STOCKHOLM UNIVERSITY
DEPT. OF MATHEMATICS
Div. of Mathematical statistics

MT 7038
EXAMINATION
13 Jan 2020

Exam in Statistical Learning
 13 Jan 2020, time 9-14

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: Course textbook (Elements of statistical learning) and your own lecture notes. Electronic devices and e-books are not allowed.
Return of the exam: To be announced in the discussion forum in the course page.

NOTE: The exam consists of 5 problems and each with 10 points. Logical explanation and steps leading to the final solution must be clearly shown in order to receive full marks. Minimum points to receive a given grade are as follows:

A	B	C	D	E
45	40	35	30	25

NOTE: The mathematical notations in this exam are the same as those in the course book.

NOTE: For those parts require explanation in words, your writing must be to the point, redundant writing irrelevant to the solution can result in point deduction.

Problem 1

a) One of the manifestations of the curse of dimensionality is the sparseness of data points. Show that the sampling density is roughly proportional to $N^{1 / p}$, where p is the input space dimension and N is the sample size (see Section 2.5 of the course book). (2p)
b) Consider the case of an orthonormal $N \times p$ input matrix \mathbf{X}. Let $\hat{\beta}_{j} \quad(j=$ $1, \cdots, p)$ be the least square estimators of the parameters. Derive the estimators in Table 3.4 in the course book for the best subset with size M (3p), ridge regression (2 p), and Lasso (3 p).

Problem 2

a) Show that the degree-of-freedom of quadratic discriminant analysis equals to $(K-1) \times\left[\frac{p(p+3)}{2}+1\right]$, where K is the number of classes and p is the dimension of the predictor variables. (4 p)
b) In finding the separation hyperplane using Rosenblatt's perception learning algorithm, one minimizes the cost function $D\left(\beta, \beta_{0}\right)=-\sum_{i \in M} y_{i}\left(x_{i}^{\top} \beta+\right.$ β_{0}), where $y_{i}=-1$ or 1 , and M is the set of misclassified points. One problem of this cost function is that there is no unique separation hyperplane
when the data is separable. Consider minimizing another cost function, $D_{1}\left(\beta, \beta_{0}\right)=-\sum_{i=1}^{N} y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)$ subject to the constraint $\|\beta\|=1$, where N is the number of observations. Describe this criterion clearly in words in terms of the signed distance and explain if this new cost function solves the uniqueness problem in the separable case. (3p)
c) Discuss one drawback of using the cost function $D_{1}\left(\beta, \beta_{0}\right)$ with constraint $\|\beta\|=1$ in part b), then propose a possible solution to it and justify your answers. Hint: You may consider drawing a figure to help your explanation. (3p)

Problem 3

a) Consider the basis expansion of a function $f(X)$ using the cubic splines with K interior knots: $f(X)=\sum_{j=0}^{3} \beta_{j} X^{j}+\sum_{k=1}^{K} \alpha_{k}\left(X-\xi_{k}\right)_{+}^{3}$, where ξ_{k} are the positions of the knots. Show that $f(X)$ has continuous first and second derivatives at the knots. (2p)
b) Now taking into account the additional boundary conditions imposed by the natural cubic spline, show that this implies $\beta_{2}=0, \beta_{3}=0, \sum_{k=1}^{K} \alpha_{k}=$ $0, \sum_{k=1}^{K} \alpha_{k} \xi_{k}=0 .(3 \mathrm{p})$
c) Finally, show that the results in b) lead to the basis functions of the natural cubic spline (i.e., Eq. 5.4 and 5.5 in the course book). (3p)
d) Let $\hat{\mathbf{f}}$ denote the N-vector fitted values $\hat{f}\left(x_{i}\right)$ at the training predictors x_{i} in the smoothing spline. One has the relation $\hat{\mathbf{f}}=\mathbf{S}_{\lambda} \mathbf{y}$, where \mathbf{S}_{λ} is the smoother matrix with regularization parameter λ. The effective defree-offreedom (dof) is given by the trace of \mathbf{S}_{λ}. Explain concisely in words why the rank of \mathbf{S}_{λ} is not a good choice for the dof. You can cite the corresponding equations and properties in the course book to support your answer. (2p)

Problem 4

a) Consider the local linear regression at a target point x_{0} as a weighted least square estimation: $\min _{\alpha\left(x_{0}\right), \beta\left(x_{0}\right)} \sum_{i=1}^{N} K_{\lambda}\left(x_{0}, x_{i}\right)\left[y_{i}-\alpha\left(x_{0}\right)-\beta\left(x_{0}\right) x_{i}\right]^{2}$, with kernel $K_{\lambda}\left(x_{0}, x_{i}\right)$. Show that the estimate is given by

$$
\hat{f}\left(x_{0}\right)=b\left(x_{0}\right)^{\top}\left(\mathbf{B}^{\top} \mathbf{W}\left(x_{0}\right) \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{W}\left(x_{0}\right) \mathbf{y}
$$

where $b(x)^{\top}=(1, x), \mathbf{B}$ is the $N \times 2$ matrix with the i-th row given by $b\left(x_{0}\right)^{\top}$, and $\mathbf{W}\left(x_{0}\right)$ is the $N \times N$ diagonal matrix with the i-th diagonal element given by $K_{\lambda}\left(x_{0}, x_{i}\right)$. (5p)
b) Now let $\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} l_{i}\left(x_{0}\right) y_{i}$, show that $\sum_{i=1}^{N} l_{i}\left(x_{0}\right)=1(2 \mathrm{p})$ and $\sum_{i=1}^{N}\left(x_{i}-x_{0}\right) l_{i}\left(x_{0}\right)(3 \mathrm{p})$.

Problem 5

For parts a) to c) below, suppose that the data is generated from the model $Y=f(X)+\epsilon$, with $E(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$.
a) If $\hat{f}_{k}\left(x_{0}\right)$ is the k-nearest neighbor regression fit and assume that the values of x_{i} in the sample are fixed (i.e., non-random), show that the expected prediction error at x_{0} is given by

$$
E\left[\left(Y-\hat{f}_{k}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right]=\sigma^{2}+\left[f\left(x_{0}\right)-\frac{1}{k} \sum_{l=1}^{k} f\left(x_{(l)}\right)\right]^{2}+\sigma^{2} / k
$$

where the subscript (l) indicates the l-th nearest neighbor to $x_{0} .(4 \mathrm{p})$
b) Describe the meaning of each of the 3 terms in part a) and give an intuitive explanation why the last term (i.e. σ^{2} / k) is inversely proportional to k. (3p)
c) Now consider the linear model fit $\hat{f}_{p}(x)=x^{\top} \hat{\beta}$, where the parameter vector β with p components is fit by the least squares. Show that the variance in the expected prediction error at $x_{0}, E\left[\left(Y-\hat{f}_{p}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right]$, is given by $\operatorname{Var}\left[\hat{f}_{p}\left(x_{0}\right)\right]=\left\|\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} x_{0}\right\|^{2} \sigma^{2} .(3 \mathrm{p})$

Good Luck!

