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1 Introduction

By the fundamental work of Serre, the homotopy groups πn(X) of a simply
connected finite complex X are finitely generated abelian groups. These may
therefore be decomposed as

πn(X) = Zr ⊕ T,

where r is the rank and T is the torsion subgroup, which is finite. The torsion is
mysterious; there is no non-contractible simply connected finite complex X for
which the torsion in πn(X) is known for all n. On the contrary, the rank can
often be determined. For example, Serre showed that πk(Sn) is finite except
when k = n or when n is even and k = 2n − 1. In the exceptional cases the
rank is 1. This observation is fundamental for rational homotopy theory. The
idea is that by ‘ignoring torsion’ one should obtain a simpler theory.

On the level of homotopy groups, one way of ignoring torsion is to tensor
with the rational numbers:

πn(X)⊗Q = Qr.

This can also be done on the space level. There is a construction X 7→ XQ, called
rationalization, with the property that πn(XQ) ∼= πn(X) ⊗ Q. Two spaces X
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and Y are said to be rationally homotopy equivalent, written X ∼Q Y , if their
rationalizations XQ and YQ are homotopy equivalent. Rational homotopy theory
is the study of spaces up to rational homotopy equivalence.

There are two seminal papers in the subject, Quillen’s [20] and Sullivan’s [25].
Both associate to a simply connected topological space X an algebraic object,
a minimal model MX . Sullivan uses commutative differential graded algebras,
whereas Quillen uses differential graded Lie algebras. The key property of the
minimal model is that

X ∼Q Y if and only if MX and MY are isomorphic.

Thus, the minimal model solves the problem of classifying simply connected
spaces up to rational homotopy equivalence. Moreover, the minimal model can
often be determined explicitly, allowing for calculations of rational homotopy
invariants.

These lecture notes are based on material from various sources, most notably
[1, 5, 9, 10, 11, 12, 20, 25, 26, 27]. Needless to say, any mistakes in the text are
my own. We hope that these notes may serve as a more concise alternative to
[5]. For a nice brief introduction to rational homotopy theory and its interac-
tions with commutative algebra, see [12]. An account of the history of rational
homotopy theory can be found in [13].

2 Eilenberg-Mac Lane spaces and Postnikov tow-
ers

In this section, we will recall the basic properties of Eilenberg-Mac Lane spaces
and Postnikov towers of simply connected spaces. We refer the reader to [10]
for more details and proofs.

2.1 Eilenberg-Mac Lane spaces

Let A be an abelian group and n ≥ 1. The Eilenberg-Mac Lane space K(A,n)
is a connected CW-complex that is determined up to homotopy equivalence by
the requirement that there exists a natural isomorphism

[X,K(A,n)] ∼= H̃
n
(X;A)

for all CW-complexes X. In particular, if we plug in X = Sn, we see that

πn(K(A,n)) = A, πk(K(A,n)) = 0, k 6= n,

and in fact already this property characterizes K(A,n) up to homotopy equiv-
alence.

Now, let X be a connected space. The spaces
∏
nK(πn(X), n) and X have

the same homotopy groups, but it is not true in general that they have the same
homotopy type. However, it is true that X has the homotopy type of a ‘twisted’
product of the Eilenberg-Mac Lane spaces K(πn(X), n). Let us make this more
precise.
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2.2 Postnikov towers

A Postnikov tower for a simply connected space X is a tower of fibrations

· · · // Xn+1
// Xn

// · · · // X3
// X2

together with compatible maps X → Xn such that

• πk(X)→ πk(Xn) is an isomorphism for k ≤ n,

• πk(Xn) = 0 for k > n.

It follows that the fiber of Xn → Xn−1 is an Eilenberg-Mac Lane space of type
K(πn(X), n). In other words, there is a homotopy fiber sequence

K(πn(X), n)→ Xn → Xn−1.

In this sense, Xn is a twisted product of Xn−1 and K(πn(X), n). The space Xn

is sometimes referred to as the ‘nth Postnikov section of X’.
Simply connected CW-complexes admit Postnikov towers with the further

property that each fibration Xn → Xn−1 is principal, i.e., a pullback of the path
fibration over an Eilenberg-Mac Lane space,

Xn

��

// PK(πn(X), n+ 1)

��
Xn−1

kn+1
// K(πn(X), n+ 1),

(1)

along a certain map kn+1. The map kn+1 represents a class

[kn+1] ∈ [Xn−1,K(πn(X), n+ 1)] = Hn+1(Xn−1;πn(X)),

called the (n + 1)-st k-invariant. The collection of homotopy groups πn(X)
together with all k-invariants kn+1 are enough to reconstruct X up to homotopy
equivalence. The space X is homotopy equivalent to the product of Eilenberg-
Mac Lane spaces

∏
nK(πn(X), n) if and only if all k-invariants are trivial.

3 Homotopy theory modulo a Serre class of abelian
groups

Rational homotopy theory is homotopy theory ‘modulo torsion groups’. In this
section we will make precise what it means to do homotopy theory ‘modulo C ’,
where C is some class of abelian groups. This idea is due to Serre [22].

3.1 Serre classes

Consider the following conditions on a class of abelian groups C .

(i) Given a short exact sequence of abelian groups

0→ A′ → A→ A′′ → 0,

the group A belongs to C if and only if both A′ and A′′ belong to C .
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(i)’ Given an exact sequence of abelian groups

A→ B → C → D → E,

if A,B,D and E belong to C , then C belongs to C .

Definition 3.1. A non-empty class of abelian groups C is satisfying (i) is called
a Serre class. A non-empty class of abelian groups C satisfying condition (i)’ is
called a Serre’ class1.

Obvious examples of Serre classes are the class of all abelian groups, and the
class of trivial groups.

Exercise 3.2. 1. Verify that the following are Serre classes.

(a) Finitely generated abelian groups.

(b) Torsion abelian groups.

(c) Finite abelian groups.

2. Show that every Serre class is a Serre’ class.

3. An abelian group A is called uniquely divisible if the multiplication map
A
·n→ A is an isomorphism for every non-zero integer n.

(a) Show that an abelian group A is uniquely divisible if and only if the
canonical map A→ A⊗Q is an isomorphism.

(b) Show that the class of uniquely divisible groups is a Serre’ class, but
not a Serre class.

4. Let C be a Serre’ class. Verify the following statements.

(a) Given a short exact sequence of abelian groups

0→ A′ → A→ A′′ → 0,

if two out of A′, A,A′′ belong to C , then so does the third.

(b) If C∗ is a chain complex of abelian groups with Cn ∈ C for all n,
then Hn(C∗) ∈ C for all n.

(c) If 0 = A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ An = A is a filtration of an
abelian group A such that the filtration quotients Ap/Ap−1 belong
to C for all p, then A belongs to C .

We will need the following technical conditions, for reasons that will become
clear soon.

(ii) If A and B belong to C , then so do A⊗B and TorZ
1 (A,B).

(iii) If A belongs to C , then so does Hk(K(A,n)) for all k, n > 0.

1This is not standard terminology.
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3.2 Hurewicz and Whitehead theorems modulo C

Theorem 3.3. Let C be a Serre’ class of abelian groups satisfying (ii) and (iii),
and let X be a simply connected space. If πk(X) ∈ C for all k, then Hk(X) ∈ C
for all k > 0.

Proof. Let us write πn := πn(X) to ease notation. Let {Xn} be a Postnikov
tower of X. We will prove by induction on n that Hk(Xn) ∈ C for all k > 0 and
all n ≥ 2. Then we are done because Hk(X) ∼= Hk(Xk). To start the induction,
the fact that X2 = K(π2, 2) and π2 ∈ C implies that Hk(X2) ∈ C for all k > 0
by (iii). For the inductive step, suppose that Hk(Xn−1) ∈ C for all k > 0. Then
consider the Serre spectral sequence of the fibration

K(πn, n)→ Xn → Xn−1.

It has E2-term

E2
p,q = Hp(Xn−1; Hq(K(πn, n)))
∼= Hp(Xn−1)⊗Hq(K(πn, n))⊕ TorZ

1 (Hp−1(Xn−1),Hq(K(πn, n)).

The isomorphism comes from the universal coefficient theorem. Since πn ∈ C
and Hk(Xn−1) ∈ C for all k > 0, it follows from (i)’, (ii) and (iii) that E2

p,q ∈ C
for all (p, q) 6= (0, 0). Since Er+1 = H∗(Er, dr), and E∞p,q = Erp,q for r � p, q, it
follows from Exercise 3.2 that E∞p,q ∈ C for all (p, q) 6= (0, 0). The groups E∞p,q
are the quotients Fp/Fp−1 in a filtration

0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fp+q = Hp+q(Xn).

It follows from Exercise 3.2 that Hk(Xn) ∈ C for all k > 0.

Theorem 3.4. Let C be a Serre’ class of abelian groups satisfying (ii) and
(iii), and let X be a simply connected space. If Hk(X) ∈ C for all k > 0, then
πk(X) ∈ C for all k > 0.

Proof. Again, let πn := πn(X) and let {Xn} be a Postnikov tower of X. We
will prove by induction that πk(Xn) ∈ C for all k and all n ≥ 2. Then we are
done because πk(X) = πk(Xk). Since X2 = K(π2, 2) and π2

∼= H2(X) ∈ C
by the ordinary Hurewicz theorem, we have πk(X2) ∈ C for all k. Suppose by
induction that πk(Xn−1) ∈ C for all k. Then Hk(Xn−1) ∈ C for all k > 0 by
Theorem 3.3. We can convert the map X → Xn−1 into an inclusion by using
the mapping cylinder. Since πk(Xn−1) = 0 for k ≥ n, it follows from the long
exact homotopy sequence of the pair (Xn−1, X),

· · · → πk(X)→ πk(Xn−1)→ πk(Xn−1, X)→ πk−1(X)→ · · · ,

that πn+1(Xn−1, X) ∼= πn(X). The map X → Xn−1 is n-connected, so by the
relative Hurewicz theorem πn+1(Xn−1, X) ∼= Hn+1(Xn−1, X). Finally, consider
the long exact sequence in homology

Hn+1(X)→ Hn+1(Xn−1)→ Hn+1(Xn−1, X)→ Hn(X)→ Hn(Xn−1).

Since Hk(X) and Hk(Xn−1) belong to C for all k > 0, it follows from the
exercise that the middle term belongs to C . Hence, πn(X) ∼= πn+1(Xn−1, X) ∼=
Hn+1(Xn−1, X) ∈ C .
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A homomorphism f : A → B is called a C -monomorphism if ker f belongs
to C , a C -epimorphism if coker f belongs to C , and a C -isomorphism if it is
both a C -monomorphism and a C -epimorphism.

Theorem 3.5 (Hurewicz Theorem mod C ). Let C be a Serre’ class of abelian
groups satisfying (ii) and (iii), and let X be a simply connected space. The
following are equivalent:

1. πk(X) belongs to C for all k < n.

2. H̃k(X) belongs to C for all k < n.

In this situation, there is an exact sequence

K → πn(X)→ Hn(X)→ C → 0,

where K and C belong to C . In particular, if C is a Serre class, then the
Hurewicz homomorphism πn(X)→ Hn(X) is a C -isomorphism.

Proof. Consider the Postnikov section Xn−1. By definition, the map X → Xn−1

induces an isomorphism on πk, and hence on H̃k, for k < n. Hence, if πk(X) ∈ C

for k < n, then πk(Xn−1) ∈ C for all k. But then H̃k(Xn−1) ∈ C for all k by
Theorem 3.3. Since Hk(X) ∼= Hk(Xn−1) for k < n, it follows that H̃k(X) ∈ C for
all k < n. The claim about the Hurewicz homomorphism follows by considering
the following commutative diagram with exact rows

= 0 = 0 = 0

πn+1(Xn−1) //

��

πn+1(Xn−1, X)
∼= //

∼=
��

πn(X) //

��

πn(Xn−1) //

��

πn(Xn−1, X)

��
Hn+1(Xn−1) // Hn+1(Xn−1, X) // Hn(X) // Hn(Xn−1) // Hn(Xn−1, X)

∈ C ∈ C = 0

The vertical maps are the Hurewicz homomorphisms.

Theorem 3.6 (Whitehead theorem mod C ). Let C be a Serre class of abelian
groups satisfying (ii) and (iii). Let f : X → Y be a map between simply con-
nected spaces and let n ≥ 1. The following are equivalent:

1. f∗ : πk(X)→ πk(Y ) is a C -isomorphism for k ≤ n and a C -epimorphism
for k = n+ 1.

2. f∗ : Hk(X)→ Hk(Y ) is a C -isomorphism for k ≤ n and a C -epimorphism
for k = n+ 1.

Proof. By using the mapping cylinder, we may assume that f : X → Y is an
inclusion, without loss of generality. By considering the exact sequences

· · · → πk+1(X)→ πk+1(Y )→ πk(Y,X)→ πk(X)→ · · · ,

· · · → Hk+1(X)→ Hk+1(Y )→ Hk(Y,X)→ Hk(X)→ · · · ,
we see that the first condition is equivalent to πk(Y,X) ∈ C for k ≤ n and
the second to Hk(Y,X) ∈ C for k ≤ n. There is a relative version of the
Hurewicz theorem mod C , which says that πk(Y,X) ∈ C for k ≤ n if and only
if Hk(Y,X) ∈ C for k ≤ n. The result follows.
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If C is the class of trivial groups, then the Hurewicz and Whitehead theorems
mod C reduce to the classical theorems.

3.3 Verification of the axioms for certain Serre classes

Proposition 3.7. Let C be a Serre class of abelian groups satisfying (ii) and let
F → E → B be a fibration of path connected spaces, with B simply connected.
If two out of three of F,E,B have Hk ∈ C for all k > 0, then so does the third.

Proof. See [11, Lemma 1.9].

Corollary 3.8. Let C be a Serre class satisfying (ii) and let X be a simply
connected space. The following are equivalent:

1. Hk(X) belongs to C for all k > 0.

2. Hk(ΩX) belongs to C for all k > 0.

Proof. Apply the proposition to the fibration ΩX → PX → X.

Corollary 3.9. Let C be a Serre class satisfying (ii). Then C satisfies (iii) if
and only if the following condition is satisfied:

(iii)’ If A belongs to C , then so does Hk(K(A, 1)) for all k > 0.

Proof. Use the above corollary and the relation ΩK(A,n) ' K(A,n− 1).

Note that Hk(K(A, 1)) is the same as the homology of the group A, so it
can be calculated as

Hk(K(A, 1)) ∼= TorZ[A]
k (Z,Z)

where Z[A] denotes the group ring of A.

Exercise 3.10. Are Proposition 3.7 and its corollaries true if one replaces Serre
class with Serre’ class?

Finitely generated groups

Proposition 3.11. The Serre class of finitely generated abelian groups satisfies
(ii) and (iii).

Proof. First we verify (ii). Let A and B be finitely generated. Then A ⊗ B is
finitely generated, because if (ai) and (bj) generate A and B, respectively, then
(ai ⊗ bj) generate A⊗B. We may choose a presentation 0→ Q→ P → A→ 0
with P and Q finitely generated projective. Then from the exact sequence

0→ TorZ
1 (A,B)→ Q⊗B → P ⊗B → A⊗B → 0,

it follows that TorZ
1 (A,B) is finitely generated, as it is isomorphic to a subgroup

of the finitely generated group Q⊗B.
To verify (iii), by Corollary 3.9 it is enough to check that the homology

groups Hk(K(A, 1)) are finitely generated whenever A is a finitely generated
abelian group. By using the Künneth theorem (see e.g., [15, Theorem V.2.1.]),
we can reduce to the case when A is a cyclic group. From the calculation of the
homology of cyclic groups (see e.g., [15, Chapter VI]) we have
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• Hk(K(Z, 1)) = Z for k = 0, 1 and Hk(K(Z, 1)) = 0 for k > 1.

• H0(K(Z/n, 1) = Z, H2k−1(K(Z/n, 1)) = Z/n and H2k(K(Z/n, 1)) = 0 for
k > 0.

In particular, these groups are finitely generated.

We get the following consequence of Theorem 3.3 and Theorem 3.4.

Corollary 3.12. The following are equivalent for a simply connected space X:

1. The homotopy groups πn(X) are finitely generated for all n.

2. The homology groups Hn(X) are finitely generated for all n.

In particular, the homotopy groups of a simply connected finite complex are
finitely generated.

Torsion groups

Exercise 3.13. Let C be the Serre class of torsion groups.

1. Prove that C satisfies (ii) and (iii). (Hint: For (iii), use the fact that
for any abelian group G, the homology Hk(G; Z) is isomorphic to the
direct limit lim−→α

Hk(Gα; Z), where {Gα} is the directed system of finitely
generated subgroups of G.)

2. Prove that a homomorphism f : A→ B is a C -isomorphism if and only if
the induced homomorphism f ⊗Q : A⊗Q→ B ⊗Q is an isomorphism.

Uniquely divisible groups

Exercise 3.14. Let C be the Serre’ class of uniquely divisible groups.

1. Use the fact that A ⊗ B and TorZ
1 (A,B) are additive functors in each

variable to prove that C satisfies (ii).

2. Prove that if A is a uniquely divisible abelian group, then Hk(K(A, 1)) is
uniquely divisible for every k > 0. Hint: Use that if G is a commutative
group, written multiplicatively, then the group homomorphism (−)n : G→
G induces the following map in homology for every k:

Hk(G; Z)→ Hk(G; Z)

α 7→ nkα.

3. Prove that H̃∗(X) is uniquely divisible if and only if H̃∗(X; Fp) = 0 for all
primes p.

4. Use the Serre spectral sequence with Fp coefficients to prove that H̃∗(ΩX)
is uniquely divisible if and only if H̃∗(X) is.

5. Conclude that the class of uniquely divisible groups satisfies (iii)
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4 Rational homotopy equivalences and localiza-
tion

4.1 Rational homotopy equivalences

The following is a direct consequence of the Whitehead theorem modulo the
class of torsion groups. Note that Hn(X; Q) ∼= Hn(X)⊗Q since Q is flat.

Theorem 4.1. The following are equivalent for a map f : X → Y between
simply connected spaces.

1. The induced map f∗ : π∗(X)⊗Q→ π∗(Y )⊗Q is an isomorphism.

2. The induced map f∗ : H∗(X; Q)→ H∗(Y ; Q) is an isomorphism.

Definition 4.2. A map f : X → Y between simply connected spaces is called
a rational homotopy equivalence if the equivalent conditions in Theorem 4.1 are
satisfied. We shall write

f : X
∼Q // Y

to indicate that f is a rational homotopy equivalence.

Definition 4.3. We say that two simply connected spaces X and Y have the
same rational homotopy type, or are rationally homotopy equivalent, if there is
a zig-zag of rational homotopy equivalences connecting X and Y ;

X Z1

∼Qoo ∼Q // · · · Zn
∼Qoo ∼Q // Y.

We will write X ∼Q Y to indicate that X and Y have the same rational homo-
topy type.

4.2 Q-localization

Standard references for localizations are [26, 14]. Localizations are also discussed
in [11].

Theorem 4.4. The following are equivalent for a simply connected space Y .

1. The homotopy groups πk(Y ) are uniquely divisible for all k.

2. The homology groups Hk(Y ) are uniquely divisible for all k > 0.

Proof. The class of uniquely divisible groups is a Serre’ class by Exercise 3.2,
and it satisfies (ii) and (iii) by Exercise 3.14, so the equivalence of the first two
conditions follows from Theorem 3.4.

Definition 4.5. A simply connected space Y is called rational, or Q-local, if
the equivalent conditions in Theorem 4.4 are satisfied.

Definition 4.6. A rationalization, or Q-localization, of a simply connected
space X is a Q-local space XQ together with a rational homotopy equivalence
r : X → XQ. In other words, the induced maps

r∗ : Hk(X; Q)→ Hk(XQ),
r∗ : πk(X)⊗Q→ πk(XQ),

are isomorphisms for all k > 0.
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Theorem 4.7. The following are equivalent for a simply connected space Y

1. Y is Q-local.

2. For every rational homotopy equivalence r : Z → X between CW-complexes,
the induced map

r∗ : [X,Y ]→ [Z, Y ]

is a bijection.

We will prove this in three steps:

• Prove ⇒.

• Prove the existence of Q-localizations.

• Prove ⇐.

Lemma 4.8. A map f : X → Y between simply connected spaces is a rational
homotopy equivalence if and only if

f∗ : Hn(Y ;A)→ Hn(X;A)

is an isomorphism for all uniquely divisible abelian groups A and all n.

Proof. By the universal coefficient theorem (see [15, Theorem V.3.3]), there is
a short exact sequence

0→ Ext1
Z(Hn−1(X), A)→ Hn(X;A)→ HomZ(Hn(X), A)→ 0,

which is natural in X. If A is divisible, then A is injective as a Z-module,
so Ext1

Z(Hn−1(X), A) = 0. If A is uniquely divisible, then it admits a unique
Q-vector space structure, and there results a natural isomorphism

HomZ(Hn(X), A) ∼= HomQ(Hn(X)⊗Q, A).

Noting that Hn(X; Q) ∼= Hn(X)⊗Q, we get the following commutative diagram

Hn(Y ;A)

f∗

��

∼= // HomQ(Hn(Y ; Q), A)

f∗

��
Hn(Z;A)

∼= // HomQ(Hn(Z; Q), A),

which proves the claim.

Proof of ⇒ in Theorem 4.7. For Y an Eilenberg-Mac Lane space K(A,n), with
A uniquely divisible, one argues using the commutative diagram

[X,K(A,n)]

∼=
��

r∗ // [Z,K(A,n)]

∼=
��

Hn(X;A) r∗ // Hn(Z;A).

The lower horizontal map is an isomorphism by Lemma 4.8.

11



Next, let Y be an arbitrary simply connected Q-local space and consider

r∗ : [Z, Y ]→ [X,Y ]

for a rational homotopy equivalence r : X → Z between CW-complexes.
r∗ is surjective: Let f : X → Y be a given map. We have to solve the lifting

problem

X
f //

r

��

Y

Z

λ

>>~
~

~
~

We do this by crawling up the Postnikov tower of Y . Consider the composite
fn : X → Y → Yn where Yn is the nth Postnikov section of Y . Suppose by
induction that fk : X → Yk admits an extension λk : Z → Yk for k < n. Then
we need to solve the following lifting problem.

X

r

��

fn // Yn

��
Z

λn−1

//

λn

<<z
z

z
z

z
Yn−1.

Now, Yn → Yn−1 is a pullback of the path fibration over K(πn(Y ), n+ 1) along
the k-invariant kn+1 : Yn−1 → K(πn(Y ), n + 1), see (1). Therefore, the above
lifting problem is equivalent to the following:

X

r

��

// ∗

��
Z x

//

88ppppppp
K(πn(Y ), n+ 1),

where ∗ is short for the contractible path space, and x = kn+1 ◦ λn−1. But
this can be reformulated as follows: “Given x ∈ Hn+1(Z;πn(Y )) such that
r∗(x) = 0 ∈ Hn+1(X;πn(Y )) is it true that x = 0?”. This is indeed true
because r∗ : Hn+1(Z;πn(Y )) → Hn+1(X;πn(Y )) is an isomorphism, as πn(Y )
is uniquely divisible and r is a rational homotopy equivalence. Before we claim
to have finished, we should point out that the induction starts with λ1 the trivial
map from Z to Y1 = ∗

r∗ is injective: Given two lifts

X

r

��

f // Y

Z

λ1

>>~~~~~~~
λ0

>>~~~~~~~

we will prove that λ0 is homotopic to λ1 relative to X. Finding a homotopy
h : Z × I → Y between λ0 and λ1 relative to X is equivalent to solving the
lifting problem

X × I
⋃
X×∂I Z × ∂I

��

// Y

Z × I
h

77ooooooo
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where the top map is defined on the respective summands by

X × I proj.→ X
f→ Y, (λ0, λ1) : Z × ∂I → Y.

