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Question part

The question part consists of 4 questions giving a total of 40 points. No literature help is allowed
for this part. As soon as you are done please hand in your answers to the questions part to the
“Tentamenvakt” and you will in return get the problem part which consists of problems giving 60
points in total. Note: Once you hand in the question part it is not possible to get it back nor add any
extra answers to it!

Question 1 (10 Points)

Show that an exponential family is preserved under repeated sampling from the same distribution,
and tell in what sense (what will change and what does not change?)

Question 2 (10 Points)

Write down the score function and the Fisher information for a full exponential family in canonical
parametrization.

Question 3 (10 Points)

Define what characterizes a univariate Generalized Linear Model (GLM). How do ideas extend to
multivariate GLMs? Also explain how to interpret a non-intercept coefficient in a univariate Poisson
log-linear GLM.

Question 4 (10 Points)

Consider a one-parameter parametric model f(y;#). An iid. sample of size n has been observed from
the model. Motivate from the likelihood ratio test the construction of a (1 —«a)-100% likelihood based
confidence interval for # and describe how the interval is computed.
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The problem part consists of 3 problems giving a total of 60 points. The following literature is allowed
while solving the problem part: lectures notes of the course, printout of the course slides, printout of
the Chapter 3 excerpt from Fahrmeir & Tutz provided on the webpage, printout of the Héhle (2010)
article linked on the webpage, your own handwritten annotations from the course, possible formula
collections from other courses. No additional books or literature photocopies are allowed.

Problem 1 (12 points)
Consider the Poisson distribution with probability mass function (PMF) f(y; A\) and E(y) = A.

(a) (9 points) Show that the saddlepoint approximation for the PMF is
-1
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(b) (3 points) How can this approximation be additionally improved?

Problem 2 (33 points)

The so called double Poisson distribution has probability mass function

exp(—¢ exp(0)) (y)y (eXp(e)e>W, y=0,1,...

Fy;0,0) = c(0,9)/9 (1)
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where 0 € R, 1) > 0 and e = exp(1). Furthermore, ¢(,) is a function depending only on 6 and ),
which normalizes the density. In general the exact form of ¢(,v) can be very hard to determine and
you should not attempt to do so.

(a) (5 points) Show that the double Poisson distribution belongs to the two-parameter exponential
family with canonical parameter vector (6, )7 and canonical statistic

t(y) = (y,y(1 —log(y)))".

Furthermore, show that the overall normalization function of the double Poisson is

C(0,4) = [e(6,9) /4 exp(—¢ exp(6))] "



(b) (6 points) Assume c(6,1) = 1, which in many cases is a very good approximation, and show that
for the double Poisson distribution

exp(3;)
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where we have used a parametrization with o = 0 and .

<R

E(t) = [

(c) (6 points) What is the expectation of a double Poisson variable under the ¢(,1) = 1 assumption?
What is the variance? Use this to interpret the parameter .

(d) (3 points) Using a mixed representation (u,1) it is possible to show (don’t do it!) that the
expected Fisher information for a random sample of size n under the above assumption is

L
22
What is the advantage of the mixed representation here compared to I(a,)?

(e) (6 points) Show that the MLE for a random sample of size n under the simplifying assumption
c(0,9)=11is

n
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=7 and ¢ =

where D(y, u(3)) denotes the Poisson deviance of a GLM with expectation vector u(f), i.e.
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(f) (7 points) Again assuming ¢(#,1) = 1 and considering iid. count data yi,...,y,. Formulate the
hypothesis and derive the Wald test statistic for the investigation of whether the double Poisson
distribution provides a better fit to the data than the ordinary one-parameter Poisson distribution.
What is the asymptotic distribution of this test statistic?

Problem 3 (15 points)

An alternative to estimate the parameters of an exponential family from a single iid. sample of size
n is by using a multinomial type likelihood. In the discrete response case let 0,1,2, ...,k denote the
possible outcomes and let n;, ¢ = 0,...,k denote the number of individuals in the population who
have outcome Y =k, i.e. n = Z?:o n;. As an example the data tab4 in Table 1 contain the number
of accidents to n = 647 female workers in an ammunition factory during the 1st World War.

The trick is now to model the cell frequencies using a Poisson log-linear GLM, i.e. n; ~ Po()\;),
i=1,...,k, with

log \i = 07 t(y;) —log C(0) + h(y:)- (2)

We observe that h(y;) does not depend on the parameters to be estimated and hence can be included
as offset in the modelling. Furthermore, —log C'() is the intercept in the model. Actually, retaining
an intercept in the Poisson model ensures that the marginal total is fixed to be n (c.f. Poisson trick!).
A consequence of this is that we do not have to know the analytic form of —log C'(¢) in order to fit
the model.



y n  ylogy
0 447  0.000
1 132 0.000
2 42 1.386
3 21  3.296
4 3 5545
5 2 8.047
6 0 10.751
70 13.621
8 0 16.636

Table 1: Data tab4 on the number of accidents to 647 female workers in an ammunition factory. In
the original data there were no workers with more than 5 accidents. We extend the dataset up to
k = 8 and assume that ignoring outcomes higher than 8 only induces a negligible error.

(a) (7 points) Show that when using the above model to describe the conditional distribution nq, ..., ng|n,
this results in a multinomial type likelihood with class-specific probabilities \;/ Z?:l Aj. What
happens with C(f) when inserting (2) as \;?

(b) (3 points) When the underlying exponential family distribution is the simple Poisson distribution,
Po(exp(#)), the above procedure applied to the data from tab4 generates the following R output
shown below!. Use the output to compute a 95% Wald confidence interval for 6 in the simple
Poisson model.

> summary(m1)

Call:
glm(formula = n ~ 1 + y + offset(-1factorial(y)), family = poisson,
data = tab4)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.3880 -0.1070 -0.0067 1.9862 4.3453

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 6.00712 0.04759 126.23 <2e-16
y -0.76524 0.05764 -13.28 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 286.425 on 8 degrees of freedom
Residual deviance: 55.098 on 7 degrees of freedom

(c) (5 points) For the one sample case the approach can also be used to fit the double Poisson distri-
bution from Exercise 2 without the ¢(6,1) ~ 1 assumption by using Poisson GLM methodology.
In this case the estimated parameters are o and (¢ — 1) (don’t do the math to show this!):?

> summary (m2)

'The function 1factorial(y) computes log(y!).
2The function I(y-ylogy) means to treat its argument “as-is”, i.e. a new covariate y — y log(y) is computed and then

used in the GLM.



Call:
glm(formula =n ~ 1 + y + I(y - ylogy) + offset(-lfactorial(y)),
family = poisson, data = tab4)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.89177 -0.71327 -0.22746 0.07055 1.31000

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 6.10193  0.04716 129.387 < 2e-16
y -0.58507 0.04762 -12.285 < 2e-16
I(y - ylogy) -0.64021  0.08016 -7.986 1.39e-15

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 286.4245 on 8 degrees of freedom
Residual deviance: 4.2805 on 6 degrees of freedom

Use the previous and subsequent R output to compute the likelihood ratio test statistic for the
hypothesis formulated in Exercise 2(f). Discuss your results with respect to goodness of fit of the
simple Poisson model for the accident data.



