STOCKHOLM UNIVERSITY
DEPT. OF MATHEMATICS
Div. of Mathematical statistics

MT 7038
EXAMINATION
Jan 9, 2023

Exam in Statistical Learning Jan 9, 2023, time 14:00-19:00

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the exam, you may use any notes, textbooks and printouts. However, electronics are not allowed.
Return of the exam: To be announced later.

NOTE: The exam consists of 5 problems and each with 10 points. Logical explanation and steps leading to the final solution must be clearly shown in order to receive full marks. Minimum points to receive a given grade are as follows:

A	B	C	D	E
45	40	35	30	25

NOTE: The mathematical notations in this exam are the same as those in the course book.

NOTE: For those parts require explanation in words, your writing must be to the point, redundant writing irrelevant to the solution will result in point deduction.

Problem 1

a) What information is needed in order to draw the Bayes decision boundary and evaluate the error rate of the Bayes classifier? (2p)
b) Consider the case of an orthonormal $N \times p$ input matrix \mathbf{X}. Let $\hat{\beta}_{j} \quad(j=$ $1, \cdots, p$) be the least square estimators of the parameters. Derive the estimators in Table 3.4 in the course book for the best subset with size M (3p), ridge regression (2p), and Lasso (3p).

Problem 2

a) Show that the degree-of-freedom of quadratic discriminant analysis equals to $(K-1)\left[\frac{p(p+3)}{2}+1\right]$, where K is the number of classes and p is the dimension of the predictor variables. $(4 \mathrm{p})$
b) In the Rosenblatt's perception learning algorithm, one minimizes the cost function $D\left(\beta, \beta_{0}\right)=-\sum_{i \in M} y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)$, where $y_{i}=-1$ or 1 , and M is the set of misclassified points. One problem of this cost function is that there is no unique separation hyperplane when the data is separable. Consider minimizing another cost function, $D_{1}\left(\beta, \beta_{0}\right)=-\sum_{i=1}^{N} y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right)$ subject to the constraint $\|\beta\|=1$, where N is the number of observations.

Describe this criterion clearly in words in terms of the signed distance and explain if this new cost function solves the uniqueness problem in the separable case. (3p)
c) Discuss one drawback of using the cost function $D_{1}\left(\beta, \beta_{0}\right)$ with constraint $\|\beta\|=1$ in part c$)$, then propose a possible solution to it and justify your answers. Hint: You may consider drawing a figure to help your explanation. (3p)

Problem 3

a) Let $\hat{\mathbf{f}}=\mathbf{S}_{\lambda} \mathbf{y}$ be the fitted N-vector in the smoothing spline for N data points where \mathbf{S}_{λ} is the smoother matrix with regularization parameter λ. Explain in words why $\operatorname{rank}\left(\mathbf{S}_{\lambda}\right)$ is not a good choice for the effective degree of freedom for the smoothing spline. You can cite the equations and properties in the course book to support your answer. (3p)
b) Consider the basis expansion of a function $f(X)$ using the cubic splines with K interior knots: $f(X)=\sum_{j=0}^{3} \beta_{j} X^{j}+\sum_{k=1}^{K} \alpha_{k}\left(X-\xi_{k}\right)_{+}^{3}$, where ξ_{k} are the positions of the knots. Show that $f(X)$ has continuous first and second derivatives at the knots. (2p)
c) Now taking into account the additional boundary conditions imposed by the natural cubic spline, show that this implies $\beta_{2}=0, \beta_{3}=0, \sum_{k=1}^{K} \alpha_{k}=$ $0, \sum_{k=1}^{K} \alpha_{k} \xi_{k}=0 .(2 \mathrm{p})$
d) Now show that the results in b) lead to the basis functions of the natural cubic spline (i.e., Eq. 5.4 and 5.5 in the course book). (3p)

Problem 4

a) Consider the local linear regression at a target point x_{0} as a weighted least square estimation:
$\min _{\alpha\left(x_{0}\right), \beta\left(x_{0}\right)} \sum_{i=1}^{N} K_{\lambda}\left(x_{0}, x_{i}\right)\left[y_{i}-\alpha\left(x_{0}\right)-\beta\left(x_{0}\right) x_{i}\right]^{2}$, with kernel $K_{\lambda}\left(x_{0}, x_{i}\right)$.
Show that the estimate is given by

$$
\hat{f}\left(x_{0}\right)=b\left(x_{0}\right)^{\top}\left(\mathbf{B}^{\top} \mathbf{W}\left(x_{0}\right) \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{W}\left(x_{0}\right) \mathbf{y}
$$

where $b(x)^{\top}=(1, x), \mathbf{B}$ is the $N \times 2$ matrix with the i-th row given by $b\left(x_{0}\right)^{\top}$, and $\mathbf{W}\left(x_{0}\right)$ is the $N \times N$ diagonal matrix with the i-th diagonal element given by $K_{\lambda}\left(x_{0}, x_{i}\right) .(4 \mathrm{p})$
b) Now let $\hat{f}\left(x_{0}\right)=\sum_{i=1}^{N} l_{i}\left(x_{0}\right) y_{i}$, show that $\sum_{i=1}^{N} x_{i} l_{i}\left(x_{0}\right)=x_{0}$. (2p) Explain in words how the condition $\sum_{i=1}^{N} x_{i} l_{i}\left(x_{0}\right)=x_{0}$ reduces the bias at the two edges of the data points. (2p)
c) In part a) and b), suppose that $K_{\lambda}\left(x_{0}, x_{j}\right)$ is a Gaussian kernel with λ the standard deviation. Explain clearly in words the bias-variance tradeoff when λ varies from small to big values. (2 p)

Problem 5

For parts a) to c) below, suppose that the data is generated from the model $Y=f(X)+\epsilon$, with $E(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$.
a) If $\hat{f}_{k}\left(x_{0}\right)$ is the k-nearest neighbor regression fit and assume that the values of x_{i} in the sample are fixed (i.e., non-random), show that the expected prediction error at x_{0} is given by

$$
E\left[\left(Y-\hat{f}_{k}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right]=\sigma^{2}+\left[f\left(x_{0}\right)-\frac{1}{k} \sum_{l=1}^{k} f\left(x_{(l)}\right)\right]^{2}+\sigma^{2} / k
$$

where the subscript (l) indicates the l-th nearest neighbor to $x_{0} .(4 \mathrm{p})$
b) Discuss the bias-variance tradeoff in part a) as k changes. (2p)
c) Now consider the ridge regression fit $\hat{f}_{\lambda}(x)$, where λ is the parameter controlling the shrinkage, show that the variance in the expected prediction error at $x_{0}, E\left[\left(Y-\hat{f}_{\lambda}\left(x_{0}\right)\right)^{2} \mid X=x_{0}\right]$, is given by $\operatorname{Var}\left[\hat{f}_{\lambda}\left(x_{0}\right)\right]=$ $\left\|\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} x_{0}\right\|^{2} \sigma^{2} .(4 \mathrm{p})$

Good Luck!