To solve this lifting problem, we note that the vertical map is a rational ho-
motopy equivalence because of the following calculation of relative homology
groups:

Hn(Z × I,X × I ∪X×∂I Z × ∂I; Q) ∼= Hn−1(Z, Y ; Q) = 0.

Then the argument proceeds as before.

Theorem 4.9. Every simply connected space X admits a Q-localization.

Proof. We will construct XQ by induction on a Postnikov tower of X. First, for
an Eilenberg-Mac Lane space K(A,n), the obvious map

r : K(A,n)→ K(A⊗Q, n)

is a rationalization. In particular, since X2 = K(π2, 2), we can start the
induction by taking (X2)Q = K(π2 ⊗ Q, 2). Suppose inductively that we
have constructed rationalizations rk : Xk → (Xk)Q for k < n. The space
Xn is the pullback of the path space over K(πn, n + 1) along the k-invariant
kn+1 : Xn−1 → K(πn, n + 1), i.e., the back square in the diagram below is a
pullback.

Xn

��

// PK(πn, n+ 1)

��
Xn−1

rn−1 $$JJJJJJJJJ
kn+1

// K(πn, n+ 1)
r

))RRRRRRRRRRRRR

(Xn−1)Q
(kn+1)Q //____________ K(πn ⊗Q, n+ 1)

The diagonal arrows are rationalizations, and the dotted horizontal arrow is the
preimage of r ◦ kn+1 under the map

r∗n−1 : [(Xn−1)Q,K(πn ⊗Q, n+ 1)]→ [Xn−1,K(πn ⊗Q, n+ 1)],

which is a bijection by the ⇒ part of the theorem. If we define (Xn)Q to be
the pullback of the path space over K(πn⊗Q, n+ 1) along (kn+1)Q, then there
is an induced map rn : Xn → (Xn)Q. By looking at the long exact sequence of
homotopy groups, it follows that rn is a rationalization. There results a tower
of fibrations

· · · → (Xn)Q → (Xn−1)Q → · · · → (X2)Q.

The inverse limit lim←−(Xn)Q is a rationalization of X.

Proof of ⇐ in Theorem 4.7. Theorem 4.9 asserts the existence of a Q-localization
Y → YQ. We may assume that YQ is a CW-complex. The map r : Y → YQ is a
rational homotopy equivalence, so the induced map r∗ : [YQ, Y ]→ [Y, Y ] is a bi-
jection. In particular, we can find s : YQ → Y such that s◦r ' 1Y . We must also
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have r ◦ s ' 1YQ , because both map to r under the map r∗ : [YQ, YQ]→ [Y, YQ],
which is a bijection since YQ is Q-local. Hence, Y and YQ are homotopy equiva-
lent. In particular, they have isomorphic homology and homotopy groups, which
implies that Y is Q-local as well.

We end this section by noting some easy consequences.

Theorem 4.10. • Every rational homotopy equivalence between Q-local CW-
complexes is a homotopy equivalence.

• Any two Q-localizations of X are homotopy equivalent relative to X.

Once we have the characterization in Theorem 4.7, the proof of this is entirely
formal. See Theorem 4.14 below.

4.3 Appendix: Abstract localization

The notion of Q-localization fits into a general scheme. Let C be a category and
let W be a class of morphisms in C. For objects X and Y of C, write C(X,Y )
for the set of morphisms in C from X to Y .

Definition 4.11. • An object X in C is called W-local if

f∗ : C(B,X)→ C(A,X)

is a bijection for all morphisms f : A→ B that belong to W.

• AW-localization of an objectX is an objectXW together with a morphism

` : X → XW ,

such that

– The object XW is W-local.

– The morphism ` belongs to W.

Proposition 4.12 (Universal property of localization). AW-localization ` : X →
XW , if it exists, satisfies the following universal properties.

1. The object XW is the initialW-local object under X, i.e., any map f : X →
Y from X to a W-local object Y factors uniquely as

X
` //

f !!CCCCCCCC XW

∃!
���
�
�

Y

2. The morphism ` is the terminal morphism in W out of X, i.e., for any
morphism w : X → Z in W, there is a unique factorization as

X
` //

w

��

XW

Z

∃!

=={
{

{
{
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Proof. The first statement is simply spelling out that `∗ : C(XW , Y )→ C(X,Y )
is a bijection, which holds because Y isW-local and ` belongs toW. The second
statement is spelling out that w∗ : C(Z,XW)→ C(X,XW) is a bijection, which
holds since XW is W-local and w belongs to W.

Exercise 4.13. Let C be the category of abelian groups, and letW be the class
of C -isomorphisms, where C is the class of torsion groups. Show that

1. An abelian group A is W-local precisely when it is uniquely divisible.

2. For every abelian group A, the canonical map A → A ⊗ Q is a W-
localization.

Theorem 4.14. 1. Every map in W between W-local objects is an isomor-
phism.

2. Any two W-localizations of X are canonically isomorphic under X.

Proof. Let w : X → Y be a morphism in W between W-local objects. Consider
the commutative diagram

C(Y,X)
∼=
w∗
//

w∗

��

C(X,X)

w∗

��
C(Y, Y )

∼=
w∗
// C(X,Y ).

Let s ∈ C(Y,X) be the preimage of 1X , so that 1X = w∗(s) = s ◦ w. Then
under the bijection w∗ : C(Y, Y ) → C(X,Y ), both 1Y and w ◦ s are mapped to
w. Hence w ◦ s = 1Y . Thus, w is an isomorphism with inverse s. We leave the
proof of the second statement to the reader.

To see how Q-localizations discussed in the previous section fit into the ab-
stract framework, take C to be the homotopy category of simply connected
spaces, i.e., the category of all simply connected spaces and continuous maps
with the weak homotopy equivalences formally inverted. This category is equiv-
alent to the category whose objects are all simply connected CW-complexes, and
where the set of morphisms from X to Y is the set [X,Y ] of homotopy classes of
continuous maps from X to Y . We takeW to be the class of rational homotopy
equivalences. Theorem 4.7 says that an object in C is Q-local, in the sense of
Definition 4.5, if and only if it is W-local in the sense of Definition 4.11.

Remark 4.15. Let P be a set of prime numbers. Everything we did in in this
section works equally well if one makes the following replacements.

• Q is replaced by Z[P−1].

• ‘Torsion group’ is replaced by ’torsion group with torsion relatively prime
to all p 6∈ P .’

• ‘Uniquely divisible’ is replaced by ‘uniquely p-divisible for all p ∈ P ’.

If P is the set of all primes then we of course recover the rational setting. If P
is the set of all primes except a given one p, then it is common to denote Z[P−1]
by Z(p).
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5 Rational cohomology of Eilenberg-Mac Lane
spaces and rational homotopy groups of spheres

5.1 Rational cohomology of Eilenberg-Mac Lane spaces

Theorem 5.1. The rational cohomology algebra of an Eilenberg-Mac Lane space
H∗(K(Z, n); Q) is a free graded commutative algebra on the class x, i.e., a poly-
nomial algebra Q[x] if n is even and an exterior algebra E(x) if n is odd.

Proof. The proof is by induction on n. For n = 1 we have that K(Z, 1) = S1

and clearly H∗(S1; Q) is an exterior algebra on a generator of degree 1. For even
n ≥ 2, consider the path-loop fibration

ΩK(Z, n)→ PK(Z, n)→ K(Z, n).

By induction, the rational cohomology of ΩK(Z, n) ' K(Z, n−1) is an exterior
algebra on a generator x of degree n− 1. The rational Serre spectral sequence
of the fibration has E2-term

Ep,q2 = Hp(K(Z, n); Q)⊗Hq(K(Z, n− 1); Q),

and since PK(Z, n) is contractible, Ep,q∞ = 0 for (p, q) 6= (0, 0). Since Ep,q2 = 0
for q 6= 0, n− 1, the only possible non-zero differential is dn : Ep,n−1

n → Ep+n,0n .
Hence, E2 = E3 = · · · = En, and for every p there is an exact sequence

0 // Ep,n−1
∞

// Ep,n−1
n

dn // Ep+n,0n
// Ep+n,0∞

// 0

Since Ep,q∞ = 0 for (p, q) 6= (0, 0), this shows that dn is an isomorphism. Con-
sider x ∈ En−1,0

n and let y = dn(x) ∈ E0,n
n = Hn(K(Z, n); Q). Then xy gen-

erates En,n−1
n , and since dn is a derivation, dn(xy) = dn(x)y = y2 generates

E2n,0
n . By induction, xyk generates Ekn,n−1

n whence dn(xyk) = yk+1 generates
H(k+1)n(K(Z, n); Q). Thus, H∗(K(Z, n); Q) is a polynomial algebra on y.

The proof for odd n is left to the reader as an exercise.

5.2 Rational homotopy groups of spheres

Theorem 5.2. If n is odd, then πk(Sn) is finite for k 6= n.

Proof. Let f : Sn → K(Z, n) represent a generator of

πn(K(Z, n)) ∼= [Sn,K(Z, n)] ∼= Hn(Sn) ∼= Z.

It follows from the Hurewicz theorem that the induced map in cohomology

f∗ : H∗(K(Z, n); Q)→ H∗(Sn; Q) (2)

is an isomorphism in dimension ∗ = n. If n is odd, then by the calculation in the
previous section, both sides of (2) are exterior algebras on a single generator
in degree n, so it follows that (2) is an isomorphism. Hence, f is a rational
homotopy equivalence, and Theorem 4.1 implies that

f∗ : π∗(Sn)⊗Q→ π∗(K(Z, n))⊗Q

is an isomorphism. Hence, πn(Sn)⊗Q = Q and πk(Sn)⊗Q = 0 for k 6= n. Since
πk(Sn) is finitely generated, this implies that πk(Sn) is finite for k 6= n.
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Theorem 5.3. If n is even, then πk(Sn) is finite for k 6= n, 2n− 1. The group
π2n−1(Sn) has rank one.

Proof. Let x denote a generator of Hn(K(Z, n)) ∼= Z, and let F be the homotopy
fiber of a map K(Z, n)→ K(Z, 2n) that represents the class

x2 ∈ H2n(K(Z, n)) = [K(Z, n),K(Z, 2n)].

As before, let f : Sn → K(Z, n) represent a generator. Since πnK(Z, 2n) = 0,
it follows that f factors through the homotopy fiber

F // K(Z, n) x2
// K(Z, 2n)

Sn

f

OO

'∗

88qqqqqqqqqqq
g

ccG
G

G
G

G

¿From the long exact sequence in homotopy

· · · → πk+1(K(Z, 2n))→ πk(F )→ πk(K(Z, n))→ πk(K(Z, 2n))→ · · ·

one deduces that πk(F ) = 0 for k 6= n, 2n − 1, and πn(F ) ∼= π2n−1(F ) ∼= Z.
Moreover, g∗ : πn(Sn)→ πn(F ) is an isomorphism, so by the Hurewicz theorem,
the map g∗ : H∗(F ; Q) → H∗(Sn; Q) is an isomorphism in degree n. If we can
prove that H∗(F ; Q) is an exterior algebra on the generator in degree n, then it
follows that g is a rational homotopy equivalence, and we are done.

Exercise 5.4. Let F denote the homotopy fiber of the map x2 : K(Z, n) →
K(Z, 2n). Prove that H∗(F ; Q) ∼= Q[x]/(x2) where x is a generator of degree n.

We get different answers for the cohomology algebra H∗(K(Z, n); Q) depend-
ing on whether n is even or odd. But these can be summarized by saying that
H∗(K(Z, n); Q) is a free graded commutative algebra on a generator of degree
n. We also get different answers for what π∗(Sn)⊗Q is depending on whether
n is even or odd. Is there a way of summarizing these? The answer is yes, and
to formulate this properly we need to introduce Whitehead products.

5.3 Whitehead products

The Whitehead product is a certain operation on the homotopy groups of a
space X,

[−,−] : πp(X)× πq(X)→ πp+q−1(X). (3)

It is defined by sending a pair of homotopy classes of maps

Sp
α→ X, Sq

β→ X,

to the homotopy class of the composite

Sp+q−1 wp,q→ Sp ∨ Sq α∨β→ X.

[α, β] = (α ∨ β) ◦ wp,q,

where the map
wp,q : Sp+q−1 → Sp ∨ Sq,
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called the universal Whitehead product, is constructed as follows. Represent the
sphere as a disk modulo its boundary; Sp = Dp/∂Dp. Consider the diagram

Dp ×Dq // Sp × Sq

Sp+q−1 ∼= ∂(Dp ×Dq)

OO

wp,q //___ Sp ∨ Sq

OO (4)

where the top map collapses the boundary of each disk factor to a point. The
dotted arrow exists, because the image of the boundary

∂(Dp ×Dq) = ∂Dp ×Dq ∪Dp × ∂Dq

under the collapsing map Dp ×Dq → Sp × Sq is contained in the wedge

Sp ∨ Sq = ∗ × Sq ∪ Sp × ∗ ⊂ Sp × Sq.

Alternative definition. If the classes α ∈ πp(X) and β ∈ πq(X) are repre-
sented by maps of pairs

f : (Dp, ∂Dp)→ (X, ∗), g : (Dq, ∂Dq)→ (X, ∗),

then the class [α, β] ∈ πp+q−1(X) is represented by the map

Sp+q−1 ∼= ∂(Dp ×Dq) = ∂Dp ×Dq ∪Dp × ∂Dq h→ X,

where

h(x, y) =
{
f(x), x ∈ Dp, y ∈ ∂Dq

g(y), x ∈ ∂Dp, y ∈ Dq

Exercise 5.5. Show that for p = q = 1, the Whitehead product π1(X) ×
π1(X) → π1(X) agrees with the commutator operation [α, β] = αβα−1β−1 in
the fundamental group.

Properties of the Whitehead product. The Whitehead product satisfies
the following identities. Let α ∈ πp(X), β ∈ πq(X) and γ ∈ πr(X), and assume
that p, q, r ≥ 2. Then

1. [−,−] : πp(X)× πq(X)→ πp+q−1(X) is bilinear if p, q ≥ 2.

2. [α, β] = (−1)pq[β, α].

3. (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)rq[[γ, α], β] = 0.

If X is an H-space, for instance a loop space, then the Whitehead product
is trivial in π∗(X). This generalizes the fact that the fundamental group π1(X)
is abelian if X is an H-space.

The Whitehead product is an unstable operation: if E : πp+q−1(X)→ πp+q(ΣX)
denotes the suspension homomorphism, then

E[α, β] = 0

for all α ∈ πp(X) and β ∈ πq(X).
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The Hopf invariant. Let n be an even positive integer. Consider a map
f : S2n−1 → Sn. Form the adjunction space Xf by attaching a 2n-cell along f ,
i.e., form a pushout

S2n−1

��

f // Sn

��
D2n // Xf .

The space Xf is a CW-complex with one cell each in dimensions 0, n and 2n.
Therefore, the integral cohomology has the form

H∗(Xf ) = Z⊕ Zx⊕ Zy

where x and y are generators of dimension n and 2n, respectively. We have that

x2 = H(f)y

for a certain integer H(f), and the cohomology ring is completely determined
by H(f). The integer H(f) is called the Hopf invariant of f .

It is a fact that the Hopf invariant defines a homomorphism

H : π2n−1(Sn)→ Z.

In particular, if H(f) 6= 0 then [f ] ∈ π2n−1(Sn) is not torsion, so [f ] will be a
generator of the rational homotopy group π2n−1(Sn)⊗Q ∼= Q.

Exercise 5.6. Let ι : Sn → Sn be the identity map of an even dimensional
sphere. In this exercise, we will prove that the Whitehead product

[ι, ι] : S2n−1 → Sn

has Hopf invariant ±2.

1. Let A ⊂ X and B ⊂ Y be subspaces. Prove that there is a pushout
diagram

X ×B
⋃
A×B A× Y //

��

X × Y

��
X/A ∨ Y/B // X/A× Y/B.

Conclude that the diagram (4) is a pushout diagram. (Thus, the universal
Whitehead product wp,q : Sp+q−1 → Sp ∨ Sq is an attaching map for the
(p+ q)-cell of Sp × Sq.)

2. Argue that there is a diagram

S2n−1
wn,n //

��

Sn ∨ Sn

��

∇ // Sn

��
Dn ×Dn // Sn × Sn

g // X[ι,ι]

(5)

where both squares are pushouts.
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3. The cohomology ring of Sn × Sn is given by

H∗(Sn × Sn) = Z⊕ Za⊕ Zb⊕ Zab,

where a and b are generator of degree n. Use the diagram (5) to argue
that the map

g∗ : H∗(X[ι,ι])→ H∗(Sn × Sn)

sends the generator x to a+ b and that it is an isomorphism in degree 2n.
Use this fact to prove that x2 = 2y in the cohomology ring of X[ι,ι].

Remark 5.7. The Whitehead product [ι, ι] has Hopf invariant 2 and for n 6=
2, 4, 8 the Z-summand in π2n−1(Sn) is generated by [ι, ι]. The Z-summands of
π3(S2), π7(S4) and π15(S8) are generated by the Hopf maps η. The relation
2η = [ι, ι] holds in these dimensions.

Whitehead algebras and graded Lie algebras.

Definition 5.8. A Whitehead algebra is a graded Q-vector space π∗ together
with a bilinear bracket

[−,−] : πp ⊗ πq → πp+q−1,

satisfying the following axioms: for α ∈ πp, β ∈ πq and γ ∈ πr,

1. (Symmetry) [α, β] = (−1)pq[β, α].

2. (Jacobi relation) (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)rq[[γ, α], β] = 0.

If X is a simply connected space, then the rational homotopy groups π∗(X)⊗
Q together with the Whitehead product is a Whitehead algebra.

Let us examine the free Whitehead algebra W[α] on a generator α of degree
n. If n is odd, then the symmetry condition says that

[α, α] = −[α, α],

which implies that [α, α] = 0. Hence,

W[α] = Qα

in this case. If n is even, then [α, α] 6= 0 in the free Whitehead algebra W[α],
but it is a consequence of the Jacobi relation that 3[[α, α], α] = 0. Thus,

W[α] = Qα⊕Q[α, α]

where [α, α] has degree 2n− 1. Thus, the Whitehead product allows us to sum-
marize our calculations of the rational homotopy groups of spheres as follows.

Theorem 5.9. The rational homotopy groups π∗(Sn)⊗Q is a free graded White-
head algebra generated by the class of the identity map ι.

Definition 5.10. A graded Lie algebra is a graded Q-vector space L∗ together
with a binary operation

[−,−] : Lp ⊗ Lq → Lp+q

such that for all x ∈ Lp, y ∈ Lq and z ∈ Lr, the following relations hold.
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1. (Anti-symmetry) [x, y] = −(−1)pq[y, x].

2. (Jacobi relation) (−1)pr[[x, y], z] + (−1)qp[[y, z], x] + (−1)rq[[z, x], y] = 0.

Exercise 5.11. Let L∗ be a graded Lie algebra. Set π∗ = sL∗, so that πp+1 =
Lp, and define a bracket πp+1 ⊗ πq+1 → πp+q+1 by the formula

[sx, sy] := (−1)ps[x, y]

for x ∈ Lp and y ∈ Lq. Prove that this makes π∗ into a Whitehead algebra.

6 Interlude: Simplicial objects

In this section, we will recall some basic facts from simplicial homotopy theory.
Proofs may be found in [8, 17].

6.1 Simplicial objects

Let ∆ be the category whose objects are the ordered sets [n] = {0, 1, . . . , n} for
n ≥ 0, and whose morphisms are all non-decreasing functions between these,
i.e., functions ϕ : [m]→ [n] such that ϕ(i) ≤ ϕ(i+ 1) for all i ∈ [m].

Definition 6.1. A simplicial object in category C is a functor

X : ∆op → C.

A morphism between simplicial objects is a natural transformation.

The category of simplicial objects in C is denoted C∆op

or sC. It is common
to use the notation Xn = X([n]) and ϕ∗ = X(ϕ).

The category ∆ is generated by the maps (for n ≥ 0)

di : [n− 1]→ [n], 0 ≤ i ≤ n,

si : [n+ 1]→ [n], 0 ≤ i ≤ n,

where di is the unique non-decreasing injective function whose image does not
contain i, and si is the unique non-decreasing surjective function with si(i) =
si(i+ 1) = i. These maps satisfy the following relations

djdi = didj−1, i < j

sjdi = disj−1, i < j

sidi = sidi+1 = 1

sjdi = di−1sj , i > j + 1

sjsi = sisj+1, i ≤ j.

This list of relations is complete in the sense that every relation that holds
between composites of si’s and di’s can be derived from it. Furthermore, the
si’s and the di’s are generators for the category ∆ in the sense that any morphism
in ∆ can be written as a composite of si’s and di’s. As a consequence, there
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is an alternative definition of a simplicial object X as a sequence of objects
X0, X1, . . ., in C together with maps for all n ≥ 0,

di : Xn → Xn−1, 0 ≤ i ≤ n,

si : Xn → Xn+1, 0 ≤ i ≤ n,

satisfying the simplicial identities

didj = dj−1di, i < j

disj = sj−1di, i < j

disi = di+1si = 1
disj = sjdi−1, i > j + 1
sisj = sj+1si, i ≤ j.

The map di is called the ‘ith face map’ and si is called the ‘ith degeneracy map’.
Elements of the set Xn are called n-simplices of X. For an n-simplex x, and

a morphism ϕ : [m]→ [n], we will sometimes write

x(ϕ(0), . . . , ϕ(m)), or xϕ(0)...ϕ(m),

for the m-simplex ϕ∗(x). For example, if x ∈ X2, then x012 = x, x02 = d1(x),
x0 = d1d2(x) etc.

6.2 Examples of simplicial sets

The singular simplicial set

The singular simplicial set, or singular complex, of a topological space T is the
simplicial set S•(T ) whose set of n-simplices is the set

Sn(T ) = HomTop(∆n, T )

of all continuous maps f : ∆n → T from the standard topological n-simplex

∆n =
{

(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1, t0 + . . .+ tn = 1
}
.

For a morphism ϕ : [m]→ [n] in ∆, we have a continuous map

ϕ∗ : ∆m → ∆n, ϕ∗(t0, . . . , tm) = (s0, . . . , sn),

defined by
si =

∑
j∈ϕ−1(j)

tj .

The structure map ϕ∗ : Sn(T )→ Sm(T ) is defined by ϕ∗(f) = f ◦ ϕ∗.

Simplicial sets from abstract simplicial complexes

Let K be an abstract simplicial complex on the vertices [r] = {0, 1, . . . , r}, i.e.,
K is a set of subsets of the set [r] closed under inclusions;

G ⊆ F ∈ K ⇒ G ∈ K.
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We can associate a simplicial set K• to K as follows:

Kn = {ψ : [n]→ [r] ∈ ∆ | im(ψ) ⊆ K} .

For ϕ : [m]→ [n], we define ϕ∗ : Kn → Km by ϕ∗(ψ) = ψ ◦ ϕ.
The standard simplicial r-simplex ∆[r] is the simplicial set associated to the

simplicial complex 2[r] consisting of all subsets of [r]. The boundary ∂∆[r] is
the simplicial set associated to the simplicial complex 2[r] \ [r].

Proposition 6.2. 1. Specifying a simplicial map f : ∆[n]→ X is equivalent
to specifying a simplex x ∈ Xn.

2. Specifying a simplicial map f : ∂∆[n] → X is equivalent to specifying a
collection of simplices

fi0...ik ∈ Xk,

for all 0 ≤ i0 < · · · < ik ≤ n where k < n, such that

dj(fi0...ik) = fi0...bij ...ik
for all 0 ≤ j ≤ k and all (i0, . . . , ik).

