

$$C^T X = \sum C_i X_i = 1. \tag{1}$$

Also,

$$V(\hat{\gamma}) = V(C^{T}(X\beta + \varepsilon))$$

= $V(C^{T}X\beta + C^{T}\varepsilon)$
= $V\left(\sum C_{i}\varepsilon_{i}\right)$
= $\sigma^{2}\sum C_{i}^{2}$. (2)

Hence, to find the estimator that is BLUE we simply must the solve problem of minimizing (2) with respect to the variables C_i given the constraint (1). This is a standard constrained optimization problem that is easily solved using the Lagrange multiplier method, which yields $C_i = X_i / \sum X_i^2$; which is directly seen to be equivalent to $\hat{\beta}$ as defined above. In other words, $\hat{\beta}$ is indeed BLUE.

Problem 3

We have the classical model under heteroskedasticity and the GLS estimator is BLUE (Tyrcha et al p. 90). The data corresponds to $\boldsymbol{\Omega} = diag(a_1^2, ..., a_{100}^2)$,

$$\boldsymbol{X} = \begin{bmatrix} 1 & X_{1,2} & X_{2,1} \\ \vdots & \vdots & \vdots \\ 1 & X_{1,100} & X_{2,100} \end{bmatrix}, \boldsymbol{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_{100} \end{bmatrix}$$

Using the same formula as in Problem 1 we can, using the data as described above, calculate

$$\hat{\boldsymbol{\beta}}_{\boldsymbol{GLS}} = (\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{Y}$$

Using that n = 100 and k = 3, we have now have all ingredients for the formula for $\hat{\sigma}^2$ in Tyrcha et al. p. 91.

We will use an *F*-test to test the hypothesis against H_1 : any $\beta_i \neq 0, i = 1, 2$ (cf. Tyrcha et al. ch 3.3), which corresponds to q = 2,

$$\boldsymbol{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \boldsymbol{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

We thus have all ingredients for the formula for F (Tyrcha et al. p. 91) which is distributed according to F(q, n - k) under H_0 . Using our data, as described above, and the formulas above we may (using the formula for F) calculate F_{obs} . A table gives $F_{0.01}(2,97) = 4.8309$. If $F_{obs} > 4.8309$ we reject H_0 in favor of H_1 .

Problem 4

Repeated substitution gives

$$\begin{aligned} r_t &= 0.3r_{t-1} + a_t \\ &= 0.3^2 r_{t-2} + 0.3a_{t-1} + a_t \\ &= 0.3^3 r_{t-3} + 0.3^2 a_{t-2} + 0.3a_{t-1} + a_t \\ &= \dots \\ &= a_t + 0.3a_{t-1} + 0.3^2 a_{t-2} + \dots \end{aligned}$$

Hence, $E(r_t) = 0$,

$$\begin{split} V(r_t) &= V(a_t + 0.3a_{t-1} + 0.3^2a_{t-2} + \ldots) \\ &= \sum_{i=0}^{\infty} (0.3^2)^i \\ &= \frac{1}{1 - 0.3^2}, \end{split}$$

and (using e.g. $E(r_t) = 0$ and the independence of a_{t+1} and r_t)

$$C(r_t, r_{t+1}) = E(r_t r_{t+1})$$

= $E(r_t (0.3r_t + a_{t+1}))$
= $0.3E(r_t^2)$
= $0.3V(r_t)$
= $\frac{0.3}{1 - 0.3^2}$

while similar calculations yield $C(r_t, r_{t+L}) = \frac{0.3^L}{1-0.3^2}$ for L > 1. Since the expectation, variance and covariances are independent of t, the time series is weakly stationary.

Problem 5

Define

$$I_{t-1} = \begin{cases} 0.4 & \text{if } r_{t-1} \ge 1, \\ 0.2 & \text{if } r_{t-1} < 1, \end{cases}$$

so that the model can be written as $r_t = I_{t-1}r_{t-1} + a_t$.

Note that $I_1 = 0.4$ so that $r_2 = I_1r_1 + a_2 = 0.4 + a_2$. Hence, the 1 step ahead forecast is

$$\hat{r}_1(1) = E[r_2|F_1] = 0.4.$$

Note that

$$\hat{r}_1(2) = E[r_3|F_1]$$

= $E[I_2r_2 + a_3|F_1]$
= $E[I_2(0.4 + a_2)|F_1]$
= $0.4E[I_2] + E[I_2a_2|F_1].$

Note that $I_2 = 0.4$ if $a_2 = 1$ and $I_2 = 0.2$ if $a_2 = -1$. Hence, $E[I_2] = \frac{1}{2} * 0.4 + \frac{1}{2} * 0.2 = 0.3$. Note that $I_2a_2 = 0.4$ if $a_2 = 1$ and $I_2a_2 = -0.2$ if $a_2 = -1$. Hence, $E[I_2a_2] = \frac{1}{2} * 0.4 * 1 + \frac{1}{2} * 0.2 * -1 = 0.1$. It follows that

$$\hat{r}_1(2) = 0.4 * 0.3 + 0.1 = 0.22$$

Problem 6

The absolute value of the coefficient in front of x_{t-1} is smaller than 1. Hence, $\{x_t\}$ is a weakly stationary (ARMA) time series (compare p. 36-37 in Tsay). Hence,

$$E(x_t) = E(0.3x_{t-1} + a_t + 0.5a_{t-1})$$

= $E(0.3x_{t-1})$
= $0.3E(x_t)$

so that $E(x_t) = 0$.

Set b = 0.3 and d = 0.5 and let B denote the backshift operator. Then, the time series can be expressed as

$$(1 - bB)x_t = (1 + dB)a_t.$$
 (3)

To express $\{x_t\}$ as an MA process means that we want to write it on the form

$$x_t = \sum_{j=0}^{\infty} \psi_j B^j a_t \tag{4}$$

(and our mission is therefore to find constants $\psi_0, \psi_1, \psi_2, \ldots$ such that (4) holds). This means that

$$(1 - bB)x_t = (1 - bB)\sum_{j=0}^{\infty} \psi_j B^j a_t.$$
 (5)

From (3) and (5) we obtain

$$1 + dB = (1 - bB) \sum_{j=0}^{\infty} \psi_j B^j$$

= $(1 - bB)(\psi_0 + \psi_1 B + \psi_2 B^2 + ...)$
= $\psi_0 + (\psi_1 - b\psi_0)B + (\psi_2 - b\psi_1)B^2 + (\psi_3 - b\psi_2)B^3...,$

which directly implies

$$1 = \psi_0$$

$$d = \psi_1 - b\psi_0$$

$$0 = \psi_j - b\psi_{j-1} \text{ for } j \ge 2,$$

i.e.

$$\begin{split} \psi_0 &= 1\\ \psi_1 &= d+b\\ \psi_j &= b\psi_{j-1} = b^{j-1}(d+b) \quad \text{for } j \geq 2. \end{split}$$

Plugging in the numbers (i.e. using d + b = 0.8) and simplifying a bit yields

$$\psi_0 = 1$$

 $\psi_j = 0.3^{j-1} 0.8 \text{ for } j \ge 1.$

Using this in (4) yields

$$x_t = a_t + 0.8 \sum_{j=1}^{\infty} 0.3^{j-1} B^j a_t$$

and we have thus rewritten $\{x_t\}$ as an MA process (of infinite order).