MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Sofia Tirabassi

Tentamensomskrivning i Combinatorics
7.5 hp

11th January 2022

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved. A score of at least 15 points will ensure a pass grade.

1. Partitions: (2 points)

Consider r a positive integer and let a_{r} be the number of (unordered) partitions of r such that:

- no summand is larger than 4;
- 3 appears at least 3 times;
- 4 appears at most 2 times.

Express of the generating function of $a_{r}, r \in \mathbb{N}_{>0}$, as a quotient of polynomials.

2. Rook polynomials:

(a) (2 point) Define the rook numbers and the rook polynomial of a chessboard C.
(b) (3 points) Calculate the rook polynomial of the following 4×4 chessboard.

(c) (2 point) State formally how the rook polynomial of the union of two disjoint chessboards C_{1} and C_{2} can be written in terms of the rook polynomials of the C_{i} 's
(d) (2 points) Prove your statement in point (d).

3. Recursion:

Consider the following recursion relation

$$
a_{n+2}-6 a_{n+1}+9 a_{n}=5
$$

With boundary conditions $a_{0}=0$ and $a_{1}=1$.
(a) (3 points) Solve the relation finding a closed formula for a_{n}.
(b) (2 points) Express the generating function of the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ as a quotient of polynomials.

4. Graphs:

Consider the (simple and loop-free) complete bipartite graph $K_{n, m}$. Give conditions on n and m such that
(a) (2 points) Give conditions on n and m such that $K_{n, m}$ is connected.
(b) (2 points) Give conditions on n and m such that $K_{n, m}$ has an Euler circuit.
(c) (2 points) Give conditions on n and m such that $K_{n, m}$ has an Hamilton path.
(d) (2 points) Compute the chromatic polynomial of $K_{2,2}$. (Formula: you can use that $p\left(K_{n}, x\right)=$ $x(x-1)(x-2) \cdots(x-n))$

5. Latin squares:

Let $q=p^{n}$, with n a positive integer and p a prime different from 2 and 3 . Define the $q \times q$ matrix $A=\left(a_{i j}\right)$ by $a_{i j} \equiv 2 i+j(\bmod q)$
(a) (2 points) Write A when $q=5$. Observe that it is a Latin square.
(b) (2 points) For $q=5$ find a Latin square which is orthogonal to A. (Hint: 3 is a unit in \mathbb{F}_{5})
(c) (2 points) Show that for every q, the matrix A is a Latin square. (Hint: You need to show that $a_{i j}=a_{i k}$ implies $j=k$ and that $a_{i j}=a_{l j}$ implies $i=l$.)