6.3 Geometric realization

Let X be a simplicial set. The geometric realization of X is the quotient space

|X| =
∐
n≥0

Xn ×∆n/ ∼,

where we make the identifications

(ϕ∗(x), t) ∼ (x, ϕ∗(t))

for all morphisms ϕ : [m]→ [n] in ∆, all n-simplices x ∈ Xn and all t ∈ ∆m.
The geometric realization is a functor |− | : sSet→ Top. It is left adjoint to

the singular simplicial set functor S• : Top → sSet, that is, there is a natural
bijection

Top(|X|, T ) ∼= sSet(X,S•(T )), (6)

for simplicial sets X and topological spaces T . In particular, geometric realiza-
tion preserves all colimits.

By plugging in X = S•(T ) in (6), we obtain the unit of the adjunction,
ηT : |S•(T )| → T . A fundamental result in simplicial homotopy theory is the
following.

Theorem 6.3. For a topological space T , the unit map

ηT : |S•(T )| ∼ // T

is a natural weak homotopy equivalence.

If one is interested in studying topological spaces up to weak homotopy
equivalence, then one might as well work with simplicial sets, because every
topological space can be recovered up to weak homotopy equivalence from its
singular simplicial set.

If K is an abstract simplicial complex, then the geometric realization of the
simplicial set |K•|, as defined above, is naturally homeomorphic to the usual
geometric realization of the simplicial complex K.
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6.4 The skeletal filtration

Let X be a simplicial set. The n-skeleton of X is the subcomplex X(n) ⊆ X
generated by all non-degenerate simplices of X of dimension at most n. This
gives a filtration

∅ = X(−1) ⊆ X(0) ⊆ X(1) ⊆ · · · ⊆
⋃
X(n) = X.

For every n ≥ 0, there is a pushout diagram∐
x ∂∆[n] //

��

X(n− 1)

��∐
x ∆[n] // X(n),

(7)

where the disjoint unions are over all non-degenerate n-simplices x of X. By
using the fact that geometric realizations commute with colimits, this can be
used to prove that |X| is a CW-complex.

We will say that X is n-dimensional if X = X(n). In other words, X
is n-dimensional if all simplices of dimension > n are degenerate. If X is n-
dimensional, then |X| is an n-dimensional CW-complex. For example, the sim-
plicial set ∆[n] is n-dimensional. The (n− 1)-skeleton of ∆[n] is the simplicial
set ∂∆[n].

6.5 Simplicial abelian groups

Let A be a simplicial abelian group, i.e., a simplicial object in the category Ab
of abelian groups. We can form a non-negatively graded chain complex

· · · → An
∂n→ An−1 → · · · → A1

∂1→ A0

by letting

∂n =
n∑
i=0

(−1)idi.

The simplicial identity didj = dj−1di for i < j ensures that ∂n−1∂n = 0. This
chain complex will be denoted A∗.

Definition 6.4. The normalized chain complex associated to a simplicial abelian
group A is the chain complex N∗(A) with

Nn(A) = An/Dn(A)

where Dn(A) ⊆ An is the subgroup generated by all elements of the form si(a)
for a ∈ An−1.

The projection A∗ → N∗(A) induces an isomorphism in homology.

Theorem 6.5 (Dold-Kan correspondence). The normalized chain complex func-
tor

N∗ : sAb→ Ch≥0(Z)

is an equivalence of categories.
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Theorem 6.6. Let A be a simplicial abelian group. For every point ∗ ∈ |A|
and every n ≥ 0, there is an isomorphism

πn(|A|, ∗) ∼= Hn(N∗(A)).

There is a functor Z : sSet → sAb which associates to a simplicial set X
the simplicial abelian group ZX whose group of n-simplices,

(ZX)n = ZXn,

is the free abelian group on Xn. We shall write C∗(X) = N∗ZX for the nor-
malized chains on X.

If T is a topological space, then C∗(S•(T )) is the singular chain complex of
T .

If K is an abstract simplicial complex, then C∗(K•) is isomorphic to the
usual chain complex associated to K.

If X and K are simplicial sets, then let X(K) denote the set of simplicial
maps from K to X. If A is a simplicial abelian group, then the set A(K) has
an abelian group structure by defining addition pointwise.

Proposition 6.7. The following are equivalent for a simplicial abelian group
A.

1. The restriction map A(K)→ A(L) is surjective for every inclusion L ⊂ K
of simplicial sets.

2. The restriction map A(∆[n])→ A(∂∆[n]) is surjective for every n ≥ 1.

3. The normalized chain complex N∗A has zero homology.

Proof. 1⇒ 2 is trivial.
2 ⇒ 3: Let a ∈ Nn−1A be a cycle in the normalized chain complex, i.e.,

an (n − 1)-simplex a ∈ An−1 such that dia = 0 for all i. We can specify a
map f : ∂∆[n]→ A by setting f1...n = a and fi0...ik = 0 for all other sequences
0 ≤ i0 < . . . < ik ≤ n with k < n. By 2 this map extends to f̂ : ∆[n]→ A. Let
b = f̂0...n. Then di(b) = 0 for all i > 0, so that b ∈ NnA, and moreover d0b = a,
which shows that a is a boundary in N∗A.

3⇒ 1: If A is a simplicial abelian group, then there is a natural bijection

sSet(X,A) ∼= Ch≥0(Z)(C∗(X), N∗A)

by the Dold-Kan correspondence. Thus, we need to show that for every inclusion
of simplicial sets L ⊂ K, every morphism of chain complexes

f : C∗(L)→ N∗A

extends to C∗(K). Now, morphisms of chain complexes C∗ → D∗ are precisely
zero-cycles of the chain complex Hom(C∗, D∗), so we need to show that the
restriction map

Z0 Hom(C∗(K), N∗A)→ Z0 Hom(C∗(L), N∗A) (8)

is surjective. The quotient C∗(K)/C∗(L) is a non-negatively graded chain com-
plex of free modules. Therefore, we get a short exact sequence

0→ Hom(C∗(K)/C∗(L), N∗A)→ Hom(C∗(K), N∗A)→ Hom(C∗(L), N∗A)→ 0.
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That C∗(K)/C∗(L) is free and bounded below also implies that the functor
Hom(C∗(K)/C∗(L),−) preserves quasi-isomorphisms. In particular, if N∗A has
zero homology, then so has Hom(C∗(K)/C∗(L), N∗A). It follows that the sur-
jective morphism of chain complexes

Hom(C∗(K), N∗A)→ Hom(C∗(L), N∗A)

is a quasi-isomorphism. The surjectivity of (8) then follows from the lemma
below.

Lemma 6.8. Let C∗ → D∗ be a surjective quasi-isomorphism of chain com-
plexes. Then Z0C∗ → Z0D∗ is surjective.

Proof. A zero-cycle in a chain complex C∗ is the same as a morphism of chain
complexes Z → C∗, where Z is viewed as a chain complex concentrated in
degree 0. Then surjectivity of Z0C∗ → Z0D∗ follows from the lifting property
of bounded below complexes of projective modules.

C∗

��
Z

>>~
~

~
~

// D∗

6.6 The Eilenberg-Zilber theorem

Let A and B be simplicial abelian groups. The tensor product A⊗B is defined
to be the simplicial abelian group with n-simplices

(A⊗B)n = An ⊗Bn.

We can take its associated normalized chain complex N∗(A⊗B). On the other
hand we can first form the normalized chain complexes of A and B , and then
take the tensor product of chain complexes N∗(A)⊗N∗(B). Recall that

(N∗(A)⊗N∗(B))n =
⊕
p+q=n

Np(A)⊗Nq(B).

In general, N∗(A⊗B) and N∗(A)⊗N∗(B) are not isomorphic. However, they
are naturally chain homotopy equivalent.

Theorem 6.9 (Eilenberg-Zilber theorem). There is a natural chain homotopy
equivalence

AW : N∗(A⊗B) ' // N∗(A)⊗N∗(B).

The map AW , called the Alexander-Whitney map, is defined by

AW (a⊗ b) =
n∑
i=0

a0...i ⊗ bi...n

for a ∈ An and b ∈ Bn.
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Corollary 6.10. Let T and U be topological spaces. There is a natural chain
homotopy equivalence

C∗(T × U) ' // C∗(T )⊗ C∗(U).

Proof. We apply the Eilenberg-Zilber theorem to the simplicial abelian groups
A = ZS•(T ) and B = ZS•(U), noting that A⊗B ∼= ZS•(T × U).

7 Cochain algebras

This section is based on [3] and [5, II.10].
Let k be a commutative ring. In what follows, everything will be a module

over k and tensor products will be taken over k etc.

Definition 7.1. A cochain algebra A∗ consists of

• A differential
A0 d→ A1 d→ A2 → · · · ,

• A product
Ap ⊗Aq → Ap+q, x⊗ y 7→ xy,

• A unit 1 ∈ A0,

subject to the following axioms:

1. (Associativity) (xy)z = x(yz).

2. (Unitality) 1x = x1 = x.

3. (Differential) d2 = 0.

4. (Leibniz rule) d(xy) = d(x)y + (−1)pxd(y).

A cochain algebra A∗ is called (graded) commutative if

xy = (−1)pqyx

for all x ∈ Ap and y ∈ Aq.

The Leibniz rule ensures that the cohomology H∗(A∗) = ker d/ im d inherits
a graded algebra structure from A∗.

A morphism of cochain algebras g : A∗ → B∗ is a collection of k-linear maps
gn : An → Bn that commute with differentials and products, and that preserve
the unit.

7.1 The normalized cochain algebra of a simplicial set

Let X be a simplicial set and let k be a commutative ring. The normalized
cochain algebra C∗(X; k) is defined by

Cn(X; k) = {f : Xn → k | f(degenerate) = 0} ,

the k-module of all functions from Xn to k that vanish on degenerate simplices.
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• The differential d : Cn(X; k)→ Cn+1(X; k) is defined by the formula

d(f)(x) =
n+1∑
i=0

(−1)i+nf(di(x)),

for x ∈ Xn+1.

• The product, known as the cup product,

^ : Cp(X; k)⊗ Cq(X; k)→ Cp+q(X; k),

is defined by the formula

(f ^ g)(x) = f(x0...p)g(xp...p+q),

for x ∈ Xp+q.

• The unit 1 ∈ C0(X; k) is the constant function X0 → k with value the
unit of k.

The reader should check that these definitions make C∗(X; k) into a cochain
algebra. In general, the cochain algebra C∗(X; k) is not graded commutative,
but it is commutative up to homotopy. There is a binary operation

^1 : Cp(X; k)⊗ Cq(X; k)→ Cp+q−1(X; k),

known as the cup-1-product which has the property that

f ^ g − (−1)pqg ^ f = d(f ^1 g) + d(f) ^1 g + (−1)pf ^1 d(g), (9)

for all f ∈ Cp(X; k) and all g ∈ Cq(X; k). The cup-1-product is a contracting
homotopy for the commutator of the cup product; it exhibits the cup product
as a homotopy commutative operation. If f and g are cocycles, then (9) shows
that f ^ g is cohomologous to (−1)pqg ^ f . In particular, this proves that the
induced product in the cohomology H∗(X; k) is graded commutative. Here is a
formula for the cup-1-product:

f ^1 g =
∑
i<j

±f(x0...ij...p+q−1)g(xi...j).

There is also a cup-i-product for every i ≥ 1. It is a binary operation

∪i : Cp(X; k)⊗ Cq(X; k)→ Cp+q−i(X; k).

The cup-i-products were introduced by Steenrod [24], and he used them to define
what are nowadays called the Steenrod operations. For k = F2, the Steenrod
operation

Sqi : Hp(X; F2)→ Hp+i(X; F2)

is defined by
Sqi[f ] = [f ∪p−i f ]

for p-cocycles f and 0 ≤ i ≤ p.

Remark 7.2. There are multivariable generalizations of the cup-i-products that
endow C∗(X; k) with the structure of an E∞-algebra, or a strongly homotopy
commutative algebra. This is the topic of a beautiful paper by McClure and
Smith [19].
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The problem of commutative cochains

The cohomology algebra of a simplicial set is graded commutative. It is therefore
natural to ask whether it is possible to find a graded commutative cochain
algebra A ∗(X) that depends functorially on X with the property that A ∗(X)
is weakly equivalent to C∗(X; k) as a cochain algebra.

This is not possible in general. For instance, if k = F2, the non-triviality
of the Steenrod operations is an obstruction to the existence of commutative
cochains. However, if k is a field of characteristic zero, there is no obstruction,
and it turns out that it is possible to find commutative cochains in this case.
In what follows, we will give an axiomatic characterization of when a cochain
algebra functor A ∗(X) is equivalent to C∗(X; k). Then we will describe Sulli-
van’s commutative cochain algebra of polynomial differential forms, which is a
solution to the commutative cochain algebra problem when k contains Q as a
subring.

7.2 Cochain algebra functors from simplicial cochains al-
gebras

Let A = A ∗• be a simplicial cochain algebra, i.e., a functor

A : ∆op → DGA.

There is a canonically associated contravariant functor

A ∗(−) : sSet→ DGA

determined by the two properties

• A ∗(∆[n]) = A ∗n .

• A (−) takes colimits to limits.

We define A p(X) to be the set of simplicial maps from X to the simplicial
abelian group A p

• . Concretely, a p-cochain f ∈ A p(X) consists of a collection
of p-cochains

fx ∈ A p
n ,

one for every n-simplex x ∈ Xn, that are compatible in the sense that

ϕ∗(fx) = fϕ∗(x)

for every morphism ϕ : [m] → [n] in ∆. The differential, product and unit are
defined pointwise;

d(f)x = d(fx),
(fg)x = fxgx,

1x = 1.

The construction A ∗(X) is functorial in both X and A . If Φ: A → B is
a morphism of simplicial cochain algebras, then for every simplicial set X there
is an induced morphism of cochain algebras

Φ(X) : A ∗(X)→ B∗(X)
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sending a cochain f = {fx}∈X to the cochain Φ(X)(f) = {Φ(X)(f)x = Φ(fx)}x∈X .
Given a morphism of simplicial sets g : X → Y , there is an induced morphism
of cochain algebras

g∗ : A ∗(Y )→ A ∗(X)

given by
g∗(f)x = fg(x).

Example: The normalized cochain algebra

The normalized cochain algebra, discussed in the previous section, arises from a
simplicial cochain algebra in the following way. Consider the simplicial cochain
algebra C ∗• with n-simplices

C ∗n = C∗(∆[n]; k),

the normalized cochain algebra on ∆[n]. Since C∗(−; k) takes colimits to limits,
it follows that

C ∗• (X) ∼= C∗(X; k)

for every simplicial set X.

7.3 Extendable cochain algebras

Theorem 7.3. The following are equivalent for a simplicial cochain algebra A .

1. The restriction map A ∗(K)→ A ∗(L) is surjective for every inclusion of
simplicial sets L ⊂ K.

2. The restriction map A ∗(∆[n])→ A ∗(∂∆[n]) is surjective for every n ≥ 0.

3. The homology groups of the normalized chain complex N∗(A
p
• ) are all

zero, for every p.

Proof. This is a direct consequence of Propostion 6.7.

Definition 7.4. A simplicial cochain algebra A is called extendable if the equiv-
alent conditions in Theorem 7.3 are satisfied.

As an example, the simplicial cochain algebra C ∗• , whose associated cochain
algebra is the normalized cochain algebra, is extendable. Indeed, given an in-
clusion of simplicial sets L ⊂ K, the restriction map

Cp(K; k)→ Cp(L; k)

is surjective for every p, because a normalized p-cochain f : Lp → k can be
extended to f̃ : Kp → k, e.g., by setting

f̃(x) =
{
f(x), x ∈ Lp,

0, x 6∈ Lp,

for x ∈ Kp.
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If A is a simplicial cochain algebra, then for an inclusion L ⊂ K of simplicial
sets, we define A (K,L) to be the kernel of the restriction map. Thus, if A is
extendable, then there is a short exact sequence of cochain complexes

0→ A ∗(K,L)→ A ∗(K)→ A ∗(L)→ 0.

This should be familiar; for A ∗(−) equal to the normalized cochain algebra,
this is what one uses to derive the basic properties of relative cohomology.

Definition 7.5. A simplicial cochain algebra A is said to satisfy the Poincaré
lemma if the unit map k → A ∗(∆[n]) is a quasi-isomorphism for every n ≥ 0.
In other words, A satisfies the Poincaré lemma if and only if

Hp(A ∗(∆[n])) =
{

k, p = 0
0, p > 0.

Clearly, the normalized cochain algebra C∗(−; k) satisfies the Poincaré lemma.

Lemma 7.6. Let A ∗ be a simplicial cochain algebra and X a simplicial set.
There is a natural isomorphism

A ∗(X(n), X(n− 1)) ∼=
∏
x

A ∗(∆[n], ∂∆[n]),

where the product is over all non-degenerate n-simplices x of X.

Proof. The functor A ∗(−) takes colimits to limits. When we apply it to the
diagram (7), we therefore obtain a pullback diagram

A ∗(X(n)) //

��

∏
x A ∗(∆[n])

��
A ∗(X(n− 1)) // ∏

x A ∗(∂∆[n]).

It follows that the kernels of the two vertical maps are isomorphic.

Proposition 7.7. The following are equivalent for a morphism Φ: A → B of
extendable simplicial cochain algebras.

1. The map Φn : An → Bn is a quasi-isomorphism for every n ≥ 0.

2. The map Φ(K) : A (K)→ B(K) is a quasi-isomorphism for every simpli-
cial set K.

Proof. ⇐: Plug in K = ∆[n].
⇒: For finite dimensional K: We will first prove that Φ(K) is a quasi-

isomorphism for all finite dimensional K by induction on the dimension. For K
of dimension −1, i.e., K = ∅, the statement is vacuous. Let n ≥ 0, and assume
by induction that Φ(L) is a quasi-isomorphism for all simplicial sets L of dimen-
sion < n. Let K be a simplicial set of dimension n, i.e., K = K(n). Since both
A and B are extendable, we have a commutative diagram with exact rows

0 // A ∗(K(n),K(n− 1)) //

��

A ∗(K(n)) //

��

A ∗(K(n− 1)) //

∼
��

0

0 // B∗(K(n),K(n− 1)) // B∗(K(n)) // B∗(K(n− 1)) // 0
(10)
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The right vertical map in (10) is a quasi-isomorphism by the induction hypoth-
esis. We want to prove that the middle map is a quasi-isomorphism. To do this,
it suffices to prove that the left map is a quasi-isomorphism, by the five lemma.
By Lemma 7.6, the left map is isomorphic to the product map∏

x

A ∗(∆[n], ∂∆[n])→
∏
x

B∗(∆[n], ∂∆[n]). (11)

Each component of this map appears to the left in the following diagram.

0 // A ∗(∆[n], ∂∆[n]) //

��

A ∗(∆[n]) //

∼
��

A ∗(∂∆[n])) //

∼
��

0

0 // B∗(∆[n], ∂∆[n]) // B∗(∆[n]) // B∗(∂∆[n]) // 0

In this diagram, the right map is a quasi-isomorphism by induction, and the
middle map is a quasi-isomorphism by hypothesis. It follows that the left vertical
map is a quasi-isomorphism. Hence (11) is a quasi-isomorphism as well. This
finishes the induction.

For arbitrary K: The skeletal filtration of K gives a morphism of towers of
chain complexes

· · · // A ∗(K(n))

∼
��

// A ∗(K(n− 1))

∼
��

// · · · // A ∗(K(0))

∼
��

· · · // B∗(K(n)) // B∗(K(n− 1)) // · · · // B∗(K(0))

where the vertical maps are quasi-isomorphisms by the first part of the proof.
Since K = ∪nK(n) and A ∗(−) takes colimits to limits, we have a natural
isomorphism A ∗(K) ∼= lim←−A ∗(K(n)). The claim follows from Lemma 7.8 be-
low.

Lemma 7.8. Let {f(n)} : {A(n)}n≥0 → {B(n)}n≥0 be a morphism of tow-
ers of chain complexes. If each component f(n) : A(n) → B(n) is a quasi-
isomorphism, then the induced map lim←−A(n)→ lim←−B(n) is a quasi-isomorphism.

Tensor products of simplicial cochain algebras

The tensor product A ⊗B of two simplicial cochain algebras A and B is the
simplicial cochain algebra with

(A ⊗B)pn =
⊕
s+t=p

A s
n ⊗Bt

n

and the obvious structure.

Proposition 7.9. Let A and B be simplicial cochain algebras.

1. If A and B are extendable, then so is A ⊗B.

2. If A and B satisfy the Poincaré lemma, then so does A ⊗B.
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Proof. Suppose that A and B are extendable. To prove that A ⊗B is extend-
able, we will use the third characterization from Theorem 7.3. The normalized
cochain functor N∗ commutes with direct sums, so for every p we have

N∗((A ⊗B)p•) ∼=
⊕
s+t=p

N∗(A s
• ⊗Bt

•).

By the Eilenberg-Zilber theorem, there is a chain homotopy equivalence

N∗(A s
• ⊗Bt

•)
'→ N∗(A s

• )⊗N∗(Bt
•).

Since A and B are extendable, the chain complex to the right has zero homol-
ogy. This proves the first claim.

Next, suppose that A and B satisfy the Poincaré lemma. Then by the
Künneth theorem

H∗((A ⊗B)(∆[n])) = H∗(An ⊗Bn)
∼= H∗(An)⊗H∗(Bn).

This cochain complex has the correct cohomology.

Theorem 7.10. If A and B are extendable simplicial cochain algebras that sat-
isfy the Poincaré lemma, then there are natural quasi-isomorphisms of cochain
algebras

A ∗(X) ∼ // (A ⊗B)∗(X) B∗(X)∼oo

for every simplicial set X. In particular, there is a natural isomorphism of
graded algebras

H∗(A ∗(X)) ∼= H∗(B∗(X)).

Proof. There are natural morphisms of simplicial cochain algebras

A ∗•
∼ // (A ⊗B)∗• B∗• .

∼oo

By Proposition 7.9, all simplicial cochain algebras above are extendable, so by
Proposition 7.7 it suffices to prove the claim for X = ∆[n]. This means that we
should prove that we have quasi-isomorphisms

A ∗n
∼ // A ∗n ⊗B∗n B∗n

∼oo

for every n. But this follows immediately since we know that A , B and A ⊗B
satisfy the Poincaré lemma.

7.4 The simplicial de Rham algebra

The simplicial de Rham algebra is the graded commutative simplicial cochain
algebra Ω∗• with n-simplices

Ω∗n =
k[t0, . . . , tn]⊗ Λ(dt0, . . . , dtn)

(t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn)
, |ti| = 0, |dti| = 1.
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This should be thought of as the cochain algebra of polynomial differential forms
on an n-simplex. The differential d : Ω∗n → Ω∗+1

n is determined by the formula

d(f) =
n∑
i=0

∂f

∂ti
dti,

for f ∈ k[t0, . . . , tn]/(
∑
i ti − 1), and the Leibniz rule. The simplicial structure

is described as follows: given a morphism ϕ : [m] → [n] in ∆, the morphism of
cochain algebras ϕ∗ : Ω∗n → Ω∗m is determined by

ϕ∗(ti) =
∑

j∈ϕ−1(i)

tj . (12)

Exercise 7.11. Check that (12) gives a well-defined morphism of cochain al-
gebras.

Proposition 7.12. The simplicial de Rham algebra Ω∗• satisfies the Poincaré
lemma if and only if the ground ring k is uniquely divisible as an abelian group
(i.e., Q ⊆ k).

Proof. There is an isomorphism of cochain algebras

Ω∗n ∼= k[t1, . . . , tn]⊗ Λ(dt1, . . . , dtn) ∼= (k[t]⊗ Λ(dt))⊗n,

for every n ≥ 0. By the Künneth theorem we have an isomorphism

H∗(Ω∗n) ∼= H∗(k[t]⊗ Λ(dt))⊗n.

