MATEMATISKA INSTITUTIONEN

Avd. Matematik

Examinator: Annemarie Luger

Solutions to the exam in February 16, 2013

Note that these are not complete solutions but only commented answers!!!

1. (a) Direct calculation gives

$$a_n = \begin{cases} \frac{1}{2} & n = 1 \\ 0 & n \neq 1 \end{cases}$$
 and $b_n = \begin{cases} 0 & n = 1 \\ \frac{(-1)^n + 1}{\pi} \cdot \frac{n}{n^2 - 1} & n \neq 1 \end{cases}$.

and hence

$$f \sim \frac{1}{2}\cos x + \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\pi} \cdot \frac{n}{n^2 - 1}\sin nx = \frac{1}{2}\cos x + \sum_{k=1}^{\infty} \frac{4k}{\pi(4k^2 - 1)}\sin 2kx$$

(b) Graph of g:

2. (a)

$$F \sim \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{i(-1)^n}{n} e^{inx}.$$

(b) Rewriting the complex Fourier series as the real Fourier series gives

$$F \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{n} \sin nx.$$

F(x) equals its Fourier series on the open intervall, as $F \in E, F$ continous on $]-\pi,\pi[$.

(c)
$$x = \frac{\pi}{2}$$
 gives: $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4} - 1$

Parsevals identity gives: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi}{\underline{6}}$

$$u_{tt} - u_{xx} = x, \quad 0 \le x \le \pi, t \ge 0$$

 $u(0,t) = 0, \quad u_x(\pi,t) = 0$
 $u(x,0) = \sin \frac{3x}{2}, \quad u_t(x,0) = 0$

The eigenfunctions X(x) of the problem satisfy:

$$\frac{X''}{X} = -\lambda \qquad X(0) = X'(\pi) = 0$$

This gives: $X_n(x) = \sin \frac{2n+1}{2} x$ for n = 0, 1, 2, ...

Expanding the function x (right hand side of the PDE) with respect to the eigenfunctions gives:

$$x \sim \sum_{n=0}^{\infty} c_n \sin \frac{2n+1}{2} x$$
, where $c_n = \frac{\int_0^{\pi} x \sin \frac{2n+1}{2} x \, dx}{\int_0^{\pi} \sin^2 \frac{2n+1}{2} x \, dx} = \frac{8(-1)^n}{\pi (2n+1)^2}$.

The Ansatz $u(x,t) = \sum_{n=0}^{\infty} T_n(t) \sin \frac{2n+1}{2} x$ leads to

$$\ddot{T}_n + \left(\frac{2n+1}{2}\right)^2 T_n = c_n$$

$$T_n(0) = \begin{cases} 0 & n \neq 1 \\ 1 & n = 1 \end{cases}$$
 and $\dot{T}_n(0) = 0$ for $n = 0, 1, 2, \dots$

Solving these initial value problems leads to

$$T_n(x) = A_n \cos \frac{2n+1}{2}t$$
, where
$$\begin{cases} A_1 = 1 + \frac{2}{\pi} \\ A_n = \frac{2(-1)^{n+1}}{\pi} & n \neq 1 \end{cases}$$

and hence

$$u(x,t) = -\frac{2}{\pi}\cos\frac{t}{2}\sin\frac{x}{2} + (1+\frac{2}{\pi})\cos\frac{3}{2}t\sin\frac{3}{2}x + \sum_{n=2}^{\infty}\frac{2(-1)^{n+1}}{\pi}\cos\frac{2n+1}{2}t\sin\frac{2n+1}{2}x.$$

- 4. (a) The modulation formula for the Fourier transforms is shown by direct calculation.
 - (b) One way to solve the problem is using (a) and the auxiliary function $h(x) = \begin{cases} 1 & |x| \leq 1 \\ 0 & |x| > 1 \end{cases}$ for which it holds $(\mathcal{F}[h])(\omega) = \frac{\sin \omega}{\pi \omega}$. Then it follows

$$(\mathcal{F}[f])(\omega) = \frac{\omega \sin \omega}{\pi(\pi^2 - \omega^2)}.$$

5. The weight function in this problem is $\varrho(x) = \frac{1}{1+x^2}$ and hence the orthogonality conditions become

$$\int_{-1}^{3} \frac{y_n(x)\overline{y_m(x)}}{1+x^2} dx = \begin{cases} 1 & n=m \\ 0 & n \neq m \end{cases}.$$

- 6. (a) No, $\langle f, f \rangle = 0$ is possible even if f is not the zero function, namely if the support of f is contained in the interval [1, 2].
 - (b) No, e.g. in general it does not hold $\langle \lambda f, g \rangle = \lambda \langle f, g \rangle$.
 - (c) No, $\langle f, f \rangle$ is possible even if f is not the zero function, namely if f is constant.
 - (d) Yes, properties 1, 3, an 4 are obvious. Let us check 2: $\langle f, f \rangle = |f(1)|^2 + \int_0^2 |f'(x)|^2 dx = 0$ implies f(1) = 0 and as f' continous also $f'(x) \equiv 0$. Hence f is constant and by f(1) = 0 it follows $f \equiv 0$.