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(a) Direct calculation gives
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(b) Rewriting the complex Fourier series as the real Fourier series gives
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F(z) equals its Fourier series on the open intervall, as F' € E, F continous on | — m, 7|.
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w(0,t) =0, wug(mt)=0
u(z,0) =sin 3, w,(z,0)=0

The eigenfunctions X (z) of the problem satisfy:
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This gives: X, (z) = sin 2"5”33 forn=20,1,2,....



Expanding the function x (right handside of the PDE) with respect to the eigenfunctions

gives:
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The Ansatz u(z,t) = > T, (t)sin 2%z leads to
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Solving these initial value problems leads to
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and hence
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4. (a) The modulation formula for the Fourier transforms is shown by direct calculation.
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(b) One way to solve the problem is using (a) and the auxiliary function h(z) = { 0 :x: ; )
T
for which it holds (F[h])(w) = 2. Then it follows
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5. The weight function in this problem is g(x) = 14-% and hence the orthogonality conditions
become .
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6. (a) No, (f, f) =0 is possible even if f is not the zero function, namely if the support of f
is contained in the interval [1,2].

(b) No, e.g. in general it does not hold (Af, g) = A(f, g).
(¢) No, (f, f) is possible even if f is not the zero function, namely if f is constant.

(d) Yes, properties 1, 3, an 4 are obvious.
Let us check 2: (f, f) = |f(1)|2—|—f02 |f'(z)|? dx = 0 implies f(1) = 0 and as f’ continous
also f'(z) = 0. Hence f is constant and by f(1) = 0 it follows f = 0.