Here is a picture of the cochain complex k[t]⊗ Λ(dt):

1 t

·1
��

t2

·2
��

t3

·3
��

t4

·4
��

· · ·

dt tdt t2dt t3dt · · ·

This picture shows that the cochain algebra k[t] ⊗ Λ(dt) has cohomology k
concentrated in degree 0 if and only if k ·m→ k is an isomorphism for allm > 0.

Proposition 7.13. The simplicial de Rham algebra Ω∗• is extendable.

Proof. By Theorem 7.3, it suffices to check that the normalized chain complex
N∗(Ω

p
•) has zero homology for every p. Let ω ∈ Nn(Ωp•) be an n-cycle. This

means that ω ∈ Ωpn is a p-cochain such that ∂i(ω) = 0 for all 0 ≤ i ≤ n. We
need to show that ω is a boundary, i.e., that there exists ν ∈ Ωpn+1 such that
∂i(ν) = 0 for 0 < i ≤ n and ∂0(ν) = ω. We claim that

ν :=
n+1∑
j=1

tjω(t1, . . . , tj−1, tj + t0, tj+1, . . . , tn+1)

does the trick. The verification is left to the reader.
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Theorem 7.14. If the ground ring k is uniquely divisible (i.e., Q ⊆ k), then
there are natural quasi-isomorphisms of cochain algebras

Ω∗(X) ∼ // (Ω⊗ C )∗(X) C∗(X; k)∼oo

for all simplicial sets X.

Proof. Under the stated hypothesis, both simplicial cochain algebras Ω∗• and
C ∗• are extendable and satisfy the Poincaré lemma, so the claim follows from
Theorem 7.10.

This solves the problem of finding commutative cochains over rings k that
contain Q as a subring.

8 Homotopy theory of commutative cochain al-
gebras

This section is based on material from [1] and [5].

8.1 Relative Sullivan algebras

Relative Sullivan algebras are the cochain algebra analogs of relative CW-
complexes. To define them, we first need to discuss the cochain analogs of
spheres and disks.

Spheres and disks

Let n be a positive integer.
Let S(n) denote the cochain algebra

S(n) = (Λx, dx = 0), |x| = n.

In other words, the underlying algebra of S(n) is the free graded commutative
algebra on a generator x of degree n, and the differential is zero.

Let D(n− 1) denote the cochain algebra

D(n− 1) = (Λ(x, sx), dx = 0, d(sx) = x), |x| = n, |sx| = n− 1.

Note that there is an obvious inclusion S(n) ⊂ D(n− 1) of cochain algebras.

Exercise 8.1. Prove that there are natural bijections

Homdga(S(n), A) ∼= Zn(A),

Homdga(D(n− 1), A) ∼= An−1,

for cochain algebras A.

It will be convenient to have a slightly more general construction. For a
graded vector space V , define cochain algebras

S(V ) = (Λ(V ), dv = 0), v ∈ V
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D(V ) = (Λ(V ⊕ sV ), d(v) = 0, d(sv) = v), v ∈ V
There is an inclusion of cochain algebras S(V ) ⊂ D(V ). If V is one-dimensional
and concentrated in degree n, then S(V ) = S(n) and D(V ) = D(n− 1). More
generally, if {xi}i∈I is a homogeneous basis for V , then

S(V ) ∼=
⊗
i∈I

S(|xi|), D(V ) ∼=
⊗
i∈I

D(|xi|).

Exercise 8.2. 1. Prove that there are natural bijections

Homdga(S(V ), A) ∼= Homk(V,Z∗(A)),

Homdga(D(V ), A) ∼= Homk(sV,A),

for graded vectors spaces V and cochain algebras A.

2. Prove that the unit map η : k → D(V ) is a quasi-isomorphism for every
graded vector space V if and only if Q ⊆ k.

Attaching generators to kill cocycles

Let A be a cochain algebra and let a ∈ An be an n-cocycle. We define a new
cochain algebra

A[y|dy = a]

as follows. The underlying algebra is the tensor product A⊗Λ(y), where y is a
generator of degree n− 1. The differential is determined by the formulas

d(b⊗ 1) = d(b)⊗ 1, d(1⊗ y) = a⊗ 1

and the Leibniz rule. We say that A[y|dy = a] is obtained from A by ‘adding
a generator y to kill the cocycle a’. Equivalently, A[y|dy = a] is obtained as a
pushout

S(n) a //

��

A

��
D(n− 1)

y // A[y|dy = a]

Definition 8.3. A relative Sullivan algebra is a pair of cochain algebras (X,A)
together with a filtration

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ X

such that X = ∪nXn and each Xn is obtained from Xn−1 by ‘attaching cells’.
This means that for each n ≥ 0, there is a graded vector space Vn and a pushout
diagram in the category of cochain algebras

S(Vn) //

��

Xn−1

��
D(Vn) // Xn.

A Sullivan algebra is a cochain algebra X such that the pair (X,k) (where
k includes into X by the unit map) admits the structure of a relative Sullivan
algebra.
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Example 8.4. • For every graded vector space V , the ‘sphere’ S(V ) is a
Sullivan algebra: there is a pushout diagram

S(s−1V ) //

��

k

��
D(s−1V ) // S(V ),

so we can take X−1 = k ⊂ X0 = S(V ) and V0 = s−1V .

• The ‘disk’ D(V ) is a Sullivan algebra. We can take the filtration k ⊂
S(V ) ⊂ D(V ), and V0 = s−1V , V1 = V .

• Let A be a cochain algebra and a ∈ An a cocycle. Then (A[y|dy = a], A)
is a relative Sullivan algebra.

If (X,A) is a relative Sullivan algebra, then it follows that there is an iso-
morphism of graded algebras X ∼= A⊗ Λ(sV ), where V = ⊕nVn. In particular,
if X is a Sullivan algebra, then the underlying algebra of X is a free graded
commutative algebra. The converse is false; the following exercise shows that
not every cochain algebra whose underlying algebra is free is a Sullivan algebra.

Exercise 8.5. Consider the cochain algebra

X = (Λ(x, y, z), dx = yz, dy = xz, dz = xy), |x| = |y| = |z| = 1.

Prove that X is not a Sullivan algebra.

Definition 8.6. Let f : A → B be a morphism of cochain algebras. A Sul-
livan model for f is a relative Sullivan algebra (X,A) together with a quasi-
isomorphism f̃ : X ∼→ B such that the following diagram commutes

A   

  @@@@@@@
f // B

X

ef∼
>>~~~~~~~

A Sullivan model for a cochain algebra B is a Sullivan model for the unit
map η : k → B, i.e., a Sullivan algebra X together with a quasi-isomorphism
η̃ : X ∼→ B.

The following theorem is a cochain algebra version of the relative CW ap-
proximation theorem (cf. [10, Proposition 4.13]).

Theorem 8.7. Let f : A → B be a morphism of cochain algebras such that
H0(A) ∼= H0(B) ∼= k and H1(f) : H1(A) → H1(B) is injective. Then there is a
Sullivan model (X,A) for f .

Proof.

Corollary 8.8. Every cochain algebra B with H0(B) ∼= k admits a Sullivan
model X.
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Exercise 8.9. Let x and z be generators of degree 2 and 4, respectively, and
consider the following morphism of cochain algebras:

f : Q[z]→ Q[x], z 7→ x2.

1. Construct explicitly a Sullivan model of f ,

Q[z]
!!

!!CCCCCCCC
f // Q[x]

X

ef∼
=={{{{{{{{

2. Calculate the cohomology algebra H∗(C), where C is the ‘homotopy cofiber’,
C = Q⊗Q[z] X.

Cofibrations

Definition 8.10. A morphism of cochain algebras i : A → X is called a cofi-
bration if in every commutative square of cochain algebras

A //

i

��

B

∼ π
����

X

λ

>>~
~

~
~

// C

with π a surjective quasi-isomorphism, there exists a morphism λ making the
diagram commute.

A cochain algebra X is called cofibrant if the unit map η : k → X is a
cofibration.

Theorem 8.11. If (X,A) is a relative Sullivan algebra, then the inclusion mor-
phism A → X is a cofibration. In particular, every Sullivan algebra X is cofi-
brant.

The proof of this theorem will be done in two steps. The first step is com-
pletely formal and uses no particular properties of cochain algebras.

Proposition 8.12. 1. Given a family of cofibrations ij : Aj → Xj the co-
product ⊗jAj → ⊗jXj is a cofibration.

2. Given a pushout diagram
A //

i

��

B

j

��
X // Y

if i is a cofibration, then so is j.

3. Given a sequence of maps

X0
i0 // X1

i1 // X2
i2 // · · ·

if every ij is a cofibration, then so is the induced map X0 → colimnXn.
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Proof. We will prove the second statement and leave the other two to the reader.
Let there be given a surjective quasi-isomorphism p : D → E and morphisms b
and y such that the right square below is commutative. Our task is then to find
a morphism µ as indicated such that p ◦ µ = y and µ ◦ j = b.

A
a //

i

��

B
b //

j

��

D

∼ p
����

X x
//

λ

77nnnnnnn
Y y

//
µ

>>~
~

~
~

E

Since i is a cofibration, we can find a morphism λ such that p ◦ λ = y ◦ x and
λ ◦ i = b ◦ a. The maps λ and b are maps from X and B to D that agree
when restricted to A, so by the universal property of the pushout there exists a
morphism µ such that µ◦j = b and µ◦x = λ. It remains to show that p◦µ = y.
But p ◦ µ and y are maps from the pushout Y to E such that (p ◦ µ)j = yj and
(p ◦ µ)x = yx. By the uniqueness part of the universal property of the pushout
it follows that p ◦ µ = y.

The second step is the following proposition.

Proposition 8.13. For every n, the inclusion morphism S(n) → D(n − 1) is
a cofibration.

Proof. Recall that S(n) = (Λx, dx = 0) and D(n − 1) = (Λ(x, y), dx = 0, dy =
x), where |x| = n and |y| = n− 1. Consider the lifting problem

S(n)
f //

��

B

π ∼
����

D(n− 1)

λ

;;w
w

w
w

w

g
// C

Since the underlying algebras of S(n) and D(n−1) are free, in order to construct
the lift λ, we only need to specify elements λ(x) ∈ Bn and λ(y) ∈ Bn−1 and
check that

dλ(x) = 0,
λ(x) = f(x),
dλ(y) = f(x),
πλ(y) = g(y).

We obviously have no choice but to set λ(x) := f(x). The element f(x) is a
cocycle because df(x) = f(dx) = 0. It remains to find an element λ(y) with the
desired properties. By commutativity of the square, πf(x) = g(x) = g(dy) =
d(gy), so [f(x)] ∈ ker Hn(π). But π is a quasi-isomorphism, so [f(x)] = 0,
i.e., f(x) = d(b) for some b ∈ Bn−1. The difference π(b) − g(y) is a cocycle,
because dπ(b) = π(db) = πf(x) = g(dy) = dg(y). Since Hn−1(π) is surjective,
we can find a cocycle b′ ∈ Bn−1 and a cochain c ∈ Cn−2 such that π(b′) =
π(b)− g(y) + d(c). Since π is surjective, we can find b′′ ∈ Bn−2 with π(b′′) = c.
Finally, if we define

λ(y) := b− b′ + db′′,

then one checks that πλ(y) = g(y) and dλ(y) = f(x), as required.
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Proof of Theorem 8.11. This follows from the definition of relative Sullivan al-
gebras, by applying Proposition 8.12 and Proposition 8.13.

Factorizations

Proposition 8.14. Every morphism of cochain algebras f : A → B can be
factored as

A ��

j

∼

��@@@@@@@
f // B

Y

p

>> >>~~~~~~~

where p is surjective and j is a split cofibration and a quasi-isomorphism.

Proof. Let V ⊆ B be a graded vector space that generates B as an algebra.
The inclusion V ⊆ B extends to a surjective morphism of cochain algebras
q : D(s−1V )→ B. We can take

A
j // A⊗D(s−1V )

p // B

as our factorization, where j is the inclusion a 7→ a ⊗ 1, and p is defined by
a ⊗ x 7→ f(a)q(x). Indeed, it is clear that (A ⊗ D(s−1V ), A) is a relative
Sullivan algebra, so j is a cofibration. Morover, if define σ : A⊗D(s−1V )→ A
by σ(a⊗ x) = ε(x)a, where ε : D(s−1V )→ k is the augmentation sending s−1V
to zero, then σ ◦ j = 1A, so that j is split. Finally, since k → D(s−1V ) is a
quasi-isomorphism, it follows that j is a quasi-isomorphism.

8.2 Mapping spaces and homotopy

In this section, we will introduce the notion of homotopy between morphisms
of cochain algebras, prove the uniqueness of Sullivan models up to homotopy
equivalence, and prove a cochain algebra version of the Whitehead theorem.

The set of path components of a simplicial set

Let X be a simplicial set. Define a relation ' on the set of 0-simplices X0 by
declaring that f ' g, for f, g ∈ X0, if there is a 1-simplex h ∈ X1 such that
d0(h) = g and d1(h) = f .

•f h // •g

In general, the relation ' is not an equivalence relation, but when it is we can
form the quotient

π0(X) = X0/ ' .

This set is called the set of path componets of X.

Simplicial mapping spaces for topological spaces

Let U and T be topological spaces. The (simplicial) mapping space map(U, T )
is defined to be the simplicial set with n-simplices

map(U, V )n = HomTop(U ×∆n, T ),
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the set of continuous maps U ×∆n → T , where ∆n is the standard topological
n-simplex. If ϕ : [m]→ [n] is a map in ∆, then

ϕ∗ : map(U, T )n → map(U, T )m

is defined by ϕ∗(f) = f ◦ (1× ϕ∗). Note that if we take U = ∗, then

map(∗, T ) = S•(T ),

the singular simplicial set associated to T .
A 1-simplex of map(U, T ) is a continuous map h : U × ∆1 → T , and its

0-faces are the continuous maps

d0(h), d1(h) : U → T

given by d0(h)(u) = h(u, 1) and d1(h)(u) = h(u, 0). Therefore, for 0-simplices
f, g in map(U, T ), i.e., continuous maps f, g : U → T , we have that f ' g as
0-simplices of the simplicial set map(U, T ) if and only if f is homotopic to g in
the usual sense. As should be familiar, homotopy between continuous maps is
an equivalence relation, and we can identify the set of path components of the
simplicial set map(U, T ) with the set of homotopy classes of continuous maps
from U to T ,

π0 map(U, T ) = [U, T ].

The notion of homotopy relative to a subspace can also be interpreted in the
simplicial language. Recall that if V ⊂ U is a subspace, and if we are given a
map k : V → T , then two maps f, g : U → T with f |V = g|V = k are said to be
homotopic rel. V if there is a map h : U × ∆1 → T such that h(u, 0) = f(u),
h(u, 1) = g(u) for all u ∈ U and h(v, t) = k(v) for all v ∈ V and all t ∈ ∆1.

Given a map k : V → T , we can define the relative mapping space mapV (U, T )
to be the pullback

mapV (U, T ) //

��

map(U, T )

(−)|V
��

∗ k // map(V, T )

Exercise 8.15. Check that the set of path components π0(mapV (U, T )) may
be identified with the set [U, T ]V of homotopy classes of maps rel. V .

Simplicial mapping spaces for cochain algebras

Definition 8.16. Let X and B be cochain algebras. The simplicial mapping
space map(X,B) is defined to be the simplicial set with n-simplices

map(X,B)n = Homdga(X,B ⊗ Ω∗n),

the set of morphisms of cochain algebras f : X → B ⊗ Ω∗n, where Ω∗• is the
simplicial de Rham algebra. For a morphisms ϕ : [m]→ [n] in ∆, the map

ϕ∗ : map(X,B)n → map(X,B)m

is defined by ϕ∗(f) = (1B ⊗ ϕ∗) ◦ f .
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There is an isomorphism

Ω∗1

∂0

��
∂1

��

∼= // Λ(t, dt)

ε0

��
ε1

��
Ω∗0

∼= // k

where ε0 and ε1 are the cochain algebra morphisms determined by ε0(t) = 0
and ε1(t) = 1, respectively. In particular, the set of 0-simplices of the simplicial
set map(X,B) may be identified with the set of morphisms of cochain algebras
from X to B. It also leads us to the following definition of homotopy between
morphisms.

Definition 8.17. Two morphisms of cochain algebras f, g : X → B are homo-
topic if there is a morphism of cochain algebras

h : X → B ⊗ Λ(t, dt)

such that h|t=0 = g and h|t=1 = f .

We now face the problem that homotopy between morphisms of cochain
algebras is not an equivalence relation in general. However, we have the following
theorem.

Theorem 8.18. If X is a cofibrant cochain algebra, then homotopy between
morphisms X → B is an equivalence relation.

This could be proved directly, but we prefer to derive this as a corollary to
a much more general theorem that we will prove later, Theorem 8.31.

We will also need the notion of relative homotopy.

Definition 8.19. Let i : A → X and k : A → B be morphisms of cochain
algebras. Given two morphisms f, g : X → B such that f ◦ i = g ◦ i = k, we
say that f is homotopic to g relative to A, written f ' g rel. A, if there is a
morphism of cochain algebras

h : X → B ⊗ Λ(t, dt)

such that h|t=0 = g and h|t=1 = f , and such that the restriction

h ◦ i : A→ B ⊗ Λ(t, dt)

is the ‘constant homotopy’ a 7→ k(a)⊗ 1.

As in the case of topological spaces, relative homotopy can be interpreted
simplicially. We define the relative mapping space mapA(X,B) by declaring the
following diagram to be a pullback

mapA(X,B) //

��

map(X,B)

i∗

��
∗ k // map(A,B)

(13)

The 0-simplices of mapA(X,B) are the morphisms f : X → B such that f◦i = k,
and a 1-simplex h ∈ mapA(X,B)1 with 0-faces d0(h) = f and d1(h) = g is
exactly a homotopy h : f ' g rel. A as in Definition 8.19
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Theorem 8.20 (‘Lifting theorem’). Let i : A → X be a cofibration of cochain
algebras. In every commutative square of cochain algebras

A

i

��

f // B

π ∼
��

X

λ

>>~
~

~
~ g // C

where π is a quasi-isomorphism, there exists a morphism λ : X → B such that

• λ ◦ i = f

• π ◦ λ ' g rel. A.

Moreover, any two such lifts λ are homotopic relative to A.

This will also be derived as a consequence of Theorem 8.31. As a corollary,
we obtain the uniqueness of Sullivan models up to homotopy equivalence.

Corollary 8.21. Any two Sullivan models of a morphism of cochain algebras
f : A→ B are homotopy equivalent relative to A.

Proof. Let (X,A) and (Y,A) be two Sullivan models for f . Then we can apply
the Lifting theorem to the following diagram four times:

