Department of Mathematics
Peter LeFanu Lumsdaine
Andrea Serio, Sergi Arias Garcia

Mathematics for Economic and Statistical Analysis $\begin{array}{r}\text { Examination in }\end{array}$
MM1005, höstterminen 2019, 7.5 ECTS
Friday 1 November 2019

Instructions:

- During the exam you may not use any textbook, class notes, or any other supporting material.
- Non-graphical calculators will be provided for the exam by the department. Other calculators may not be used.
- In all solutions, justify your answers - communicate your reasoning. Use ordinary language where appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Mark your final answer to each question clearly by putting a box around it.

Grades: There are 7 questions. Each solved problem is awarded up to 10 points. At least 35 points are necessary for the grade E, 42 for D, 49 for C, 56 for B and 63 for A. Note that the problems are not ordered according to difficulty.

1. Find the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{30 x \ln x+5}{6-2 x}$
(b) $\lim _{x \rightarrow 2} \frac{4}{x \ln x^{2}}$
2. Take the function f given by $f(x)=x^{3}-\frac{3}{2} x^{2}-6 x+\frac{9}{2}$.
(a) Find all critical points of f.
(b) For which values of x is f increasing/decreasing?
(c) Find the maximum and minimum values of f on the interval $[0,3]$.
3. Suppose a quantity K varies over time t according to the formula $K=\sqrt{t^{2}-4 t-4}$.
(a) Find $\frac{\mathrm{d} K}{\mathrm{~d} t}$ and $\frac{\mathrm{d}^{2} K}{\mathrm{~d} t^{2}}$.
(b) Give the 2nd-order Taylor approximation of K around time $t=1$.
4. Find the following integrals:
(a) $\int 3 x \ln x \mathrm{~d} x$
(b) $\int_{1}^{5} \frac{\ln x}{x} \mathrm{~d} x$
5. Find the maximum and minimum values of the function $F(x, y)=2 x^{2}+2 y^{2}-4 x+6$ subject to the constraints $x \geq 0, x^{2}+y^{2} \leq 4$.
6. Consider the system of equations

$$
\begin{aligned}
2 x_{1}+2 x_{2} & =7 \\
x_{1}+3 x_{2}-x_{3}= & 9 \\
a x_{1}-x_{2}+x_{3}= & -2
\end{aligned}
$$

(a) Show that for $a \neq 1$, the system has a unique solution.
(b) For $a=1$, find the general solution of the system, or show that there are no solutions.
7. Let C be the curve $y=x^{3}+2 x-1$.
(a) Find the tangent line to C at the point $(-1,-4)$.
(b) Find all points (x, y) on C such that the tangent to C at (x, y) passes through $(2,3)$.

