STOCKHOLM UNIVERSITY
DEPT. OF MATHEMATICS
Div. of Mathematical statistics

MT 7038
EXAMINATION
13 Jan 2021

Exam in Statistical Learning 13 Jan 2021, time 9-14:30

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the home exam, you may use any literature.
Return of the exam: To be announced later.

NOTE: The exam consists of 5 problems and each with 10 points. Logical explanation and steps leading to the final solution must be clearly shown in order to receive full marks. Minimum points to receive a given grade are as follows:

A	B	C	D	E
45	40	35	30	25

NOTE: The mathematical notations in this exam are the same as those in the course book.

NOTE: For those parts require explanation in words, your writing must be to the point, redundant writing irrelevant to the solution will result in point deduction.

Problem 1

a) Give a clear definition of the Bayes decision boundary. (2p)
b) Consider the case of an orthonormal $N \times p$ input matrix \mathbf{X}. Let $\hat{\beta}_{j} \quad(j=$ $1, \cdots, p)$ be the least square estimators of the parameters. Derive the estimators in Table 3.4 in the course book for the best subset with size M (3p), ridge regression (2p), and Lasso (3p).

Problem 2

a) Section 4.4 .5 of the course book discussed that the logistic regression is less restrictive than LDA, although both methods have the same degrees of freedom. Argue concisely in words which method could be more biased and which method could have bigger variance when applying to the same dataset. (2p)
b) Explain at what situation does the resulting decision boundaries of LDA and logistic regression coincide? (2p)
c) In the Rosenblatt's perception learning algorithm, one minimizes the cost function $D\left(\beta, \beta_{0}\right)=-\sum_{i \in M} y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)$, where $y_{i}=-1$ or 1 , and M is the set of misclassified points. One problem of this cost function is that
there is no unique separation hyperplane when the data is separable. Consider minimizing another cost function, $D_{1}\left(\beta, \beta_{0}\right)=-\sum_{i=1}^{N} y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)$ subject to the constraint $\|\beta\|=1$, where N is the number of observations. Describe this criterion clearly in words in terms of the signed distance and explain if this new cost function solves the uniqueness problem in the separable case. (3p)
d) Discuss one drawback of using the cost function $D_{1}\left(\beta, \beta_{0}\right)$ with constraint $\|\beta\|=1$ in part c), then propose a possible solution to it and justify your answers. Hint: You may consider drawing a figure to help your explanation. (3p)

Problem 3

a) Consider the basis expansion of a function $f(X)$ using the cubic splines with K interior knots: $f(X)=\sum_{j=0}^{3} \beta_{j} X^{j}+\sum_{k=1}^{K} \alpha_{k}\left(X-\xi_{k}\right)_{+}^{3}$, where ξ_{k} are the positions of the knots. Show that $f(X)$ has continuous first and second derivatives at the knots. $(2 \mathrm{p})$
b) Now taking into account the additional boundary conditions imposed by the natural cubic spline, show that this implies $\beta_{2}=0, \beta_{3}=0, \sum_{k=1}^{K} \alpha_{k}=$ $0, \sum_{k=1}^{K} \alpha_{k} \xi_{k}=0 .(2 \mathrm{p})$
c) Now show that the results in b) lead to the basis functions of the natural cubic spline (i.e., Eq. 5.4 and 5.5 in the course book). (3p)
d) Derive the Reinsch form $\mathbf{S}_{\lambda}=(\mathbf{I}+\lambda \mathbf{K})^{-1}$ for the smoothing spline (see Eq. 5.17 in the course book). (3p)

Problem 4

a) Consider the local linear regression at a target point x_{0} as a weighted least square estimation: $\min _{\alpha\left(x_{0}\right), \beta\left(x_{0}\right)} \sum_{i=1}^{N} K_{\lambda}\left(x_{0}, x_{i}\right)\left[y_{i}-\alpha\left(x_{0}\right)-\beta\left(x_{0}\right) x_{i}\right]^{2}$, with kernel $K_{\lambda}\left(x_{0}, x_{i}\right)$. Show that the estimate is given by

$$
\hat{f}\left(x_{0}\right)=b\left(x_{0}\right)^{\top}\left(\mathbf{B}^{\top} \mathbf{W}\left(x_{0}\right) \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{W}\left(x_{0}\right) \mathbf{y}
$$

where $b(x)^{\top}=(1, x), \mathbf{B}$ is the $N \times 2$ matrix with the i-th row given by $b\left(x_{0}\right)^{\top}$, and $\mathbf{W}\left(x_{0}\right)$ is the $N \times N$ diagonal matrix with the i-th diagonal element given by $K_{\lambda}\left(x_{0}, x_{i}\right)$. (4p)
b) Now let $\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} l_{i}\left(x_{0}\right) y_{i}$, show that $\sum_{i=1}^{N} x_{i} l_{i}\left(x_{0}\right)=x_{0} .(3 \mathrm{p})$
c) Suppose one performs smoothing using local linear regression for the dataset $\left(x_{i}, y_{i}\right)$, with $i=1, \cdots, N$ and the predictor $x(0 \leq x \leq 2 \pi)$ being an angular variable. This means that the estimated function $\hat{f}(x)$ should be periodic, i.e., $\hat{f}(x)=\hat{f}(x+2 \pi)$ for any x. Propose a simple way to apply local linear regression to enforce the periodicity of $\hat{f}(x)$. Hint: The trick to enforce periodicity is quite simple and can be described in just a few sentences. You may also consider drawing a figure to help your explanation. (3p)

Problem 5

For parts a) to c) below, suppose that the data is generated from the model $Y=f(X)+\epsilon$, with $E(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$.
a) If $\hat{f}_{k}\left(x_{0}\right)$ is the k-nearest neighbor regression fit and assume that the values of x_{i} in the sample are fixed (i.e., non-random), show that the expected prediction error at x_{0} is given by

$$
E\left[\left(Y-\hat{f}_{k}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right]=\sigma^{2}+\left[f\left(x_{0}\right)-\frac{1}{k} \sum_{l=1}^{k} f\left(x_{(l)}\right)\right]^{2}+\sigma^{2} / k
$$

where the subscript (l) indicates the l-th nearest neighbor to $x_{0} .(4 \mathrm{p})$
b) Discuss the bias-variance tradeoff in part a) as k changes. (2p)
c) Now consider the ridge regression fit $\hat{f}_{\lambda}(x)$, where λ is the parameter controlling the shrinkage, show that the variance in the expected prediction error at $x_{0}, E\left[\left(Y-\hat{f}_{\lambda}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right]$, is given by $\operatorname{Var}\left[\hat{f}_{\lambda}\left(x_{0}\right)\right]=$ $\left\|\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} x_{0}\right\|^{2} \sigma^{2} .(4 \mathrm{p})$

Good Luck!