A

��

// Y

µ
~~~

~
~

~
∼
��

X

λ

>>~
~

~
~
∼ // B

We apply the existence part twice to deduce the existence of λ and µ, and we use
the uniqueness up to homotopy twice to deduce λ◦µ ' 1Y rel. A and µ◦λ ' 1X
rel. A.

Interlude: Kan fibrations

We will need some more simplicial homotopy theory. The reader should consult
[8] or [17] for proofs.

Definition 8.22. Let p : X → Y and i : A→ B be morphisms in some category
C. We will say that ‘p has the right lifting property with respect to i’ or ‘i has
the left lifting property with respect to p’ if in every commutative square

A //

i

��

X

p

��
B

λ

>>~
~

~
~

// Y

there exists a morphism λ : B → X making both triangles commute.

For n ≥ 1 and 0 ≤ k ≤ n, let Λk[n] ⊂ ∆[n] denote the simplicial set
associated to the abstract simplicial complex 2[n]\{[n], [n]\{k}}. The simplicial
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set Λk[n] is called the ‘kth horn’. The terminology and the notation is explained
by the following picture of Λ1[2]:

1

��>>>>>>>

0

@@�������
2

Its underlying abstract simplicial complex is {∅, {0}, {1}, {2}, {0, 1}, {1, 2}}.

Definition 8.23. A simplicial map f : X → Y is called a weak equivalence if
the induced map on geometric realizations |f | : |X| → |Y | is a weak homotopy
equivalence, i.e., for every x ∈ |X| and every n ≥ 0, the map induced by f ,

πn(|X|, x)→ πn(Y, |f |(x)),

is a bijection.

Theorem 8.24. The following are equivalent for a simplicial map p : X → Y .

1. The map p has the right lifting property with respect to all inclusion maps
Λk[n] ↪→ ∆[n] for n ≥ 1 and 0 ≤ k ≤ n.

2. The map p has the right lifting property with respect to all inclusion maps
of simplicial sets i : L ↪→ K that are weak equivalences.

Definition 8.25. A simplicial map p : X → Y is called a Kan fibration if the
equivalent conditions in Theorem 8.24 are fulfilled. A simplicial set X is called
a Kan complex if the map X → ∗ is a Kan fibration.

Theorem 8.26. The following are equivalent for a simplicial map p : X → Y .

1. The map p is both a Kan fibration and a weak equivalence.

2. The map p has the right lifting property with respect to all inclusion maps
∂∆[n] ↪→ ∆[n] for n ≥ 0.

3. The map p has the right lifting property with respect to all inclusion maps
of simplicial sets i : L ↪→ K.

Definition 8.27. A simplicial map p : X → Y is called a trivial Kan fibration
if the equivalent conditions in Theorem 8.24 are fulfilled. A simplicial set X is
called a trivial Kan complex if the map X → ∗ is a Kan fibration.

Proposition 8.28. If X is a Kan complex, then the homotopy relation ' is an
equivalence relation on the set of 0-simplices X0.

Proof. (Reflexivity): Let f ∈ X0. The degenerate 1-simplex h = s0(f) is a
homotopy h : f ' f , because of the simplicial identities d0s0 = d1s0 = 1.

(Transitivity): Let h01 : f0 ' f1 and h12 : f1 ' f2. This data determines a
simplicial map τ : Λ1[2]→ X.

f1

h01

��???????

f0
d1(σ)

//_______

h12

??�������
f2
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Since X is a Kan complex, we can extend τ to a map σ : ∆[2] → X. The first
face d1(σ) is then a homotopy f0 ' f2.

(Symmetry): Let h : f ' g. By using the trivial homotopy s0(f) : f ' f , we
get a map Λ0[2] → X as indicated below. Since X is Kan, this extends to a
map σ : ∆[2]→ X, and d0(σ) is a homotopy g ' f .

g

d0(σ)

��=
=

=
=

f

h

@@�������

s0(f)
// f

Definition 8.29. A simplicial map p : X → Y is called a rational Kan fibration
if it has the right lifting property with respect to all inclusion maps of simplicial
sets i : L ↪→ K that induce an isomorphism in rational homology

i∗ : Hn(L; Q)
∼=→ Hn(K; Q)

for all n ≥ 0.
A simplicial set X is called a rational Kan complex if the map X → ∗ is a

rational Kan fibration.

Clearly, every rational Kan fibration is a Kan fibration, because every weak
homotopy equivalence induces an isomorphism in rational homology. In partic-
ular, every rational Kan complex is a Kan complex.

The following proposition is a consequence of the fact that (trivial/rational)
Kan fibrations are characterized by right lifting properties. The proof is dual
to the proof of the second statement of Proposition 8.12.

Proposition 8.30. Given a pullback diagram of simplicial sets,

X ′ //

p′

��

X

p

��
Y ′ // Y,

if p is a (trivial/rational) Kan fibration, then so is p′.

The fundamental theorem

Given morphisms of cochain algebras i : A→ X and π : B → C, the commuta-
tivity of the diagram

map(X,B)
π∗ //

i∗

��

map(X,C)

i∗

��
map(A,B)

π∗ // map(A,C)

yields a map

i ∗ π : map(X,B)→ map(A,B)×map(A,C) map(X,C).

The following is the fundamental theorem about simplicial mapping spaces.
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Theorem 8.31. Let i : A → X be a cofibration and π : B → C a surjection of
cochain algebras. Then the simplicial map

i ∗ π : map(X,B)→ map(A,B)×map(A,C) map(X,C)

is a rational Kan fibration. If, in addition, i or π is a quasi-isomorphism, then
i ∗ π is a weak equivalence.

The proof will be given in the next section. First we will derive some im-
portant consequences.

Corollary 8.32. 1. If i : A → X is a cofibration between cochain algebras,
then i∗ : map(X,B)→ map(A,B) is a rational Kan fibration.

2. If π : B → C is a surjective morphism of cochain algebras, and if X is
cofibrant, then π∗ : map(X,B)→ map(X,C) is a rational Kan fibration.

Proof. For the first statement, take C = 0 in Theorem 8.31. For the second
statement, take A = k.

Corollary 8.33. Let i : A → X and k : A → B be morphisms of cochain al-
gebras. If i is a cofibration, then the relative mapping space mapA(X,B) is a
rational Kan complex. In particular, homotopy rel. A is an equivalence relation
on the set of morphisms of cochain algebras from X to B under A.

Proof. Consider the pullback diagram (13) defining the relative mapping space
mapA(X,B). By the previous corollary, the map i∗ : map(X,B)→ map(A,B)
is a rational Kan fibration. Hence, by Proposition 8.30, the map mapA(X,B)→
∗ is a rational Kan fibration. Every rational Kan complex is a Kan complex, so
the statement about homotopy rel. A follows from Proposition 8.28

Proposition 8.34. Let i : A→ X be a cofibration. Given a quasi-isomorphism
π : B → C of cochain algebras, the induced map

π∗ : [X,B]A → [X,C]A

is a bijection.

Proof. If π is surjective: Consider the diagram

mapA(X,B)

���
�
�

// map(X,B)

i∗π
��

mapA(X,C)

��

//_____ P

��

// map(X,C)

i∗

��
∗ // map(A,B)

π∗
// map(A,C).

The right square is the pullback defining P := map(A,B)×map(A,C) map(X,C).
The two rectangles in the diagram are the pullbacks defining the relative map-
ping spaces mapA(X,B) and mapA(X,C). By general pullback yoga, it follows
that the two remaining squares are pullbacks. Since i is a cofibration and π is
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a surjective quasi-isomorphism, Theorem 8.31 says that i ∗ π is a rational Kan
fibration and a weak equivalence. In particular, the induced map

π∗ : π0(mapA(X,B))→ π0(mapA(X,C))

is a bijection.
For arbitrary π: As in Proposition 8.14 we can factor π as π = p ◦ j,

B π

∼ //
  

j

∼

  @@@@@@@ C

Y

p

∴∼
?? ??~~~~~~~

where j is a split cofibration and a quasi-isomorphism, and p is surjective. Since
π is a quasi-isomorphism, it follows that also p is a quasi-isomorphism. Hence,
p∗ is a bijection by the first part of the proof. By commutativity of the diagram

[X,B]A π∗
//

j∗ %%KKKKKKKKK
[X,C]A

[X,Y ]A

p∗

∼=
99sssssssss

we are done if we can prove that j∗ is a bijection. Let σ : Y → B be the splitting
of j, i.e., σ ◦ j = 1B . Then σ is necessarily a surjective quasi-isomorphism. By
the first part of the proof, σ∗ : [X,Y ]A → [X,B]A is a bijection. Since σ∗◦j∗ = 1,
it follows that j∗ is the inverse of σ∗, and in particular j∗ itself is a bijection.

The proof of the Lifting theorem for cochain algebras, Theorem 8.20, is now
complete.

Proof of Theorem 8.31

In view of the characterization of trivial and rational Kan fibrations in terms of
lifting properties (see Theorem 8.26 and Definition 8.29), Theorem 8.31 can be
reformulated as follows.

Theorem 8.35. Let i : A → X be a cofibration and π : B → C a surjection of
cochain algebras, and let j : L→ K be an inclusion of finite simplicial sets. The
following lifting problem in the category of simplicial sets

L

j

��

// map(X,B)

i∗π
��

K

55kkkkkkkkk // map(A,B)×map(A,C) map(X,C)

(14)

can be solved if p is a quasi-isomorphism, or i is a quasi-isomorphism, or j
induces an isomorphism in rational homology.

Proposition 8.36. Let A and B be cochain algebras, and let K be a simplicial
set. There is a natural simplicial map

ψ : Homdga(A,B ⊗ Ω∗(K))→ HomsSet(K,map(A,B)).

If K has finitely many non-degenerate simplices, or if B is of finite type, then
ψ is a bijection.
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Proof. Let f : A→ B ⊗ Ω∗(K) be a morphism of cochain algebras. We define

ψ(f)n : Kn → map(A,B)n = Homdga(A,B ⊗ Ω∗n)

as follows: Given an n-simplex x ∈ Kn, thought of as a simplicial map x : ∆[n]→
K, there is an induced morphism of cochain algebras

x∗ : Ω∗(K)→ Ω∗(∆[n]) = Ω∗n.

We define ψ(f)(x) to be the composite morphism of cochain algebras

A
f //

ψ(f)(x)
$$IIIIIIIIII B ⊗ Ω∗(K)

1⊗x∗

��
B ⊗ Ω∗n.

It is obvious that ψ(f) is a simplicial map, and that ψ is natural in A, B and
K.

The map ψ is evidently a bijection for K = ∆[n]. Since we work over a field,
all modules are flat and the tensor product functor B ⊗− preserves pullbacks.
Therefore, both the source and target of ψ take pushouts to pullbacks (in the K
variable). If K has finitely many non-degenerate simplices, then, as can be seen
by using the skeletal filtration, K is built from standard simplices by taking
iterated pushouts, so it follows that ψ is an isomorphism for all such K.

On the other hand, if B is of finite type, i.e., Bn is finite dimensional for every
n, then the functor B⊗− commutes with arbitrary limits. In this case, both the
source and target of ψ take arbitrary colimits to limits. Since every simplicial
set is a colimit of standard simplices, it follows that ψ is an isomorphism for all
simplicial sets K in this case.

Exercise 8.37. Use Proposition 8.36 to prove that the lifting problem (14) is
equivalent to the following lifting problem in the category of cochain algebras

A

i

��

// B ⊗ Ω∗(K)

π∗Ω∗(j)
��

X

55kkkkkkkkk // B ⊗ Ω∗(L)×C⊗Ω∗(L) C ⊗ Ω∗(K).

Proposition 8.38. If p : B → C and q : D → E are surjective morphisms of
cochain algebras, then the induced morphism

p ∗ q : B ⊗D → B ⊗ E ×C⊗E C ⊗D

is surjective. If in addition p or q is a quasi-isomorphism, then so is p ∗ q.

Proof. Let I = ker(p) and P = B⊗E×C⊗EC⊗D. Since k is a field, the functor
A⊗− is exact and preserves quasi-isomorphisms for every cochain complex A.
Since p is surjective, and since surjections are stable under pullbacks, there is a
commutative diagram with exact rows

0 // I ⊗ E // P //

��

C ⊗D //

��

0

0 // I ⊗ E // B ⊗ E // C ⊗ E // 0
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where we are allowed to equate the kernels because the right square is a pullback.
This explains the existence and exactness of the bottom row in the following
diagram:

0 // I ⊗D //

1⊗q
��

B ⊗D //

p∗q
��

C ⊗D // 0

0 // I ⊗ E // P // C ⊗D // 0

The left vertical arrow 1⊗ q is surjective because q is surjective. It then follows
from the snake lemma that p ∗ q is surjective. If q is a quasi-isomorphism, then
so is 1⊗ q, and it follows from the five lemma that p ∗ q is as well. A symmetric
argument shows that p ∗ q is a quasi-isomorphism if p is.

We can now complete the proof of Theorem 8.31.

Proposition 8.39. Let f, g : A → B be morphisms of cochain algebras. If f
and g are homotopic as morphisms of cochain algebras, then they are homotopic
as morphisms of cochain complexes. In particular, Hn(f) = Hn(g) for all n.

Proof. Let h : A→ B ⊗Λ(t, dt) be a homotopy from f to g, i.e., a morphism of
cochain algebras such that ε0◦h = g and ε1◦h = f , where ε0, ε1 : B⊗Λ(t, dt)→ B
are the morphisms of cochain algebras determined by ε1(1⊗ t) = 1, ε0(1⊗ t) = 0
and εi(b ⊗ 1) = b. Let I ⊂ Λ(t, dt) be the dg ideal generated by t(t − 1). The
morphisms ε0 and ε1 factor as

B ⊗ Λ(t, dt)

p
((PPPPPPPPPPPP

εi // B

B ⊗ Λ(t, dt)/I

εi

99sssssssssss

where p is the quotient map. We will prove that the morphisms ε0 and ε1
are chain homotopic. Then it will follow that g = ε0ph is chain homotopic to
f = ε1ph. As a graded vector space, the quotient Λ(t, dt)/I has basis 1 − t, t,
dt. Hence, an n-cochain b of B ⊗ Λ(t, dt)/I can be written uniquely as

b = b0(1− t) + b1t+ cdt

where b0, b1 ∈ Bn and c ∈ Bn−1. Clearly, εi(b) = bi for i = 0, 1. Let us define a
chain homotopy k : B ⊗ Λ(t, dt)→ B by

k(b) := (−1)nc,

for b an n-cochain as above. We claim that

ε0 − ε1 = kd+ dk.

We leave the verification to the reader.

8.3 Spatial realization

Definition 8.40. Let A be a commutative cochain algebra. The spatial real-
ization of A is the simplicial set

〈A〉 := map(A,k) = Homdga(A,Ω∗•).
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Exercise 8.41. Let C and D be categories. A contravariant adjunction between
C and D consists of a pair of contravariant functors

C
F //
D

G
oo

together with a natural bijection

ψ : HomD(X,FY )
∼=→ HomC(Y,GX)

for objects X in D and Y in C.

1. Given a contravariant adjunction as above, let ηY := ψ(1FY ) : Y → GFY .
For a morphism f : X → GY in C, prove that the diagram

Y

ηY ""EEEEEEEE
ψ(f) // GX

GFY

Gf

;;vvvvvvvvv

commutes.

2. Prove that F and G take arbitrary colimits to limits.

Proposition 8.36 implies (plug in B = k) that the de Rham algebra func-
tor Ω∗(−) and the spatial realization functor 〈−〉 are part of a contravariant
adjunction

sSet
Ω∗(−) //

CDGA.
〈−〉

oo (15)

In other words, there is a natural bijection

ψ : Homdga(A,Ω∗(K))
∼=→ HomsSet(K, 〈A〉). (16)

for commutative cochain algebras A and simplicial sets K. We note the following
properties of this adjunction:

1. The contravariant functor Ω∗(−) : sSet → CDGA takes rational homo-
topy equivalences to quasi-isomorphisms, and it takes inclusions of sim-
plicial sets to surjections of cochain algebras.

2. The contravariant functor 〈−〉 : CDGA → sSet takes cofibrations of
cochain algebras to rational Kan fibrations and it takes trivial cofibra-
tions to trivial fibrations.

Next, we will investigate to what extent homotopies are preserved by the
functors Ω∗(−), 〈−〉, and by the bijection (16).

Lemma 8.42. Let f, g : A → B be morphisms of cochain algebras. If f and g
are homotopic, then the simplicial maps 〈f〉, 〈g〉 : 〈B〉 → 〈A〉 are homotopic.
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Proof. The isomorphism Λ(t, dt)
∼=→ Ω∗(∆[1]) corresponds to a map j : ∆[1] →

〈Λ(t, dt)〉 under the bijection (16). If h : A→ B⊗Λ(t, dt) is a homotopy between
f and g, then we get a simplicial homotopy 〈B〉 ×∆[1]→ 〈A〉 between 〈f〉 and
〈g〉 by taking the following composite:

〈B〉 ×∆[1]
1×j→ 〈B〉 × 〈Λ(t, dt)〉

∼=→ 〈B ⊗ Λ(t, dt)〉 〈h〉→ 〈A〉.

The isomorphism in the middle comes from the fact that 〈−〉 takes coproducts
to products.

Unfortunately, the de Rham algebra functor Ω∗(−) does not preserve homo-
topies, but it does so ‘in the eyes of cofibrant cochain algebras’ in the following
sense.

Lemma 8.43. Let f, g : K → L be maps of simplicial sets. If f and g are
homotopic, then there is an equality of the induced maps

f∗ = g∗ : [A,Ω∗(L)]→ [A,Ω∗(K)],

for every cofibrant commutative cochain algebra A.

Proof. That f is homotopic to g means that there is a commutative diagram of
simplicial maps

K
f

$$HHHHHHHHHH

d0

��
K ×∆[1] h // L

K

d1

OO

g

::vvvvvvvvvv

If we apply the functor [A,Ω∗(−)] to this diagram we get

[A,Ω∗(K)

[A,Ω∗(K ×∆[1])]

(d1)∗

��

(d0)∗

OO

[A,Ω∗(L)]
h∗
oo

g∗vvmmmmmmmmmmmm

f∗
hhQQQQQQQQQQQQ

[A,Ω∗(K)]

If p : K ×∆[1] → K denotes the projection, then clearly pd0 = pd1. Since p is
a weak equivalence and A is cofibrant, the map

p∗ : [A,Ω∗(K)]→ [A,Ω∗(K ×∆[1])]

is a bijection. In particular, we can cancel p∗ in the equality (d0)∗p∗ = (d1)∗p∗

and conclude that (d0)∗ = (d1)∗. Hence, f∗ = (d0)∗h∗ = (d1)∗h∗ = g∗.

Proposition 8.44. The bijection (16) induces a bijection

[A,Ω∗(K)] ∼= [K, 〈A〉]

for cofibrant cochain algebras A and arbitrary simplicial sets K.
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Proof. It suffices to check that, in (16), ψ and ψ−1 preserve homotopies. Let
us begin by checking that ψ preserves homotopies. Let f : A → Ω∗(K) be a
morphism of cochain algebras. By Exercise 8.41, there is a factorization of ψ(f)
as

K

ηK
##GGGGGGGGG
ψ(f) // 〈A〉

〈Ω∗(K)〉
〈f〉

::vvvvvvvvv

Therefore, it suffices to prove that 〈−〉 preserves homotopies. But this was done
in Lemma 8.42. Similarly, since A is assumed to be cofibrant, the corresponding
factorization of ψ−1(g) together with Lemma 8.43 proves that ψ−1 preserves
homotopies.

Corollary 8.45. For n ≥ 2, 〈S(n)〉 ' K(k, n).

Proof. If A is a cochain algebra with A0 ∼= k and Ak = 0 for k < n, then the
simplicial set 〈A〉 has a single k-simplex for k = 0, 1, . . . , n − 1. This follows
from the fact that the cochain algebra Ω∗k is zero in degrees ∗ > k. Hence,
the simplicial set 〈S(n)〉 has a unique k-simplex for k < n, and is in particular
n-connected. By Proposition 8.44,

πk〈S(n)〉 ∼= [Sk, 〈S(n)〉] ∼= [S(n),Ω∗(Sk)] ∼= Hn(Sk; k) =
{

k, k = n,
0, k 6= n.

This proves the claim.

Theorem 8.46. Let k = Q, and let A be a cofibrant commutative cochain
algebra such that H0(A) = Q, H1(A) = 0 and Hp(A) is finite dimensional for
every p. Then the map

ηA : A→ Ω∗〈A〉

is a quasi-isomorphism.

The proof of this theorem will be given in the next section.

Corollary 8.47. Let K be a simply connected simplicial set of finite Q-type,
and let f : A ∼→ Ω∗(K) be a Sullivan model for K. Then the adjoint map
ψ(f) : K → 〈A〉 is a Q-localization.

Proof. We need to check that 〈A〉 is Q-local and that ψ(f) : K → 〈A〉 is a
rational homotopy equivalence. Since A is cofibrant, the simplicial set 〈A〉 is
a rational Kan complex, so it is Q-local. Next, ψ(f) : K → 〈A〉 is a rational
homotopy equivalence if and only if Ω∗(ψ(f)) is a quasi-isomorphism, and that
this is the case follows from Theorem 8.46 together with commutativity of the
diagram

Ω∗〈A〉
Ω∗(ψ(f)) // Ω∗(K)

A

∼
ηA

bbEEEEEEEE f

∼
<<yyyyyyyyy
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Theorem 8.48. The spatial realization functor induces an equivalence of cate-
gories

〈−〉 : Ho(CDGAcof,f,1
Q ) '→ Ho(sSetf,1Q )

The left hand side denotes the homotopy category of cofibrant, simply connected,
finite type, commutative cochain algebras. The right hand side denotes the ho-
motopy category of simply connected rational Kan complexes of finite Q-type.

Proof. We should first remark that the spatial realization functor induces a
well-defined functor on homotopy categories because of Lemma 8.42.

Recall that a functor is an equivalence of categories if and only if it is fully
faithful and essentially surjective.

Fully faithfulness: Let A and B be cofibrant simply connected finite type
commutative cochain algebras. We need to show that the induced map [A,B]→
[〈B〉, 〈A〉] is a bijection. This follows from the following factorization

[A,B] ∴∼= //

(ηB)∗

∼=

%%KKKKKKKKKK
[〈B〉, 〈A〉]

[A,Ω∗〈B〉]

∼=
88qqqqqqqqqqq

The left map, which is induced by the unit ηB : B → Ω∗〈B〉, is a bijection
because of two things: First, since B satisfies the hypotheses of Theorem 8.46,
the map ηB is a quasi-isomorphism. Secondly, since A is cofibrant, the induced
map (ηB)∗ is a bijection by Proposition 8.34. The right map is the bijection
from Proposition 8.44.

Essential surjectivity: Every simply connected simplicial set K of finite Q-
type admits a Sullivan model A ∼→ Ω∗(K). The adjoint K → 〈A〉 is a Q-
localization by Corollary 8.47. If K is a rational Kan complex, then it is also
Q-local. Since every rational homotopy equivalence between Q-local spaces is a
homotopy equivalence, it follows that K → 〈A〉 is a homotopy equivalence, i.e.,
an isomorphism in the homotopy category. This proves essential surjectivity.

The essential ingredients in proving Theorem 8.46 are the calculation of
the rational cohomology of Eilenberg-Mac Lane spaces (Theorem 5.1) and the
Eilenberg-Moore theorem, to be discussed next.

8.4 The Eilenberg-Moore theorem

The Eilenberg-Moore theorem addresses the problem of calculating the coho-
mology of homotopy fibers, or more generally homotopy pullbacks.

Theorem 8.49 (Eilenberg-Moore theorem). Let k be a field, and write C∗(−) =
C∗(−; k) for brevity. Consider a pullback diagram of simplicial sets

X ×B E //

��

E

p

��
X

f // B

where p is a Kan fibration. If
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• X, E and B are connected and of finite k-type, and

• B is simply connected,

then the induced morphism of cochain complexes

C∗(X)⊗L
C∗(B) C

∗(E)→ C∗(X ×B E)

is a quasi-isomorphism. In particular, there is an isomorphism of graded vector
spaces over k

H∗(X ×B E) ∼= TorC
∗(B)
∗ (C∗(X), C∗(E)).

A proof of the Eilenberg-Moore theorem can be found in [18, Theorem 7.14].
We need to explain what the derived tensor product C∗(X)⊗L

C∗(B) C
∗(E) is.

For a right module M and a left module N over a differential graded algebra
A, the derived tensor product M ⊗L

A N is a certain cochain complex, functorial
in each variable, equipped with a natural map to the ordinary tensor product
ε : M ⊗L

A N → M ⊗A N . It is characterized up to quasi-isomorphism by the
following properties.

1. (Homotopy invariance) Given a morphism of dg-algebras ϕ : A→ A′ and
morphisms of A-modules f : MA → M ′A′ , g : AN → A′N

′, the induced
morphism

f ⊗L
ϕ g : M ⊗L

A N →M ′ ⊗L
A′ N

′

is a quasi-isomorphism if ϕ, f and g are.

2. (Flatness) The natural map ε : M⊗L
AN →M⊗AN is a quasi-isomorphism

