Homework set 2

HW1. Suppose that $F \rightarrow E \rightarrow B$ is a fibration with $\pi_{1}(B)$ acting trivially on $H_{\text {. }}(F)$. Suppose that $H_{i}(B)=0$ for $0<i<m$ and $H_{j}(F)=0$ for $0<j<n$. Show that there is an exact sequence

$$
H_{n+m-1}(F) \rightarrow H_{n+m-1}(E) \rightarrow H_{n+m-1}(B) \rightarrow H_{n+m-2}(F) \rightarrow \ldots \rightarrow H_{1}(E) \rightarrow H_{1}(B) \rightarrow 0
$$

Apply this result to the path-loop fibration $\Omega \Sigma X \rightarrow P \Sigma X \rightarrow \Sigma X$ of an (n-1)-connected space X, to show that $\pi_{k}(X) \rightarrow \pi_{k}(\Omega \Sigma X)$ is an isomorphism for $k \leq 2 n-2$, generalizing the statement we proved for $X=S^{n}$ in class.
(As in class, you should feel free to take on faith that the differentials in the spectral sequence agree with any geometrically defined homomorphisms you can cook up.)

HW2. Consider the fibration $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ and take the quotient by the antipodal map on the total space. We obtain a fibration sequence

$$
S^{1} \rightarrow \mathbb{R P}^{2 n+1} \rightarrow \mathbb{C P}^{n}
$$

since S^{1} modulo its antipodal involution is S^{1}. Determine the differentials in the spectral sequence to compute the cohomology groups $H^{\bullet}\left(\mathbb{R}^{2 n+1}, \mathbb{Z}\right)$ and $H^{\bullet}\left(\mathbb{R}^{2 n+1}, \mathbb{Z} / 2\right)$. (Hint: use that $\pi_{1}\left(\mathbb{R P}^{n}\right)=\mathbb{Z} / 2$ and the universal coefficient theorem to determine H^{2}, which gives you the first differential, and then use multiplicativity.)

Does the ring structure you get on the E_{∞} page coincide with the ring structure on $H^{\bullet}\left(\mathbb{R}^{2 n+1}\right)$?
Deadline: 2022-10-18. If you have used any resources outside the course literature/lecture notes, please indicate this in your solution. Similarly if you have discussed the problems with another student. Hand in your solutions by e-mail to: dan.petersen@math.su.se

