STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Lionel Lang

Examination in
Mathematics for Economic and Statistical Analysis Master Program, 7.5 ECTS
30th September 2020

Time: 13:00-18:00

Instructions:

- During the exam you CAN NOT use any textbook, class notes, or any other supporting material.
- Non-graphical calculators will be provided for the exam by the department. Other calculators MAY NOT be used.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Mark clearly where is your final answer by putting A BOX around it.

Grades: There are 6 problems. Each solved problem is awarded by up to 5 points. At least 15 points are necessary for the grade E . The problems are not ordered according to the difficulty.

1. Let A be the matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 3 \\
1 & k+2 & k+6 \\
-1 & 2 & k-3
\end{array}\right)
$$

depending on the parameter $k \in \mathbb{R}$.
(a) Compute the determinant $|A|$ as a function of k. (2p)
(b) Determine the values of k for which the matrix A is invertible.
(c) Solve the system of linear equations

$$
\left(\begin{array}{ccc}
1 & -1 & 3 \tag{2p}\\
1 & 1 & 5 \\
-1 & 2 & -4
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-4 \\
3
\end{array}\right)
$$

in the variables x, y and z. (Observe that the coefficient matrix is A for $k=-1$)
2. Consider the function $f(x, y)=e^{x y-x-y}$ defined on the compact set

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0, y \geqslant 0, y \leqslant 4-x\right\} .
$$

(a) Draw the set D and determine the boundary ∂D (to be expressed mathematically, as a subset or a union of subsets of $\left.\mathbb{R}^{2}\right)$. ($1 p$)
(b) Determine the critical points of f in the interior of D and compute the value of f at those points. (2p)
(c) Determine the maximal and the minimal values of f on $D . \quad(2 p)$
3. Compute the primitives
(a) $\quad \int \frac{6 x^{3}+3 x^{2}-2 x+5}{2 x+1} d x, \quad(2 p)$
(b) $\quad \int 6 x\left(x^{2}-1\right)^{2} \ln \left(x^{2}-1\right) d x . \quad(3 p)$
4. Let $f(x, y)=e^{x^{2}-y^{2}}$ and $g(x, y)=(x-1)^{2}+y^{2}$. Our goal is to optimize the function f when the variables x and y are submitted to the constraint $g(x, y)=4$.
(a) Compute the gradients $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ and $\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right)$.
(2p)
(b) Solve in x and y the following equation

$$
\left|\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \tag{2p}\\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right|=0
$$

(c) Find the extremal values of f when x and y satisfy $g(x, y)=4$.
5. Compute the limits
(a) $\lim _{x \rightarrow+\infty} \frac{6 x^{2}-x}{2 x+1}-\frac{3 x^{2}+x}{x-2}$,
(2p)
(b) $\lim _{x \rightarrow 0} \frac{x\left(e^{x}-1\right)}{\sqrt{1-2 x}-1+x}$.
6. Suppose y is defined implicitly as a function of x by $x^{2}=y^{3}+y+2$.
(a) Compute the derivative $\frac{d y}{d x}$ (express it as a function of x and $y(x)$).
(b) Find the only value $x=x_{0}$ satisfying $x>0$ and $y(x)=1 . \quad(1 p)$
(c) Compute the linear approximation of $y(x)$ at the point $\left(x_{0}, 1\right)$. (1p)