if M or N is flat as an A-module.

Corollary 8.50. Under the hypotheses of Theorem 8.49, if k is a field of char-
acteristic zero, then the induced morphism of cochain complexes

Ω∗(X)⊗L
Ω∗(B) Ω∗(E)→ Ω∗(X ×B E)

is a quasi-isomorphism.

Proof. This is a consequence of the existence of a natural zig-zag of quasi-
isomorphisms of cochain algebras C∗(−; k) ∼ Ω∗(−) (Theorem 7.14) and the
homotopy invariance property of the derived tensor product.

Proposition 8.51. Let (X,A) be a relative Sullivan algebra. Then X is flat as
a left A-module.

Theorem 8.52. Under the hypotheses of Theorem 8.49, if k is a field of char-
acteristic zero, then the diagram

Ω∗(B) //

��

Ω∗(X)

��
Ω∗(E) // Ω∗(X ×B E)

is a homotopy pushout in the category of commutative cochain algebras.
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Proof. Let Ω∗(B)
i

� S
∼→ Ω∗(X) be a Sullivan model for the morphism Ω∗(f).

We need to show that the induced morphism of cochain algebras

q : Ω∗(E)⊗Ω∗(B) S → Ω∗(E ×B X)

is a quasi-isomorphism. This follows from contemplating the following diagram:

Ω∗(E)⊗L
Ω∗(B) S

∼ //

∼
��

Ω∗(E)⊗L
Ω∗(B) Ω∗(X)

∼
��

Ω∗(E)⊗Ω∗(B) S q

∴∼ // Ω∗(E ×B X)

The top horizontal map is a quasi-isomorphism by the homotopy invariance
property of the derived tensor product. The left vertical map is a quasi-
isomorphism because S is flat as an Ω∗(B)-module (Proposition 8.51). The
right vertical map is a quasi-isomorphism by Corollary 8.50.

An important special case of Theorem 8.52 is when X is point. In this case,
specifying a map f : X → B amounts to choosing a point b ∈ B, and the fiber
product X ×B E is simply the fiber p−1(b).

Theorem 8.53 (Fibration theorem). Let k be a field of characteristic zero,
and let F → E → B be a fibration of path connected spaces where B is simply
connected and E, B are of finite k-type. Then

Ω∗(B)→ Ω∗(E)→ Ω∗(F )

is a homotopy cofiber sequence of commutative cochain algebras.

We will now give the proof of Theorem 8.46.

Proof of Theorem 8.46. Let C denote the class of commutative cochain algebras
A for which ηA : A→ Ω∗〈A〉 is a quasi-isomorphism.

1. The initial cochain algebra Q belongs to C . In fact, the map ηQ is an
isomorphism because 〈Q〉 = ∗ and Ω∗(∗) = Q.

2. If f : A ∼→ B is a quasi-isomorphism between cofibrant cochain algebras,
then A belongs to C if and only if B does. Indeed, any quasi-isomorphism
between cofibrant cochain algebras is a homotopy equivalence (this fol-
lows easily from Proposition 8.34). Since the spatial realization functor
preserves homotopies (Lemma 8.42), it follows that the induced simpli-
cial map 〈f〉 : 〈B〉 → 〈A〉 is a homotopy equivalence. In particular, 〈f〉
induces an isomorphism in rational cohomology. Hence, the right vertical
map below is a quasi-isomorphism.

A

∼ f

��

ηA // Ω∗〈A〉

∼ Ω∗〈f〉
��

B
ηB // Ω∗〈B〉

This proves the claim.
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3. The disk D(V ) belongs to C for every graded vector space V . The disk
D(V ) is cofibrant and quasi-isomorphic to Q, so this follows by combining
the two previous statements.

4. The sphere S(n) belongs to C for every n ≥ 2. By Corollary 8.45,
〈S(n)〉 ' K(Q, n). The map K(Z, n) → K(Q, n) is a Q-localization and
in particular a rational cohomology isomorphism. By combining this with
Theorem 5.1 and Theorem 7.14, we conclude that the cohomology of the
cochain algebra Ω∗〈S(n)〉 is a free graded commutative algebra on a gen-
erator of degree n. Thus, the cohomology algebras of Ω∗〈S(n)〉 and S(n)
are abstractly isomorphic. To verify that ηS(n) : S(n)→ Ω∗〈S(n)〉 induces
an isomorphism in cohomology, it suffices to check that Hn(ηS(n)) is non-
trivial. (Indeed, any non-zero element of Hn generates the cohomology
algebra, and a morphism between free algebras on one generator is an
isomorphism if it maps a generator to a generator.) That Hn(ηS(n)) is
non-trivial follows from the fact that the homotopy class of ηS(n) corre-
sponds to the identity map of 〈S(n)〉 under the bijection

[S(n),Ω∗〈S(n)〉] ∼= [〈S(n)〉, 〈S(n)〉]

of Proposition 8.44.

5. Consider a pushout diagram of connected commutative cochain algebras of
finite type

A //

i

��

B

��
X // X ⊗A B

(17)

where (X,A) is a relative Sullivan algebra and A is simply connected. If
X, A, B belong to C , then so does X ⊗A B.

To prove this, we first apply the spatial realization functor to get a pullback
diagram of simplicial sets

〈X ⊗A B〉 //

��

〈X〉

〈i〉
��

〈B〉 // 〈A〉

The vertical maps are (rational) Kan fibrations, since i is a cofibration
(being the inclusion of a relative Sullivan algebra). Next, consider the
following diagram.

X ⊗L
A B

ηX⊗L
ηA
ηB

∼ //

∼
��

Ω∗〈X〉 ⊗L
Ω∗〈A〉 Ω∗〈B〉

∼
��

X ⊗A B ηX⊗AB

∴∼ // Ω∗〈X ⊗A B〉

The top horizontal map is a quasi-isomorphism by the homotopy invari-
ance property of the derived tensor product, and the hypothesis that X,
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A and B belong to C . The right vertical map is a quasi-isomorphism by
Corollary 8.50 (note that 〈X ⊗A B〉 ∼= 〈X〉 ×〈A〉 〈B〉). The left vertical
map is a quasi-isomorphism because X is flat as an A-module (Proposition
8.51). It follows that X ⊗A B belongs to C .

6. The sphere S(V ) belongs to C for every graded vector space V = V ≥2

of finite type. If {xi}i∈I is a homogeneous basis for V , then S(V ) ∼=
⊗i∈IS(|xi|). Thus, if V is finite dimensional, i.e., I is finite, then the
claim follows by induction, using 4 and 5 above. If V is of finite type,
then V ≤N is finite dimensional for each positive integer N , so by what we
just said S(V ≤N ) belongs to C for every N . Now fix k and choose some
integer N with N > k. The inclusion i : S(V ≤N )→ S(V ) induces an iso-
morphism in cohomology in degrees ≤ N , tautologically. Since 〈S(V )〉 '∏
`≥2K(V `, `), we also have that the map 〈i〉 : 〈S(V )〉 → 〈S(V ≤N )〉 in-

duces an isomorphism on π≤N . It follows from the (absolute) Whitehead
theorem (see Theorem 3.6) that 〈i〉 induces an isomorphism also on H<N .
In particular, both morphisms i and Ω∗〈i〉 induce an isomorphism on Hk.
Therefore, since S(V ≤N ) belongs to C , it follows from the commutativity
of the diagram

Hk S(V ≤N )
Hk(η

S(V≤N ))

∼= //

∼= Hk(i)

��

Hk Ω∗〈S(V ≤N )〉

Hk Ω∗〈i〉 ∼=
��

Hk S(V )
Hk(ηS(V ))

∴∼= // Hk Ω∗〈S(V )〉

that Hk(ηS(V )) is an isomorphism. The argument just given can be re-
peated for every k, so it follows that ηS(V ) is a quasi-isomorphism.

7. Every simply connected cofibrant commutative cochain algebra A with co-
homology of finite type belongs to C . This requires some facts about min-
imal Sullivan models to be proved in the next section. Under the stated
hypothesis, we can construct a minimal Sullivan model X ∼→ A such that
X0 = Q, X1 = 0 and Xp is finite dimensional for every p. By 2, it suffices
to check that X belongs to C . But X = ∪nXn where X−1 = Q and
Xn is obtained from Xn−1 by a pushout as in Definition 8.3. Since X is
of finite type, the graded vector spaces Vn are necessarily of finite type.
Therefore, it follows by induction, using 1, 3, 6 and 5, that Xn belongs
to C for every n. Since every component Xk is finite dimensional, it fol-
lows that Xk = Xk

n for n large enough. In particular, for a given k, if
we choose n large enough, then the inclusion Xn → X induces isomor-
phisms H≤k(Xn)

∼=→ H≤k(X) and π≤k+1〈X〉
∼=→ π≤k+1〈Xn〉 (use Exercise

8.59 for the latter statement). Arguing as in 6, we get that Hk(ηX) is
an isomorphism. Since this works for every k, it follows that ηX is a
quasi-isomorphism, so that X ∈ C .
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8.5 Minimal Sullivan models

The wordlength filtration

Let k be a field and let V be a graded vector space over k. The free graded
commutative algebra ΛV can be decomposed as

ΛV = Λ0V ⊕ Λ1V ⊕ Λ2V ⊕ · · ·

where ΛkV = (V ⊗k)Σk is the space of homogeneous graded commutative poly-
nomials of degree k. Note that Λ0V = k and Λ1V = V .

The ‘wordlength’ filtration of ΛV is the decreasing filtration

ΛV ⊃ Λ≥1V ⊃ Λ≥2V ⊃ · · ·

where
Λ≥kV = ΛkV ⊕ Λk+1V ⊕ · · · .

Any map f : ΛV → ΛW that is filtration preserving in the sense that

f(Λ≥kV ) ⊆ Λ≥kW

can be decomposed as
f = f0 + f1 + f2 + · · ·

where fr is homogeneous of degree r with respect to wordlength, i.e.,

fr(ΛkV ) ⊆ Λk+rW

for all k ≥ 0.
Clearly, for a composite of filtration preserving maps

ΛV
f→ ΛW

g→ ΛU

we have the relation
(gf)n =

∑
p+q=n

gpfq

for every n ≥ 0.

Minimal cochain algebras

Consider a cochain algebra of the form (ΛV, d), where V is a graded vector space
with V = V ≥1, i.e., V is concentrated in positive cohomological degrees. Then
the differential d is automatically filtration preserving. Indeed, since Λ0V = k
is concentrated in cohomological degree 0, we must have d(V ) ⊆ Λ≥1V . Then
it follows from the Leibniz rule that d(ΛkV ) ⊆ Λ≥kV for all k. Thus, we can
decompose d into wordlength homogeneous components

d = d0 + d1 + d2 + . . . , dr(ΛkV ) ⊆ Λk+rV.

The relation d2 = 0 is equivalent to the infinite series of relations

d0d0 = 0,
d0d1 + d1d0 = 0,

d0d2 + d1d1 + d2d0 = 0,
...
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In particular the restriction of d0 to Λ1V = V makes (V, d0) into a cochain
complex.

Definition 8.54. A cochain algebra of the form (ΛV, d) with V = V ≥1 is called
minimal if d0 = 0. Equivalently, (ΛV, d) is minimal if and only if d(V ) ⊆ Λ≥2V .

Let f : (ΛV, d)→ (ΛW, δ) be a morphism of cochain algebras with V = V ≥1

and W = W≥1. Then f is automatically filtration preserving (why?), and we
may decompose it as

f = f0 + f1 + . . . , fr(ΛkV ) ⊆ Λk+rW.

That f is a morphism of cochain algebras means that

µ(f ⊗ f) = fm, δf = fd f(1) = 1, (18)

where m : ΛV ⊗ ΛV → ΛV and µ : ΛW ⊗ ΛW → ΛW are the multiplication
maps. If we decompose the equations (18) into homogeneous parts, we get∑
p+q=n

µ(fp ⊗ fq) = fnm,
∑

p+q=n

δpfq =
∑

p+q=n

fpdq, fn(1) =
{

1, n = 0,
0, n > 0.

for every n ≥ 0. In particular, for n = 0, we get that f0 : (ΛV, d0) → (ΛW, δ0)
is a morphism of cochain algebras.

Proposition 8.55. Let V = V ≥2 and W = W≥1. If

f, g : (ΛV, d)→ (ΛW, δ)

are homotopic morphisms of commutative cochain algebras, then the induced
morphisms of cochain algebras

f0, g0 : (ΛV, d0)→ (ΛW, δ0)

are homotopic. In particular, the morphisms of cochain complexes f0, g0 : (V, d0)→
(W, δ0) are chain homotopic.

Proof. Let h : ΛV → ΛW ⊗ Λ(t, dt) be a cochain algebra homotopy between f
and g, i.e., a morphism of cochain algebras such that h|t=0 = g and h|t=1 = f .
By the assumption that V = V ≥2, and the fact that Λ(t, dt)≥2 = 0, it follows
that h is filtration preserving in the sense that

h(Λ≥kV ) ⊆ Λ≥kW ⊗ Λ(t, dt).

It follows that we may decompose h as h = h0 + h1 + · · · and it is easy to see
that h0 will be a cochain algebra homotopy between f0 and g0. It follows from
Proposition 8.39 that f0, g0 : (ΛV, d0) → (ΛW, δ0) are homotopic as morphisms
of cochain complexes. It is easy to see that the homotopy can be chosen to be
homogeneous with respect to wordlength. In particular, restricting attention to
wordlength 1, we get that f0, g0 : (V, d0)→ (W, δ0) are homotopic as morphisms
of cochain complexes.

Lemma 8.56. Let f : ΛV → ΛW be a filtration preserving morphism of graded
algebras. Then f is an isomorphism if and only if f0 : V → W is an isomor-
phism.
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Proof. First we make an easy observation: We have the decomposition

f = f0 + f1 + f2 + · · · , fr(ΛkV ) ⊆ Λk+rW.

We observed before that f0 : ΛV → ΛW is a morphism of algebras. As such,
it is induced by the linear map f0 : V → W . Therefore f0 : V → W is an
isomorphism if and only if the morphism of algebras f0 : ΛV → ΛW is an
isomorphism. Having observed this, we can proceed to the proof.
⇒: If f is an isomorphism with inverse g, then because of the relation

(gf)0 = g0f0, we have that f0 is an isomorphism with inverse g0.
⇐: Suppose that f0 : ΛV → ΛW is an isomorphism. We wish to find an

inverse of f , i.e., a linear map g : ΛW → ΛV that solves the equations

fg = 1, gf = 1.

If we decompose the first equation into homogeneous pieces

f0g0 = 1,
f0g1 + f1g0 = 0,

f0g2 + f1g1 + f2g0 = 0,
...

we can solve for gr inductively. Let g0 be the inverse of f0. Then let

g1 = −g0f1g0,

g2 = −g0f1g1 − g0f2g0,

...

Putting g = g0 + g1 + · · · , we get a solution to the equation fg = 1. As the
reader may check, it will also be a solution to gf = 1.

Theorem 8.57. If V = V ≥2 and W = W≥2, then any quasi-isomorphism
between minimal cochain algebras

f : (ΛV, d)→ (ΛW, δ)

is an isomorphism.

Proof. We will prove later that any minimal cochain algebra of the form (ΛV, d)
with V = V ≥2 is a Sullivan algebra. In particular both the source and target
of f are cofibrant commutative cochain algebras. Any quasi-isomorphism be-
tween cofibrant cochain algebras is a homotopy equivalence, so f is a homotopy
equivalence, and it follows from Proposition 8.55 that

f0 : (V, d0)→ (W, δ0)

is a homotopy equivalence of cochain complexes. By the minimality hypothesis,
d0 = 0 and δ0 = 0, so it follows that f0 must be an isomorphism. By Lemma
8.56, this implies that f itself must be an isomorphism.
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Theorem 8.58. Every commutative cochain algebra A with H0(A) = k and
H1(A) = 0 admits a unique, up to isomorphism, minimal Sullivan model

(ΛV, d) ∼→ A

with V = V ≥2. Furthermore, if H∗(A) is of finite type, then V is of finite type.

Proof. The algorithm described in the proof of Theorem 8.7 produces a min-
imal Sullivan model. Given two minimal Sullivan models (ΛV, d) ∼→ A and
(ΛW, δ) ∼→ A, it follows from Corollary 8.21 that (ΛV, d) and (ΛW, δ) are homo-
topy equivalent. Then it follows from Theorem 8.57 that (ΛV, d) and (ΛW, δ)
are isomorphic.

Exercise 8.59. Let A = (ΛV, d) be a minimal Sullivan algebra with V = V ≥2

of finite type. Prove that there is a bijection

πk(〈A〉) ∼= Homk(V k,k).

Corollary 8.60. Let X be a simply connected simplicial set of finite Q-type.

1. The space X admits a unique, up to isomorphism, minimal Sullivan model

MX = (ΛV, d) ∼→ Ω∗(X),

with V = V ≥2 a finite type graded Q-vector space.

2. The adjoint simplicial map X → 〈MX〉 is a Q-localization.

3. The rational homotopy groups of X can be calculated as

πk(X)⊗Q ∼= HomQ(V k,Q).

4. Two simply connected spaces X and Y of finite Q-type are rationally ho-
motopy equivalent if and only if their minimal Sullivan models MX and
MY are isomorphic as cochain algebras.

8.6 Sullivan models and Postnikov towers

Let X be a simply connected space of finite Q-type, and let A be the minimal
Sullivan model of X. Then A is of the form A = (ΛV, d) where V = V ≥2 is
a graded vector space of finite type. As we have seen, the rational homotopy
groups of X can be calculated from the minimal model by the formula

πk(X)⊗Q ∼= HomQ(V k,Q).

In fact, more is true: we can recover the whole rational Postnikov tower for X.
Since V = V ≥2, we have that

d(V n) ⊆ Λ(V <n)

for all n, for degree reasons. This implies that

An = (Λ(V ≥n), d)
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is a sub cochain algebra of A, and that there is a pushout diagram

S(V n[n+ 1]) d //

��

An−1

��
D(V n[n+ 1]) // An

(19)

for every n. (Here V n[n + 1] denotes the graded vector V n concentrated in
degree n+ 1.) Applying the spatial realization functor to the filtration

Q = A1 ⊂ A2 · · · ⊂ An−1 ⊂ An ⊂ · · · ⊂ ∪nAn = A,

we get a tower of fibrations

〈A〉 = lim←−〈An〉 → · · · → 〈An〉 → 〈An−1〉 → · · · → 〈A2〉 → 〈A1〉 = ∗. (20)

The pushout (19) gives rise to a pullback

〈An〉

��

// 〈D(V n[n+ 1]) ' ∗

��
〈An−1〉 // S(V n[n+ 1]) ' K((V n)∗, n+ 1)

which exhibits 〈An〉 → 〈An−1〉 as a principal fibration with fiber K((V n)∗, n).
Thus, the tower (20) is a Postnikov tower for 〈A〉. Since X → 〈A〉 is a Q-
localization, the tower (20) may be viewed as a rational Postnikov tower for
X.

9 Interlude: Model categories

Model categories were introduced by Quillen [21], and in fact Quillen’s rational
homotopy theory [20] was one of the first applications of model categories. For
a good introduction to model categories, we refer the reader to [4] and [16]. We
will recall the basic definitions here.

Definition 9.1. A model category is a category C together with three distin-
guished classes of maps,

• weak equivalences ∼→,

• fibrations �,

• cofibrations �,

subject to the following axioms:

1. Limits and colimits exist in C .

2. Given morphisms X
f→ Y

g→ Z, if two out of the maps f , g and gf are
weak equivalences, then so is the third.

3. If f is a retract of g and g is a weak equivalence, fibration, or a cofibration,
then so is f .
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4. The lifting problem
A //

i

��

X

p

��
B //

>>~
~

~
~

Y

can be solved whenever i is a cofibration, p is a fibration, and at least one
of i and p is a weak equivalence.

5. Every map f : X → Y can be factored in two ways:

X
f //

  

i   @@@@@@@ Y X
f //

  

j

∼

  BBBBBBBB Y

Z

p

∼
?? ??~~~~~~~

W

q

>> >>}}}}}}}}

The homotopy category of a model category C is the category Ho(C) obtained
from C by formally inverting all weak equivalences.

Much of what happened in the previous section can be summarized by the
following theorem.

Theorem 9.2. Let k be a field of characteristic zero. The category of com-
mutative cochain algebras CDGAk admits the structure of a model category
where

• the weak equivalences are the quasi-isomorphisms,

• the fibrations are the surjective morphisms,

• the cofibrations are the cofibrations of cochain algebras, as in Definition
8.10.

Definition 9.3. A Quillen adjunction between two model categories C and D
is an adjunction

C
F //
D

G
oo

such that the left adjoint F preserves cofibrations and the right adjoint G pre-
serves fibrations.

Every Quillen adjunction induces an adjunction between the associated ho-
motopy categories,

Ho(C)
LF //

Ho(D)
RG
oo

and the Quillen adjunction is called a Quillen equivalence if this induced ad-
junction is an equivalence of categories.

Sullivan did not use the language of model categories in [25]. Theorem 9.2
was first stated explicitly in the AMS memoir [1] by Bousfield and Gugenheim.
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10 Differential graded Lie algebras

Quillen’s model [20] for rational homotopy theory using differential graded Lie
algebras predates Sullivan’s [25], and it was one of the first applications of the
theory of model categories. This section is based on [20]. See also [27] and [5,
Part IV].

10.1 Differential graded Lie algebras

Let k be a field of characteristic zero.

Definition 10.1. A differential graded (dg) Lie algebra is a (potentially un-
bounded) chain complex of vector spaces over k,

· · · → Ln+1
d→ Ln

d→ Ln−1 → · · · ,

together with a binary operation

[−,−] : Lp ⊗ Lq → Lp+q,

called the ‘Lie bracket’, subject to the following axioms:

• (Anti-symmetry) [x, y] = −(−1)pq[y, x],

• (Leibniz rule) d[x, y] = [dx, y] + (−1)p[x, dy],

• (Jacobi identity) [x, [y, z]] = [[x, y], z] + (−1)pq[y, [x, z]],

for all x ∈ Lp, y ∈ Lq and z ∈ Lr.

A chain Lie algebra is a differential graded algebra L such that L = L≥0,
i.e., Ln = 0 for n < 0. A chain Lie algebra L is called connected if L = L≥1.

Example 10.2. 1. Every chain complex L can be given the structure of a
dg Lie algebra by letting the bracket be identically zero. Such dg Lie
algebras are called abelian.

2. Every associative dg algebra A may be viewed as a dg Lie algebra ALie

with the commutator Lie bracket, defined by

[a, b] = ab− (−1)pqba

for a ∈ Ap and b ∈ Aq. In particular, A is a commutative dg algebra if
and only if the dg Lie algebra ALie is abelian.

3. A derivation of degree p is a linear map θ : L∗ → L∗+p such that

θ[y, z] = [θ(y), z] + (−1)pq[y, θ(z)]

for all y ∈ Lq, z ∈ Lr. If θ and ρ are derivations of degree p and q,
respectively, then their commutator

[θ, ρ] = θ ◦ ρ− (−1)pqρ ◦ θ

is a derivation of degree p+ q. The collection of all derivations form a dg
Lie algebra DerL, with differential [d,−] and the commutator bracket.
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The Jacobi identity can be formulated as saying that for every x ∈ Lp, the
linear map

adx = [x,−] : Ln → Ln+p

is a derivation of degree p. In fact, the map

ad: L→ DerL, x 7→ adx,

is a morphism of dg Lie algebras.

The free Lie algebra

The forgetful functor from the category of dg Lie algebras to the category of
chain complexes admits a left adjoint L.

Ch
L //

DGL
forget
oo

For a chain complex V , the free Lie algebra L(V ) is characterized by the fol-
lowing universal property: There is a natural morphism of chain complexes
ηV : V → L(V ) such that every morphism of chain complexes V → L, into a dg
Lie algebra L, extends uniquely to a morphism of dg Lie algebras L(V )→ L.

V
ηV //

!!DDDDDDDDD L(V )

∃!
���
�
�

L

The free Lie algebra L(V ) may be constructed as follows. The tensor algebra
(free associative algebra on V )

T(V ) =
⊕
k≥0

V ⊗k

becomes a dg Lie algebra with the commutator bracket. The free Lie algebra
L(V ) can be defined as the sub dg Lie algebra of T(V )Lie generated by V ⊂
T(V ). In particular, if we set Lk(V ) = L(V ) ∩ V ⊗k, we have a direct sum
decomposition

L(V ) = L1(V )⊕ L2(V )⊕ · · · .

The subspace Lk(V ) consists of all elements of ‘bracket length’ k.

Products and coproducts

If L and M are dg Lie algebras, then the direct sum L ⊕M becomes a dg Lie
algebra with the coordinate-wise structure:

(L⊕M)n = Ln ⊕Mn

d(x, y) = (dx, dy)

[(x, y), (x′, y′)] = ([x, x′], [y, y′]).
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The direct sum L ⊕M together with the projection maps L ← L ⊕M → M
represent the product of L and M in the category of dg Lie algebras.

Coproducts, or free products, are harder to describe. The free product L∗M
