STOCKHOLM UNIVERSITY

Department of Mathematics
Examiner: Lionel Lang

Examination in
Mathematics for Economic and Statistical Analysis Master Program, 7.5 ECTS
28th October 2020

Time: 13:00-18:00

Instructions:

- During the exam you CAN NOT use any textbook, class notes, or any other supporting material.
- Non-graphical calculators will be provided for the exam by the department. Other calculators MAY NOT be used.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language when appropriate, not just mathematical symbols.
- Write clearly and legibly.
- Mark clearly where is your final answer by putting A BOX around it.

Grades: There are 6 problems. Each solved problem is awarded by up to 5 points. At least 15 points are necessary for the grade E . The problems are not ordered according to the difficulty.

1. Let A be the matrix

$$
A=\left(\begin{array}{ccc}
2 & 5 & -1 \\
-4 & k-11 & 5 \\
-2 & -5 & k
\end{array}\right)
$$

depending on the parameter $k \in \mathbb{R}$.
(a) Compute the determinant $|A|$ as a function of k.
(b) Determine the values of k for which the matrix A is invertible.
(c) Solve the system of linear equations

$$
\left(\begin{array}{ccc}
2 & 5 & -1 \\
-4 & -11 & 5 \\
-2 & -5 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
-2 \\
-3
\end{array}\right)
$$

in the variables x, y and $z . \quad(2 p)$
2. Consider the function $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ defined on the compact set

$$
\begin{equation*}
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-1 \leqslant y \leqslant 1-x\right\} \tag{1p}
\end{equation*}
$$

(a) Draw the set D and determine the intersection of D with the line $\{y=1-x\}$.
(b) Determine the critical points of f and compute the value of f at those points.
(c) Determine the maximal and the minimal values of f on D. $\quad(2 p)$
3. Compute the integrals
(a) $\int_{1}^{\left(\frac{e+1}{2}\right)^{2}} \frac{3 \sqrt{t}+5}{2 \sqrt{t}-1} d t$
(2p)
(b) $\int\left(2 x^{3}-2 x\right)\left(e^{x^{2}-1}-1\right) d x$.
4. Let $f(x, y)=\sqrt{1+x^{2}+y^{2}}$ and $g(x, y)=\left(\frac{x}{2}\right)^{2}+(y-1)^{2}$. Our goal is to optimize the function f when the variables x and y are submitted to the constraint $g(x, y)=1$.
(a) Compute $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ and $\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right)$.
(b) Solve in x and y the following equation

$$
\left|\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \tag{2p}\\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right|=0 .
$$

(c) Find the extremal values of f when x and y satisfy $g(x, y)=1$.
5. Compute the limits
(a) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{e^{3 x}-1-3 x}$,
(3p)
(b) $\lim _{x \rightarrow 1^{-}} \frac{3 x+2}{\sqrt{x}-1}-\frac{1}{x-1}$.
6. Consider the function $f(x)=e^{1+x-x^{2}}$.
(a) Compute the Taylor polynomial $T_{2}(x)$ of order 2 of $f(x)$ at $x=0$.
(b) Show that for any x that satisfies $|x|<10^{-1}$, the following inequality is true

$$
\begin{equation*}
\left|f(x)-T_{2}(x)\right|<e^{1,09} \cdot 10^{-3} . \tag{2p}
\end{equation*}
$$

(hint: use the inequality $|a+b+c+d|<|a|+|b|+|c|+|d|$.)

Formulas

The Taylor polynomial $T_{n}(x)$ of order n of the function $f(x)$ at $x=x_{0}$ is

$$
T_{n}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

and the remainder $R_{n+1}(x):=f(x)-T_{n}(x)$ is given by

$$
R_{n+1}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

for some number ξ between x and x_{0}.
The solutions of the equation $a x^{2}+b x+c=0$ are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ if $b^{2}-4 a c \geqslant 0$.

