
STOCKHOLM UNIVERSITY MT 7038
DEPT. OF MATHEMATICS EXAMINATION
Div. of Mathematical statistics 13 Jan 2020

Exam in Statistical Learning
13 Jan 2020, time 9-14

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: Course textbook (Elements of statistical learning) and your own
lecture notes. Electronic devices and e-books are not allowed.
Return of the exam: To be announced in the discussion forum in the course page.

NOTE: The exam consists of 5 problems and each with 10 points. Logical ex-
planation and steps leading to the final solution must be clearly shown in order
to receive full marks. Minimum points to receive a given grade are as follows:

A B C D E
45 40 35 30 25

NOTE: The mathematical notations in this exam are the same as those in the
course book.

NOTE: For those parts require explanation in words, your writing must be to
the point, redundant writing irrelevant to the solution can result in
point deduction.

Problem 1
a) One of the manifestations of the curse of dimensionality is the sparseness

of data points. Show that the sampling density is roughly proportional to
N1/p, where p is the input space dimension and N is the sample size (see
Section 2.5 of the course book). (2p)

b) Consider the case of an orthonormal N × p input matrix X. Let β̂j (j =
1, · · · , p) be the least square estimators of the parameters. Derive the
estimators in Table 3.4 in the course book for the best subset with size M
(3p), ridge regression (2p), and Lasso (3p).

Problem 2
a) Show that the degree-of-freedom of quadratic discriminant analysis equals

to (K − 1)×
[
p(p+3)

2 + 1
]
, where K is the number of classes and p is the

dimension of the predictor variables. (4p)

b) In finding the separation hyperplane using Rosenblatt’s perception lear-
ning algorithm, one minimizes the cost functionD(β, β0) = −

∑
i∈M yi(x>i β+

β0), where yi = −1 or 1, andM is the set of misclassified points. One pro-
blem of this cost function is that there is no unique separation hyperplane
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when the data is separable. Consider minimizing another cost function,
D1(β, β0) = −

∑N
i=1 yi(x>i β+β0) subject to the constraint ‖β‖ = 1, where

N is the number of observations. Describe this criterion clearly in words
in terms of the signed distance and explain if this new cost function solves
the uniqueness problem in the separable case. (3p)

c) Discuss one drawback of using the cost function D1(β, β0) with constraint
‖β‖ = 1 in part b), then propose a possible solution to it and justify your
answers. Hint: You may consider drawing a figure to help your explanation.
(3p)

Problem 3
a) Consider the basis expansion of a function f(X) using the cubic splines

with K interior knots: f(X) =
∑3
j=0 βjX

j +
∑K
k=1 αk(X−ξk)3

+, where ξk
are the positions of the knots. Show that f(X) has continuous first and
second derivatives at the knots. (2p)

b) Now taking into account the additional boundary conditions imposed by
the natural cubic spline, show that this implies β2 = 0, β3 = 0,

∑K
k=1 αk =

0,
∑K
k=1 αkξk = 0. (3p)

c) Finally, show that the results in b) lead to the basis functions of the natural
cubic spline (i.e., Eq. 5.4 and 5.5 in the course book). (3p)

d) Let f̂ denote the N -vector fitted values f̂(xi) at the training predictors xi
in the smoothing spline. One has the relation f̂ = Sλy, where Sλ is the
smoother matrix with regularization parameter λ. The effective defree-of-
freedom (dof) is given by the trace of Sλ. Explain concisely in words
why the rank of Sλ is not a good choice for the dof. You can cite the
corresponding equations and properties in the course book to support
your answer. (2p)

Problem 4
a) Consider the local linear regression at a target point x0 as a weighted least

square estimation: minα(x0),β(x0)
∑N
i=1 Kλ(x0, xi) [yi − α(x0)− β(x0)xi]2,

with kernel Kλ(x0, xi). Show that the estimate is given by

f̂(x0) = b(x0)>
(
B>W(x0)B

)−1 B>W(x0)y,
where b(x)> = (1, x), B is the N × 2 matrix with the i-th row given by
b(x0)>, and W(x0) is the N ×N diagonal matrix with the i-th diagonal
element given by Kλ(x0, xi). (5p)

b) Now let f̂(x0) =
∑N
i=1 li(x0)yi, show that

∑N
i=1 li(x0) = 1 (2p) and∑N

i=1(xi − x0)li(x0) (3p).

Problem 5
For parts a) to c) below, suppose that the data is generated from the model
Y = f(X) + ε, with E(ε) = 0 and V ar(ε) = σ2.
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a) If f̂k(x0) is the k-nearest neighbor regression fit and assume that the values
of xi in the sample are fixed (i.e., non-random), show that the expected
prediction error at x0 is given by

E

[(
Y − f̂k(x0)

)2
|X = x0

]
= σ2+

[
f(x0)− 1

k

∑k
l=1 f(x(l))

]2
+σ2/k,

where the subscript (l) indicates the l-th nearest neighbor to x0. (4p)

b) Describe the meaning of each of the 3 terms in part a) and give an intuitive
explanation why the last term (i.e. σ2/k) is inversely proportional to k.
(3p)

c) Now consider the linear model fit f̂p(x) = x>β̂, where the parameter vector
β with p components is fit by the least squares. Show that the variance in

the expected prediction error at x0, E
[(
Y − f̂p(x0)

)2
|X = x0

]
, is given

by V ar[f̂p(x0)] = ‖X(X>X)−1x0‖2σ2. (3p)

Good Luck!
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