can be constructed as the quotient

L ∗M = L(L⊕M)/I

where I is the ideal generated by elements of the form

[x, y]L − [x, y]L, [z, w]L − [z, w]M

for elements x, y ∈ L and z, w ∈ M , where [−,−]L denotes the Lie bracket in
the free Lie algebra L(L⊕M) and [−,−]L and [−,−]M denote the Lie brackets
of L and M , respectively.

10.2 The universal enveloping algebra and dg Hopf alge-
bras

The universal enveloping algebra

The functor that sends an associative dg algebra A to the dg Lie algebra ALie

(i.e. A viewed as a dg Lie algebra with the commutator bracket) admits a left
adjoint U .

DGL
U //

DGA
(−)Lie
oo

The universal enveloping algebra UL is the initial associative dg algebra that
receives a morphism from L. In other words, there is a natural morphism of dg
Lie algebras ηL : L→ (UL)Lie, such that for every dg algebra A and morphism
of dg Lie algebras L→ ALie, there is a unique morphism of dg algebras UL→ A
such that the diagram

L
ηL //

!!BBBBBBBB UL

∃!
���
�
�

A

commutes. The universal property determines UL up to canonical isomorphism.

Exercise 10.3. 1. Prove that there is a natural isomorphism UL(V ) ∼=
T(V ).

2. Prove that if L is an abelian Lie algebra, then UL ∼= ΛL, the free graded
commutative algebra.

3. Prove that there is a natural isomorphism of dg algebras

U(L⊕M) ∼= U(L)⊗ U(M)

for any dg Lie algebras L and M .

4. Prove that the universal enveloping algebra admits the presentation

UL ∼= T(L)/I,
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where I ⊂ T(L) is the two-sided dg ideal generated by all elements of the
form

x⊗ y − (−1)pqy ⊗ x− [x, y]

for x ∈ Lp and y ∈ Lq.

What kind of dg algebras can occur as universal enveloping algebras of dg Lie
algebras? To address this question, we note that UL has additional structure.
The diagonal ∆: L→ L⊕L, sending x to (x, x), and the zero map z : L→ 0 are
morphisms of dg Lie algebras. They make (L,∆, z) into a cocommutative coal-
gebra in the category of dg Lie algebras. Since the universal enveloping algebra
functor takes sums to tensor products, we automatically get that (UL,U∆, Uz)
is a cocommutative dg Hopf algebra.

Definition 10.4. A dg Hopf algebra is a chain complex H together with mor-
phisms of chain complexes

• Product µ : H ⊗H → H,

• Unit η : k→ H,

• Coproduct ∆: H → H ⊗H,

• Counit H → k,

such that (H,µ, η) is a dg associative algebra, (H,∆, η) is a dg coassociative
coalgebra, and ∆: H → H ⊗H and η : H → k are morphisms of dg algebras.

The dg Hopf algebra H is called cocommutative if T∆ = ∆, where T : H ⊗
H → H ⊗H is the isomorphism x⊗ y 7→ (−1)|x||y|y ⊗ x. Similarly, H is called
commutative if µT = µ.

Let H be a dg Hopf algebra. The primitives of H is the subspace

P(H) = {x ∈ H | ∆(x) = x⊗ 1 + 1⊗ x} ⊂ H.

Exercise 10.5. Show that P(H) ⊂ H is closed under the commutator Lie
bracket and the differential.

Thus, P : DGH → DGL is a functor from dg Hopf algebras to dg Lie
algebras.

Theorem 10.6 (Milnor-Moore). The functors U and P give an equivalence of
categories

DGL0

U //
DGH0,c

P
oo

between the categories of connected dg Lie algebras and connected cocommutative
dg Hopf algebras.

Remark 10.7. There is an extension of the Milnor-Moore theorem to fields of
positive characteristic. In characteristic 2 or 3, the definition of a dg Lie algebra
has to be adjusted slightly, see [23].
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The free graded commutative algebra functor Λ enjoys the property

Λ(V ⊕W ) ∼= Λ(V )⊕ Λ(W )

for chain complexes V and W . The diagonal ∆: V → V ⊕ V and the zero
map V → 0 make any chain complex V into a cocommutative coalgebra. It
follows that ΛV is a cocommutative coalgebra in the category of dg commutative
algebras, i.e., a commutative and cocommutative Hopf algebra.

Theorem 10.8 (Poncaré-Birkhoff-Witt). Let L be dg Lie algebra. The map

γ : ΛL→ UL

given by

γ(x1 . . . xk) =
1
k!

∑
σ∈Σk

±xσ1 . . . xσk

is a natural isomorphism of dg coalgebras.

We warn the reader that the Poincaré-Birkhoff-Witt isomorphism ΛL→ UL
is not an isomorphism of algebras, except in the trivial case when L is abelian.

Hopf algebras from topology

Let X be a simply connected space. Composition of loops gives the based loop
space ΩX the structure of a homotopy associative monoid. The monoid struc-
ture is compatible with the diagonal map ΩX → ΩX × ΩX, so it follows that
H∗(ΩX; Q) is a connected cocommutative graded Hopf algebra. The product on
H∗(ΩX; Q) is called the Pontryagin product. By the Milnor-Moore theorem, it
is isomorphic to the universal enveloping algebra of the Lie algebra of primitives.
The following theorem describes the primitives.

Theorem 10.9 (Cartan-Serre). The Hurewicz homomorphism π∗(ΩX)⊗Q→
H∗(ΩX; Q) induces an isomorphism of graded Lie algebras

π∗(ΩX)⊗Q
∼=→ P H∗(ΩX; Q).

By the Milnor-Moore theorem, it follows that the graded Lie algebra π∗(ΩX)⊗
Q determines and is determined by the graded cocommutative Hopf algebra
H∗(ΩX; Q).

Indecomposables and primitives

For a chain complex V , let

V ∨ = Homk(V,k)

denote the dual. There are natural chain maps

V → (V ∨)∨, V ∨ ⊗W∨ → (V ⊗W )∨.

In general, they are not isomorphisms, but they are if V and W are of finite
type.
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If C is a dg coalgebra with comultiplication ∆: C → C ⊗ C and counit
ε : C → k, then C∨ becomes a dg algebra with multiplication

µ : C∨ ⊗ C∨ → (C ⊗ C)∨ ∆∨→ C∨

and unit η : k ∼= k∨ ε∨→ C∨.
If A is a dg algebra of finite type, with multiplication µ : A ⊗ A → A, then

A∨ becomes a dg coalgebra with comultiplication

∆: A∨
µ∨→ (A⊗A)∨

∼=← A∨ ⊗A∨

and counit ε : A∨
η∨→ k∨ ∼= k.

Let ε : A → k be an augmented dg algebra with augmentation ideal A =
ker(ε). There is a splitting A ∼= k⊕A. The indecomposables of A is the quotient
chain complex

Q(A) = A/A ·A.

Thus, there is an exact sequence

A⊗A µ→ A→ Q(A)→ 0.

For example, if A is a cochain algebra of the form A = (ΛV, d), where V is a
graded vector space concentrated in positive cohomological degrees, then there
is a unique augmentation ε : A→ k (sending V to zero) and

Q(A) ∼= (V, d0).

Dually, if η : k→ C is a coaugmented dg coalgebra with C = coker(η), then
C = k⊕ C, and we have the reduced comultiplication

∆: C → C ⊗ C

defined by ∆(x) = ∆(x)−x⊗1−1⊗x. The primitives of C is the chain complex

P(C) = ker(∆) = {x ∈ C | ∆(x) = x⊗ 1 + 1⊗ x} .

Thus, there is a short exact sequence

0→ P(C)→ C
∆→ C ⊗ C

The dual C∨ is an augmented dg algebra, and we have the relation

Q(C∨) ∼= P(C)∨.

The Hurewicz homomorphism

In the following exercise, we will prove the Cartan-Serre theorem in the case
when X is of finite Q-type.

Exercise 10.10. Let X be a simply connected space of finite Q-type and let
(ΛV, d) be its minimal model.
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1. Prove that the map
Hk(ΛV, d)→ V k,

induced by the projection onto indecomposables (ΛV, d)→ (V, d0), is dual
to the rational Hurewicz homomorphism

πk(X)⊗Q→ Hk(X; Q).

2. Prove that there is a relative Sullivan model for the augmentation map
ε : (ΛV, d)→ Q of the form

(ΛV, d) //
''

i

''NNNNNNNNNNN
Q

(ΛV ⊗ ΛV ,D)

∼
99sssssssssss

where V
k

= V k+1, and such that for every v ∈ V ,

D(v ⊗ 1) = d(v)⊗ 1, D(1⊗ v) = v ⊗ 1 + z

for some z ∈ Λ≥1V ⊗ ΛV . It follows that the cofiber of i is isomorphic
to (ΛV , 0), with trivial differential. Use the fibration theorem to conclude
that the based loop space ΩX has minimal model (ΛV , 0).

3. Combine the two previous exercises to show that the dual of the rational
Hurewicz homomorphism

H∗(ΩX; Q)→ (π∗(ΩX)⊗Q)∨

is equivalent to the projection onto indecomposables

H∗(ΩX; Q) � QH∗(ΩX; Q).

Dualize to conclude that the rational Hurewicz homomorphism

π∗(ΩX)⊗Q→ H∗(ΩX; Q)

is injective with image the primitives P H∗(ΩX; Q).

4. Prove that the Hurewicz homomorphism

π∗(ΩX)⊗Q→ H∗(ΩX; Q)

is a morphism of Lie algebras, where the left hand side has the Samelson
Lie bracket, and the right hand side has the commutator Lie bracket.
Finish the proof of the Cartan-Serre theorem.

Example 10.11. Consider the sphere Sn where n ≥ 2. The graded Lie algebra
π∗(ΩSn)⊗Q is a free graded Lie algebra on a generator α of degree n− 1;

π∗(ΩSn)⊗Q ∼= L(α) =
{

〈α〉, n odd
〈α, [α, α]〉, n even.
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It follows that there is an isomorphism of graded Hopf algebras

H∗(ΩSn; Q) ∼= UL(α) ∼= T(α).

For n even, this example illustrates that the Poincaré-Birkhoff-Witt isomor-
phism

γ : ΛL(α)→ UL(α)

is not a morphism of algebras. The left hand side is a free graded commutative
algebra on two generators: x = α and y = [α, α] of degrees n − 1 and 2n − 2.
The relation x2 = 0 holds by graded commutativity as x has odd degree. But
γ(x) = α and α2 is non-zero in the tensor algebra T(α).

Example 10.12. Let H be the cochain Hopf algebra

(T (x)⊗ Λ(y), dx = 0, dy = x2), |x| = 3, |y| = 5.

The comultiplication is determined by declaring that x and y are primitive. The
dg Hopf algebra H is cocommutative but non-commutative: if it was graded
commutative, then we would have x2 = 0 as x is of odd degree.

The primitives of H is the dg Lie algebra

P(H) = 〈x, y, x2〉,

where dx = 0, dy = x2, d(x2) = 0 and where the only non-trivial Lie bracket
is given by [x, x] = 2x2. It follows from the Milnor-Moore theorem that H is
isomorphic to the universal enveloping algebra of P(H).

The indecomposables of H is the chain complex

Q(H) = 〈x, y〉

with zero differential. The cohomology of H is the commutative and cocommu-
tative Hopf algebra

H∗(H) = Λx.

In particular, H∗(QH) 6∼= QH∗(H). It follows that the dual H∨ is an example
of a commutative, non-cocommutative, chain Hopf algebra, whose homology is
cocommutative, but for which

H∗(PH∨) 6∼= P H∗(H∨).

10.3 Quillen’s dg Lie algebra

Combining the Cartan-Serre theorem and the Milnor-Moore theorem, we get an
isomorphism of graded Hopf algebras

H∗(ΩX; Q) ∼= Uπ∗(ΩX)⊗Q. (21)

One might get the idea that there should be chain level version of this statement.
There should exist a dg Lie algebra λ(X), depending functorially on X, with
the following properties.

1. There is a natural isomorphism of graded Lie algebras

H∗(λ(X)) ∼= π∗(ΩX)⊗Q.
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2. There is a natural equivalence of dg Hopf algebras

C∗(ΩX; Q) ∼ Uλ(X)

that induces the isomorphism (21) in homology.

One might be tempted to try λ(X) = PC∗(ΩX; Q). After all, the normalized
chains C∗(ΩX; Q) is a dg Hopf algebra (provided one chooses a strictly asso-
ciative model for the based loop space), so the space of primitives PC∗(ΩX; Q)
is a dg Lie algebra. The problem is that C∗(ΩX; Q) is not cocommutative, it
is only cocommutative up to homotopy (in fact it is an E∞-coalgebra). There-
fore, we have no guarantee that H∗(PC∗(ΩX; Q)) is isomorphic to P H∗(ΩX; Q)
(cf. Example 10.12).

Quillen’s solution to this problem is to work simplicially until the very end.
For a simplicial set X with trivial 1-skeleton, he defines

λ(X) = N∗PQ[GX]∧I .

Here GX denotes the Kan loop group of X; this is a simplicial group that models
the based loop space ΩX. Next, Q[GX]∧I denotes the group algebra completed
at the augmentation ideal — this is a simplicial complete Hopf algebra — and
PQ[GX]∧I denotes the simplicial Lie algebra of primitive elements. Finally, N∗ is
the normalized chains functor from simplicial vector spaces to chain complexes.
This functor takes simplicial Lie algebras to dg Lie algebras.

10.4 Twisting morphisms

Let C be a cocommutative coaugmented dg coalgebra and let L be a dg Lie
algebra. In this section, we will assume that C is simply connected in the sense
that C = k ⊕ C≥2, and we will assume that L is connected in the sense that
L = L≥1.

The chain complex Hom(C,L) with differential

∂(f) = dL ◦ f − (−1)|f |f ◦ dC

can be endowed with the structure of a dg Lie algebra with the convolution Lie
bracket, defined as follows. For f, g ∈ Hom(C,L), the bracket [f, g] ∈ Hom(C,L)
is the composite map

C
∆ // C ⊗ C

f⊗g // L⊗ L
[−,−] // L

Exercise 10.13. Check that the above makes (Hom(C,L), ∂, [−,−]) into a dg
Lie algebra.

Definition 10.14. A twisting morphism τ : C → L is a degree −1 map such
that the ‘Maurer-Cartan equation’

∂(τ) +
1
2

[τ, τ ] = 0

is fulfilled in Hom(C,L). We will let Tw(C,L) denote the set of twisting mor-
phisms from C to L.
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For a fixed C, we get a contravariant functor Tw(−, C) from dg Lie algebras
to sets, and for a fixed L, we have a covariant functor Tw(L,−) from the
category of coaugmented cocommutative dg coalgebras to sets.

Proposition 10.15. 1. For a fixed dg Lie algebra L, the functor Tw(−, L)
is representable; there is a cocommutative coaugmented dg coalgebra C (L)
and a universal twisting morphism τL : C (L) → L with the property that
for every twisting morphism τ : C → L, there is a unique morphism of
coaugmented dg coalgebras ψτ : C → C (L) such that the diagram

C (L)
τL

!!DDDDDDDD

C τ
//

ψτ

==z
z

z
z

L

is commutative.

2. For a fixed dg coalgebra C, the functor Tw(C,−) is corepresentable; there
is a dg Lie algebra L (C) and a universal twisting morphism τC : C →
L (C) with the property that for every twisting morphism τ : C → L,
there is a unique morphism of dg Lie algebras φτ : L (C) → L such that
the diagram

C
τ //

τC ""EEEEEEEE L

L (C)
φτ

<<y
y

y
y

is commutative.

In other words, the universal twisting morphisms give rise to natural bijec-
tions

Homdgl(L (C), L)
τ∗C

∼= // Tw(C,L) Homdgc(C,C (L))
∼=

(τL)∗

oo

Corollary 10.16. There is an adjunction

DGC
L //

DGL
C
oo (22)

between the category of dg Lie algebras and the category of coaugmented con-
nected cocommutative dg coalgebras.

Let
L (C) = (L(s−1C), δ = δ0 + δ1)

where the differential is the sum of two derivations δ0 and δ1 given by the
formulas

δ0(s−1x) = −s−1dC(x),

δ1(s−1x) = −1
2

∑
(−1)|sx

′
i|[s−1x′i, s

−1x′′i ],
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for x ∈ C, if ∆(x) =
∑
x′i ⊗ x′′i . The map τC : C → L (C) is defined by

τC(1) = 0 and τC(x) = s−1x for x ∈ C.
Let

C (L) = (ΛsL, d = d0 + d1),

where

d0(sx1 ∧ . . . ∧ sxk) = −
k∑
i=1

(−1)nisx1 ∧ . . . ∧ sdL(xi) ∧ . . . ∧ sxk

and

d1(sx1 ∧ . . . ∧ sxk) =
∑
i<j

(−1)|sxi|+nijs[xi, xj ] ∧ sx1 ∧ . . . ŝxi . . . ŝxj . . . ∧ sxk

The signs in the above formulas are given by

ni =
∑
j<i

|sxj ],

sx1 ∧ . . . ∧ sxk = (−1)nijsxi ∧ sxj ∧ sx1 ∧ . . . ŝxi . . . ŝxj . . . ∧ sxk.
The map τL : C (L)→ L is defined by τL(sx) = x and τL(sx1∧ . . .∧sxk) = 0

for k 6= 1.

Theorem 10.17. 1. The unit and counit morphisms

C → C L (C), L C (L)→ L

are quasi-isomorphisms.

2. The functors C and L preserve quasi-isomorphisms.

There are model category structures on DGL and DGC, and Theorem 10.17
proves that the adjunction

Principal H-bundles and the proof of Theorem 10.17

There are different ways of proving Theorem 10.17. We will outline Quillen’s
original proof [20], which uses the notion of principal H-bundles for dg Hopf
algebras H. In what follows, it will be useful to have the following dictionary
to support the intuition:

Algebra Topology
dg coalgebra C topological space X

dg Hopf algebra H topological group G

A right action of a dg Hopf algebra H on a dg coalgebra C is a morphism of dg
coalgebras C ⊗H → H, c⊗ h 7→ ch such that (ch)h′ = c(hh′) and c1 = c for all
c ∈ C and h, h′ ∈ H.

Definition 10.18. Let H be a dg Hopf algebra. A principal H-bundle is a
morphism of dg coalgebras

π : E → C

together with a right action of H on E such that, after forgetting differentials,
there is an isomorphism of graded coalgebras and H-modules E ∼= C ⊗H.
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Given a twisting morphism τ : C → L, there is an associated principal UL-
bundle

C ⊗τ UL→ C

whose underlying graded coalgebra is C⊗UL with the evident right UL-module
structure, but whose differential is

dτ = dC ⊗ 1 + 1⊗ dUL +∇τ ,

where ∇τ is defined as the composite

C ⊗ UL
∆C⊗1 // C ⊗ C ⊗ UL

1⊗ιτ⊗1// C ⊗ UL⊗ UL
1⊗µUL// C ⊗ UL.

Here ιτ is the composite of τ : C → L and the inclusion ι : L→ UL.

Exercise 10.19. Check that (dτ )2 = 0 precisely because of the Maurer-Cartan
equation for τ .

In particular, we have the universal bundles C (L)⊗τLUL and C⊗τC UL (C)
constructed using the universal twisting morphisms. There are two basic asser-
tions needed for the proof of Theorem 10.17:

1. The ‘total spaces’ of the universal bundles C (L)⊗τLUL and C⊗τCUL (C)
are contractible, i.e., quasi-isomorphic to k via the counit morphism.

2. Given a morphism between principal bundles

H //

f

��

E //

g

��

C

h

��
H ′ // E′ // C ′,

if two out of f, g, h are quasi-isomorphisms, then so is the third.

These assertions should not come as a surprise, in view of the analogy with prin-
cipal G-bundles, for G a topological group. The first assertion can be proved by
writing down an explicit formula for a contracting homotopy. Given a principal
H-bundle H → E → C, there is a spectral sequence of coalgebras

E2
p,q = Hp(C)⊗Hq(H)⇒ Hp+q(E),

and the second assertion follows from the comparison theorem for spectral se-
quences.

It is easy to derive Theorem 10.17 from the above assertions. Indeed, to prove
that the counit morphism εL : L C (L)→ L is a quasi-isomorphism, consider the
following morphism of principal bundles:

UL C (L)

UεL

��

// C (L)⊗τC(L) UL C (L) //

∼
��

C (L)

UL // C (L)⊗τL UL // C (L).

The middle vertical morphism is a quasi-isomorphism by the first assertion,
and it follows from the second assertion that UεL is a quasi-isomorphism.
The universal enveloping algebra functor reflects quasi-isomorphisms because
H∗(U(L)) ∼= U H∗(L), so it follows that εL is a quasi-isomorphism. The remain-
ing statements in Theorem 10.17 are proved in a similar manner.
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Model category structure

The category DGL of connected chain Lie algebras admits a model category
structure where

• The weak equivalences are the quasi-isomorphisms.

• The fibrations are the surjective morphisms.

• The cofibrations are those morphisms that have the left lifting property
with respect to all fibrations.

The category DGC of simply connected cocommutative dg coalgebras ad-
mits a model structure where

• The weak equivalences are the quasi-isomorphisms.

• The cofibrations are the injective morphisms.

• The fibrations are the morphisms that have the right lifting property with
respect to all cofibrations.

The adjunction

DGC
L //

DGL
C
oo (23)

is a Quillen adjunction of model categories. This means that the left adjoint
L preserves cofibrations and the right adjoint C preserves fibrations. Theorem
10.17 shows that the adjunction is a Quillen equivalence.

10.5 Cochain algebras vs. chain Lie algebras

If we restrict to finite type chain complexes, there is a contravariant equivalence

DGAf

(−)∨ //
DGCf

(−)∨
oo

between dg algebras of finite type and dg coalgebras of finite type. Composing
with the adjunction between chain Lie algebras and dg coalgebras, we get a
contravariant adjunction

CDGAf

L∗ //
DGLf

C∗
oo

between the categories of simply connected finite type commutative cochain
algebras and finite type connected chain Lie algebras.

Proposition 10.20. For every connected chain Lie algebra L of finite type, the
commutative cochain algebra C∗(L) is a simply connected Sullivan algebra.

Proof. If V is a graded vector space of finite type, then there is an isomorphism
Λ(V )∨ ∼= Λ(V ∨). It follows that C∗(L) is isomorphic to a cochain algebra of the
form (Λ(V ), d = d0 + d1), where V = (sL)∨ is concentrated in cohomological
degrees ≥ 2. It is easy to check that any cochain algebra of this form is a
Sullivan algebra.
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Definition 10.21. A dg Lie algebra L is a Lie model for a simply connected
space X if C∗(L) is a Sullivan model for X, i.e., there is a quasi-isomorphism
of cochain algebras C∗(L) ∼→ Ω∗(X).

Example 10.22. For n ≥ 2, the chain Lie algebra (L(α), δα = 0), where
|α| = n− 1, is a Lie model for the sphere Sn.

Let L be a dg Lie algebra and let α ∈ Ln−1 be a cycle. Then we can attach
a generator ξ of degree n to kill α. We let (L[ξ], δξ = α) be the dg Lie algebra
whose underlying graded Lie algebra is the free product L ∗ L(ξ), and whose
differential is determined by the requirement that δξ = α and that the inclusion
L→ L ∗ L(ξ) is a morphism of dg Lie algebras.

Theorem 10.23. Consider a cell attachment

Sn
f //

��

X

��
Dn+1 // X ∪f Dn+1

.

If L is a Lie model for X, and if α ∈ Ln−1 is a cycle representing the attaching
map f , then

(L[ξ], δξ = α)

is a Lie model for the adjunction space X ∪f Dn+1.

Proof. This follows from the fact that the cochain algebra functor C∗ : DGL→
CDGA takes homotopy pushouts to homotopy pullbacks, and the spatial re-
alization functor 〈−〉 : CDGA→ sSet takes homotopy pullbacks to homotopy
pushouts.

Using Theorem 10.23 iteratively, we can construct Lie models for any CW-
complex.

Example 10.24. Consider the complex projective plane CP2. The standard
cell decomposition has one cell each in dimensions 0, 2, 4. The attaching map
for the top cell is the Hopf map η : S3 → S2; there is a pushout diagram

S3
η //

��

S2

��
D4 // CP2

.

A Lie model for S2 is given by (L(ι), δι = 0), where ι has degree 1. We have the
relation 2η = [ι, ι] in π3(S2), where the right hand side denotes the Whitehead
product of the identity map of S2 with itself. Thus, the Hopf map is represented
by the cycle 1

2 [ι, ι] ∈ L(ι). It follows that

(L(ι, ξ), δι = 0, δξ =
1
2

[ι, ι])

is a Lie mode for CP2.
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Proposition 10.25. If A is a finite type simply connected cochain algebra model
for Ω∗(X), then L∗(A) is a Lie model for X.

Proof. It follows from Theorem 10.17 that the canonical morphism C∗L∗(A)→
A is a quasi-isomorphism. Hence C∗L∗(A) is a Sullivan model for A, and hence
also for any commutative cochain algebra quasi-isomorphic to A.

Example 10.26. Consider the complex projective space CPn. This space
is formal in the sense that Ω∗(CPn) is quasi-isomorphic to the cohomology
H∗(CPn; Q) ∼= Q[x]/(xn+1), |x| = 2, viewed as a cochain algebra with zero dif-
ferential. By Proposition 10.25, the chain Lie algebra L∗(Q[x]/(xn+1)) is a Lie
model for CPn. By expanding the definition, we see that this dg Lie algebra
admits the following explicit description:

(L(α1, α2, . . . , αn), δ), |αk| = 2k − 1,

where the differential is given by

δ(αk) =
1
2

∑
p+q=k

[αp, αq].

For n = 2, this recovers the model for CP2 constructed above.

10.6 Loop spaces and suspensions

Rational homotopy theory belongs to the realm of unstable homotopy theory.
A lot of information is lost when taking loops or suspensions.

Theorem 10.27. The following are equivalent for a simply connected space X
of finite Q-type.

1. The space X is rationally homotopy equivalent to a product Eilenberg-
MacLane space, i.e.,

X ∼Q
∏
n

K(πn(X), n).

2. The space X is rationally homotopy equivalent to a loop space, i.e.,

X ∼Q ΩY,

for some 2-connected space Y .

3. The rational Hurewicz homomorphism

πk(X)⊗Q→ Hk(X; Q)

is injective for all k > 0.

4. The cohomology algebra H∗(X; Q) is a free graded commutative algebra.
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Proof. 1⇒ 2 is clear because a product of Eilenberg-MacLane spaces is a loop
space.

2⇒ 3 follows from the Cartan-Serre theorem (Theorem 10.9).
3 ⇒ 4: By Exercise 10.10, the rational Hurewicz homomorphism is dual

to the map in cohomology induced by the projection onto indecomposables
p : (ΛV, d) → V , where (ΛV, d) is the minimal model of X. If the differential d
in the minimal model is non-zero, then d(v) 6= 0 for some generator v ∈ V k. But
then v is not in the image of p∗ : Hk(ΛV, d)→ V k (why?), and then the Hurewicz
homomorphism would not be injective. So if the Hurewicz homomorphism is
injective, then d = 0 in the minimal model. But then H∗(X; Q) ∼= H∗(ΛV, d) =
ΛV is a free graded commutative algebra.

4 ⇒ 1: Suppose that H∗(X; Q) is free with algebra generators {xi}i∈I . Let
V be the graded vector space spanned by all xi, so that H∗(X; Q) ∼= Λ(V ). Pick
representative cocycles ωi ∈ Ω∗(X) with [ωi] = xi, and define a morphism of
cochain algebras

(ΛV, 0)→ Ω∗(X)

by sending xi to ωi. This is a quasi-isomorphism because it induces the identity
map in cohomology. Hence S(V ) = (ΛV, 0) is a minimal model for X. But then
the adjoint map X → 〈S(V )〉 is a rational homotopy equivalence, and 〈S(V )〉
is a product of Eilenberg-MacLane spaces.

Theorem 10.28. The following are equivalent for a simply connected space X
of finite Q-type.

1. The space X is rationally homotopy equivalent to a wedge of Moore spaces,
i.e.,

X ∼Q
∨
n

M(Hn(X), n).

2. The space X is rationally homotopy equivalent to a suspension, i.e.,

X ∼Q ΣY,

for some connected space Y .

3. The rational Hurewicz homomorphism

πk(X)⊗Q→ Hk(X; Q)

is surjective for all k > 0.

4. The homotopy Lie algebra π∗(ΩX)⊗Q is a free graded Lie algebra.

Proof. The proof is essentially dual to the proof of Theorem 10.27.

Note that for a finitely generated abelian group, the Moore space M(A,n) is
rationally homotopy equivalent to M(A ⊗ Q, n), which is rationally homotopy
equivalent to a wedge of spheres ∨rSn, where r = rankA. So the first condition
in Theorem 10.28 can be reformulated as saying that X is rationally homotopy
equivalent to a wedge of spheres.
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11 Elliptic and hyperbolic spaces

This section is based on [5, §32-§33].
Let X be a simply connected space with finite dimensional rational coho-

mology algebra, i.e., the dimQ H∗(X; Q) < ∞. The formal dimension of X is
the largest integer N such that HN (X; Q) 6= 0. For instance, if X is a simply
connected closed manifold of dimension N , then X has formal dimension N .

Definition 11.1. The space X is called elliptic if dimQ π∗(X) ⊗ Q < ∞, and
it is called hyperbolic if dimQ π∗(X)⊗Q =∞.

Thus, every space X is either elliptic or hyperbolic.

Theorem 11.2. Let X be an elliptic space of formal dimension N . Then

1. We have dimπ∗(X)⊗Q ≤ N .

2. We have πk(X)⊗Q = 0 for all k > N except possibly πk(X)⊗Q ∼= Q for
a single odd k in the range N < k < 2N .

3. There is an inequality dimπeven(X) ⊗ Q ≤ dimπodd(X) ⊗ Q, and the
following are equivalent:

(a) We have equality dimπeven(X)⊗Q = dimπodd(X)⊗Q.

(b) The Euler characteristic χ(X) is non-zero.

(c) The rational cohomology H∗(X; Q) is concentrated in even degrees.

(d) The rational cohomology algebra is an artinian complete intersection
ring, i.e., there is an isomorphism

H∗(X; Q) ∼= Q[x1, . . . , xp]/(f1, . . . , fp)

where x1, . . . , xp are generators of even degree, and f1, . . . , fp is a
regular sequence in the polynomial algebra Q[x1, . . . , xp].

Theorem 11.3. Let X be a hyperbolic space of formal dimension N . Then the
sequence of integers (ar)r≥1, where

ar = dimπ≤r(X)⊗Q

has exponential growth.

The proof of Theorem 11.3 relies on a deep analysis of the algebraic structure
of the minimal Sullivan model of a hyperbolic space.

Exercise 11.4. Let X be a wedge of two spheres Sn ∨ Sm, where n,m ≥ 2.
The homotopy Lie algebra of X is then a free graded Lie algebra,

π∗(ΩX)⊗Q ∼= L(α, β)

on two generators α and β of degrees n− 1 and m− 1.

1. Use the Poincaré-Birkhoff-Witt theorem to calculate dimQ L(α, β)k for all
k.

2. Use your calculation to verify that dimQ π≤r(X) has exponential growth.
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11.1 Interlude: Regular sequences and Koszul complexes

We will recall some facts from commutative algebra about regular sequences
and Koszul complexes that we will need for the proof of Theorem 11.2. The
reader is referred to the first chapters of [2] for more details.

Let R be a commutative algebra over a field k, and let f ∈ R be an element.
The element f is called regular if it is not a zero-divisor, i.e., if rf = 0 implies
r = 0 for all r ∈ R.

The Koszul complex K(f) is the following chain complex of R-modules

1 0

R
·f // R

We make three trivial observations:

• There is an isomorphism of chain complexes of R-modules

K(f) ∼= (R⊗ Λ(y), dy = f), |y| = 1.

In particular, K(f) has the structure of a dg algebra over R.

• The zeroth homology is the residue ring

H0(K(f)) = R/(f).

• The first homology is the annihilator of f in R,

H1(K(f)) = {r ∈ R | rf = 0} .

In particular, H+(K(f)) = 0 if and only if f is regular.

Next, consider a sequence of elements f1, . . . , fq ∈ R. The sequence is called
a regular sequence if for i = 1, 2, . . . , q, the residue class

f i ∈ R/(f1, . . . , fi−1)

is a regular element in the residue ring.
The Koszul complex of a sequence f1, . . . , fq is defined to be the tensor

product chain complex of R-modules

K(f•) = K(f1, . . . , fq) = K(f1)⊗R . . .⊗R K(fq).

We have the following extension of the above observations. The first two asser-
tions are obvious, but the third assertion requires some work.

• There is an isomorphism of chain complexes of R-modules

K(f•) ∼= (R⊗ Λ(y1, . . . , yq), dy1 = f1, . . . , dyq = fq).

In particular, K(f•) has the structure of a dg algebra over R.

• The zeroth homology is the residue ring

H0(K(f•)) ∼= R/(f1, . . . , fq).
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• H+(K(f•)) = 0 if and only if f1, . . . , fq is a regular sequence.

The third assertion follows from the following more general theorem (see [2,
Theorem 1.6.17]).

The grade of an ideal I ⊆ R is the length of a maximal regular sequence in
I.

Theorem 11.5. Suppose R is a noetherian ring. Let d denote the grade of the
ideal (f1, . . . , fq) ⊂ R, and let r denote the homological dimension of the Koszul
complex, i.e., H>r(K(f•)) = 0 but Hr(K(f•)) 6= 0. Then we have the relation

d+ r = q.

In particular, H+(K(f•)) = 0 if and only if f1, . . . , fq is a regular sequence.

Recall that the Krull dimension of a commutative noetherian k-algebra S is
the maximum length k of chains of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pk ⊂ S,

where the inclusions are proper. If I is an ideal in the polynomial ring R =
k[x1, . . . , xp] generated by polynomials f1, . . . , fq, then the Krull dimension
of the residue ring R/I is the same as the dimension of the algebraic vari-
ety V (f1, . . . , fq) ⊂ Ap whose points are the common zeros of f1, . . . , fq. The
Krull dimension of the polynomial ring k[x1, . . . , xp] is p.

Recall that a noetherian k-algebra S is artinian if the following equivalent
conditions are fulfilled:

1. S has Krull dimension 0.

2. S is finite dimensional as a vector space over k.

The grade of an ideal in a polynomial ring can also be calculated in terms
of Krull dimensions (see [2, Corollary 2.1.4]).

Theorem 11.6. Let R = k[x1, . . . , xp] and let I ⊂ R be the ideal generated by
the polynomials f1, . . . , fq ∈ R. Let d denote the grade of the ideal I, and let k
denote the Krull dimension of R/I. Then we have the relation

d+ k = p.

11.2 Elliptic spaces

In this section we will prove Theorem 11.2.
Fix a minimal Sullivan algebra

A = (ΛV, d),

where V = V ≥2 is finite dimensional. We do not yet assume that A has finite
dimensional cohomology.

Definition 11.7. The formal dimension of A is the largest integer N such that
HN (A) 6= 0. If no such integer exists, we say that A has formal dimension
N =∞.
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It is possible to choose a basis for V ,

v1, . . . , vn

such that d(vi) ∈ Λ(v1, . . . , vi−1) for all i. In particular, d(v1) = 0. Possibly
after reordering, we can also write the basis as

x1, . . . , xp, y1, . . . , yq, p+ q = n,

where x1, . . . , xp have even degrees ≥ 2, and y1, . . . , yq have odd degrees ≥ 3.
Thus,

Λ(V ) ∼= Q[x1, . . . , xp]⊗ Λ(y1, . . . , yq).

We can decompose the differential d into homogeneous components with respect
to wordlength in y,

d = d−1 + d0 + d1 + d2 . . . .

Here, dr is the derivation characterized by

dr(xi) ∈ Q[X]⊗ Λr(Y ), 1 ≤ i ≤ p

dr(yj) ∈ Q[X]⊗ Λ1+r(Y ), 1 ≤ j ≤ q.

In particular, d−1 decreases the y-wordlength by 1, so

d−1(xi) = 0, d−1(yj) = fj ,

for certain polynomials f1, . . . , fq ∈ Q[x1, . . . , xp]. It follows that d2
−1 = 0, so

Apure := (Λ(V ), d−1)

is a Sullivan algebra.

Proposition 11.8. The pure Sullivan algebra Apure = (Λ(V ), d−1) is isomor-
phic to the Koszul complex

(Λ(V ), d−1) ∼= K(f1, . . . , fq)

of the sequence of polynomials f1, . . . , fq ∈ Q[x1, . . . , xp].

Proposition 11.9. Let (ΛV, d) be a minimal Sullivan algebra with V = V ≥2

finite dimensional.

1. (ΛV, d) and (ΛV, d−1) have the same formal dimension N .

2. The formal dimension N is finite if and only if Q[x1, . . . , xp]/(f1, . . . , fq)
is finite dimensional as a vector space over Q. In this case,

• q ≥ p.

• If we arrange so that |x1| ≥ . . . ≥ |xp| and |f1| ≥ . . . ≥ |fq|, then

|fk| ≥ 2|xk|

for k = 1, 2, . . . , p.
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• The formal dimension N can be calculated as

N =
q∑
j=1

|fj | −
p∑
i=1

|xi|+ p− q.

Granted this proposition, we can draw the following conclusions:

N =
q∑
j=1

|fj | −
p∑
i=1

|xi|+ p− q (|fi| ≥ 2|xi|)

≥
q∑
j=1

|fj | −
p∑
i=1

1
2
|fi|+ p− q

=
1
2

q∑
j=1

|fj |+
1
2

q∑
i=p+1

|fi|+ p− q (|fj | = |yj |+ 1 ≥ 4)

≥ 1
2

q∑
j=1

|fj |2(q − p) + p− q (q ≥ p)

≥ 1
2

q∑
j=1

|fj |.

An immediate consequence of this inequality is that N ≥ 1
2 |fj | for all j. In

other words,
|yj | ≤ 2N − 1.

It also follows that at most one yj can have degree > N . Furthermore, it follows
that

|xi| ≤
1
2
|fi| ≤ N

for all i. Finally, since |fj | ≥ 4 for all j, and q ≥ p, we also get that

N ≥ 1
2

q∑
j=1

|fj | ≥ 2q ≥ p+ q.

If (ΛV, d) is the minimal Sullivan model for an elliptic space X, then V is dual
to the graded vector space π∗(X)⊗Q, and the above shows that

dimπeven(X)⊗Q = p ≤ q = dimπodd(X)⊗Q,

dimπ∗(X)⊗Q = p+ q ≤ N,

and also that πeven(X) ⊗ Q is concentrated in degrees ≤ N , and πodd(X) ⊗ Q
is concentrated in degrees ≤ 2N − 1 with at most one basis element of degree
> N . Thus, Proposition 11.9 implies the first two statements in Theorem 11.2.

Lemma 11.10. Let A = (ΛV, d) be a minimal Sullivan algebra of formal di-
mension N <∞, where V = V ≥2 is finite dimensional. If v ∈ V is a generator
with dv = 0, then the formal dimension of the quotient A/v is finite and equals{

N + |v| − 1, |v| even,
N − |v|, |v| odd.
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Proof. |v| even: There is a quasi-isomorphism A[z|dz = v] ∼→ A/v, where we
have added an exterior generator z of degree |v|−1 to kill the cycle v. Consider
the short exact sequence of chain complexes

0→ A→ A[z|dz = v]→ A[z]/A→ 0.

Since A[z] = A⊕Az and dz ∈ A, the quotient chain complex A[z]/A is isomor-
phic to A shifted by the degree of z. In particular, Hn(A[z]/A) ∼= Hn−|v|+1(A)
for all n. Using this identification and Hn(A[z|dz = v]) ∼= Hn(A/v), a portion of
the long exact cohomology sequence induced by the above short exact sequence
looks like

Hn+|v|−1(A)→ Hn+|v|−1(A/v)→ Hn(A) ∂→ Hn+|v|(A).

Since |v| ≥ 2, the corner terms are zero for n ≥ N , so Hn+|v|−1(A/v) ∼= Hn(A)
for n ≥ N . This proves the claim.
|v| odd: Consider the short exact sequence

0→ Av → A→ A/v → 0. (24)

The reader should check that since dv = 0 and v2 = 0, the ideal Av generated
by v is, as a chain complex, isomorphic to A/v shifted by the degree of v. In par-
ticular, Hn(Av) ∼= Hn−|v|(A/v). The reader should also check that, under this
identification, the connecting homomorphism ∂ : Hn(A/v) → Hn−|v|+1(A/v)
sends [a] to [b] if a ∈ A is an element such that da = bv in A. Here, a and b
denote the residue classes of a and b in A/v.

Now we will prove that Hn(A) = 0 for n > N−|v|. Under the identifications
indicated above, a portion of the long exact sequence associated to (24) looks
like

Hn(A)→ Hn(A/v) ∂→ Hn−|v|+1(A/v)→ Hn+1(A).

This implies that the connecting homomorphism ∂ : Hn(A/v)→ Hn−|v|+1(A/v)
is surjective for n ≥ N and an isomorphism for n > N . Thus, for every n > N
there is a sequence of isomorphisms, continuing indefinitely to the left,

· · ·
∼= // Hn+|v|−1(A/v)

∼= // Hn(A/v)
∼= // Hn−|v|+1(A/v).

We claim that the groups in this sequence are all zero. Indeed, if w0 ∈ A repre-
sents an element [w0] ∈ Hn−|v|+1, then by chasing through the above sequence
of isomorphisms, we can find an infinite sequence of elements w1, w2, w3, . . . ∈ A
such that

· · · dw3 = w2v, dw2 = w1v, dw1 = w0v.

Since the differential d is minimal, we must have ` := `(w0) ≥ `(w1) ≥ `(w2) ≥
· · · , where `(wk) denotes the wordlength filtration degree of wk2. At the same
time we have |w0| < |w1| < |w2| < · · · . But since V is finite dimensional, there is
an upper bound on the cohomological degree of elements w ∈ ΛV with `(w) ≤ `.
This implies that wk = 0 for k large enough, and hence [w0] = ∂k[wk] = 0. We
conclude that Hn(A) = 0 for n > N − |v|.

2`(w) is the greatest integer s for which w ∈ Λ≥s(V )
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Finally, the corner terms are zero in the exact sequence

HN−1(A/v) ∂→ HN−|v|(A/v)→ HN (A)→ HN (A/v),

which shows that HN−|v|(A) 6= 0. Thus, A/v has formal dimension N − |v|.

Proposition 11.11. Let (ΛV, d) be a minimal Sullivan algebra with V = V ≥2

finite dimensional. The following are equivalent:

1. H∗(ΛV, d) is finite dimensional.

2. H∗(ΛV, d−1) is finite dimensional.

3. Q[x1, . . . , xp]/(f1, . . . , fq) is finite dimensional.

Proof. 2⇒ 3: We identify the pure Sullivan algebra (ΛV, d−1) with the Koszul
complex K(f•). This has the form (let R = Q[x1, . . . , xp])

2 1 0

· · · //
⊕

i<j Ryi ∧ yj
d−1 //⊕

iRyi
d−1 // R

If we momentarily forget about the cohomological grading of R, the Koszul
complex is a non-negative chain complex of R-modules, where the homological
degree is the same as the y-wordlength. The zeroth homology in this grading is

H0(K(f•)) = Q[x1, . . . , xp]/(f1, . . . , fq) = R/I

where I ⊂ R is the ideal generated by f1, . . . , fq. Evidently, if H∗(K(f•)) is
finite dimensional, then so is R/I.

3⇒ 2: This follows from the observation that the homology H∗(K(f•)) is
a finitely generated module over H0(K(f•)) = R/I. Indeed, K(f•) is a finitely
generated (free) R-module. Since R is noetherian, this implies that ker d−1 ⊆
K(f•) is finitely generated as an R-module. Since I ⊆ im d−1, this implies that
ker d−1/ im d−1 is a finitely generated R/I-module.

1⇒ 3: We will prove by induction that for every even generator vi, there is
a integer ei ≥ 2 such that veii = d−1(w), where w has y-wordlength 1. Then
it will follow that R/I is finite dimensional. In the chosen order v1, . . . , vn of
the basis for V , we have dvi ∈ Λ(v1, . . . , vi−1). In particular, dv1 = 0. Assume
that |v1| is even. By hypothesis, H∗(ΛV, d) is finite dimensional, so there is an
integer e1 ≥ 2 and an element ξ ∈ Λ(V ) such that ve11 = d(ξ). If we decompose
ξ into y-wordlength homogeneous components ξ = ξ1 + ξ3 + · · · , then it follows
that ve11 = d−1(ξ1). If |v1| is odd, then we do nothing and go to the next step.

In the next step, we mod out by v1. By Lemma 11.10 the quotient, which is
of the form (Λ(v2, . . . , vn), d), is a Sullivan algebra with finite formal dimension.
If |v2| is even, then by iterating the above argument, we get that vg22 = d−1(ω)
modulo v1 for some integer g2 and some ω of y-wordlength 1. If |v1| was odd,
then it follows that vg22 = d−1(ω). If |v1| was even, then vg22 = d−1(ω) + v1ζ,
where ζ has y-wordlength 0. This implies that for r large, (vg22 )r is a d−1-
boundary of an element of y-wordlength 1. In the next step we mod out by v2

and argue in a similar way to show that ve33 = d−1(η) for some e3 ≥ 2 and some
η of y-wordlength 1, if |v3| is even. Running through the sequence v1, . . . , vn in
this way proves the claim.
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2⇒ 1: This follows immediately from the existence of a convergent IVth

quadrant cohomological spectral sequence

Es,t1 = H−t(K(f•))s+t ⇒ Hs+t(ΛV, d).

The spectral sequence is obtained from the decreasing filtration {F s} of (ΛV, d),
where

(F s)s+t = (Q[x1, . . . , xp]⊗ Λ≥−t(y1, . . . , yq))s+t.

The filtration is designed so that the associated graded only sees the pure part
d−1 of the differential;

E∗,∗0
∼= (ΛV, d−1).

Convergence of the spectral sequence is ensured since V is finite dimensional.

Now we can finish the proof of Proposition 11.9.
(ΛV, d) and (ΛV, d−1) have the same formal dimension:
By Proposition 11.11, the formal dimensions of A = (ΛV, d) and Apure =

(ΛV, d−1) are either both infinite or both finite. If the formal dimension is finite,
then we will prove that it is the same by induction on dim(V ). It is obvious
for dim(V ) ≤ 1, because then d = d−1 = 0, so that A = Apure. Let n ≥ 2 and
assume by induction that fdim(ΛW, δ) = fdim(ΛW, δ−1) whenever dim(W ) < n.
Recall that A = (ΛV, d) is a Sullivan algebra with chosen basis v1, . . . , vn such
that dvi ∈ Λ(v1, . . . , vi−1). In particular dv1 = 0. Applying Lemma 11.10 twice
with v = v1, we get that

fdim(A) = fdim(A/v)+|v| = fdim((A/v)pure)+|v| = fdim(Apure/v)+|v| = fdim(Apure),

if |v| is odd, where fdim(A/v) = fdim((A/v)pure) by the induction hypothesis.
And if |v| is even we of course reach the same conclusion. Thus, we have proved
fdim(A) = fdim(Apure) as claimed.

Calculation of the formal dimension of (ΛV, d):
We can use Lemma 11.10 on the sequence x1, . . . , xp ∈ Apure to calculate

the formal dimension of A:

fdim(A) = fdim(Apure) = fdim(Apure/(x1, . . . , xp))−
p∑
i=1

(xi − 1).

But Apure/(x1, . . . , xp) ∼= Λ(y1, . . . , yq) with zero differential. The formal di-
mension of Λ(y1, . . . , yq) is the degree of the top dimensional element y1∧. . .∧yk.
Thus,

fdim(Apure/(x1, . . . , xp)) =
q∑
j=1

|yj | =
q∑
j=1

|fj | − q.

Putting the above facts together, we see that the formal dimension N of A may
be calculated as

N =
q∑
j=1

|fj | −
p∑
i=1

|xi|+ p− q

as claimed.
Arrange so that |x1| ≥ . . . ≥ |xp| and |f1| ≥ . . . ≥ |fq|. We will then show

that |fs| ≥ 2|xs| for all 1 ≤ s ≤ p. Indeed, the algebra Q[x1, . . . , xp]/(f1, . . . , fq)
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is finite dimensional as a vector space. If we mod out by the indeterminates
xs+1, . . . , xp, we get a finite dimensional algebra of the form

Q[x1, . . . , xs]/(f1, . . . , fq),

where f j denotes the residue class of fj modulo (xs+1, . . . , xp). This can be
finite dimensional only if at least s out of the classes f1, . . . , fq are non-zero, or
in other words, at least s out of f1, . . . , fq contain some monomial (necessarily
quadratic or higher, because dyj = fj and d is a minimal differential) involving
only x1, . . . , xs. Since |x1| ≥ . . . ≥ |xs|, any monomial of that form must have
cohomological degree at least 2|xs|. Thus, at least s out of f1, . . . , fq have
cohomological degree at least 2|xs|. Since |f1| ≥ . . . ≥ |fq|, this implies in
particular that |fs| ≥ 2|xs|.

11.3 Two open conjectures

If true, the following still open conjecture would give an explanation for the
exponential growth of the dimensions of π∗(X)⊗Q for hyperbolic spaces X.

Conjecture 11.12 (Avramov-Félix conjecture). If X is hyperbolic, then π∗(ΩX)⊗
Q contains a free Lie algebra on two generators.

While we are at it, let us mention another open conjecture concerning fibra-
tions with elliptic fibers.

Conjecture 11.13 (Halperin conjecture). If X is elliptic with χ(X) 6= 0, then
the rational Serre spectral sequence of every fibration

X → E → B,

with E,B simply connected, collapses at the E2-page.
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