STOCKHOLM UNIVERSITY DEPT. OF MATHEMATICS Div. of Mathematical statistics MT 7038 EXAMINATION Jan 9, 2023

Exam in Statistical Learning Jan 9, 2023, time 14:00-19:00

Examinator: Chun-Biu Li, cbli@math.su.se. *Permitted aids:* When writing the exam, you may use any notes, textbooks and printouts. **However, electronics are not allowed**. *Return of the exam:* To be announced later.

NOTE: The exam consists of 5 problems and each with 10 points. Logical explanation and steps leading to the final solution must be clearly shown in order to receive full marks. Minimum points to receive a given grade are as follows:

NOTE: The mathematical notations in this exam are the same as those in the course book.

NOTE: For those parts require explanation in words, your writing must be to the point, redundant writing irrelevant to the solution will result in point deduction.

Problem 1

- a) What information is needed in order to draw the Bayes decision boundary and evaluate the error rate of the Bayes classifier? (2p)
- b) Consider the case of an orthonormal $N \times p$ input matrix **X**. Let $\hat{\beta}_j$ $(j = 1, \dots, p)$ be the least square estimators of the parameters. Derive the estimators in Table 3.4 in the course book for the best subset with size M (3p), ridge regression (2p), and Lasso (3p).

Problem 2

- a) Show that the degree-of-freedom of quadratic discriminant analysis equals to $(K-1)\left[\frac{p(p+3)}{2}+1\right]$, where K is the number of classes and p is the dimension of the predictor variables. (4p)
- b) In the Rosenblatt's perception learning algorithm, one minimizes the cost function $D(\beta, \beta_0) = -\sum_{i \in M} y_i(x_i^{\top}\beta + \beta_0)$, where $y_i = -1$ or 1, and M is the set of misclassified points. One problem of this cost function is that there is no unique separation hyperplane when the data is separable. Consider minimizing another cost function, $D_1(\beta, \beta_0) = -\sum_{i=1}^N y_i(x_i^{\top}\beta + \beta_0)$ subject to the constraint $\|\beta\| = 1$, where N is the number of observations.

Describe this criterion clearly **in words** in terms of the signed distance and explain if this new cost function solves the uniqueness problem in the separable case. (3p)

c) Discuss one drawback of using the cost function $D_1(\beta, \beta_0)$ with constraint $\|\beta\| = 1$ in part c), then propose a possible solution to it and justify your answers. Hint: You may consider drawing a figure to help your explanation. (3p)

Problem 3

- a) Let $\hat{\mathbf{f}} = \mathbf{S}_{\lambda} \mathbf{y}$ be the fitted *N*-vector in the smoothing spline for *N* data points where \mathbf{S}_{λ} is the smoother matrix with regularization parameter λ . Explain **in words** why rank(\mathbf{S}_{λ}) is not a good choice for the effective degree of freedom for the smoothing spline. You can cite the equations and properties in the course book to support your answer. (3p)
- b) Consider the basis expansion of a function f(X) using the cubic splines with K interior knots: $f(X) = \sum_{j=0}^{3} \beta_j X^j + \sum_{k=1}^{K} \alpha_k (X - \xi_k)^3_+$, where ξ_k are the positions of the knots. Show that f(X) has continuous first and second derivatives at the knots. (2p)
- c) Now taking into account the additional boundary conditions imposed by the natural cubic spline, show that this implies $\beta_2 = 0$, $\beta_3 = 0$, $\sum_{k=1}^{K} \alpha_k = 0$, $\sum_{k=1}^{K} \alpha_k \xi_k = 0$. (2p)
- d) Now show that the results in b) lead to the basis functions of the natural cubic spline (i.e., Eq. 5.4 and 5.5 in the course book). (3p)

Problem 4

a) Consider the local linear regression at a target point x_0 as a weighted least square estimation:

 $\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^N K_{\lambda}(x_0, x_i) \left[y_i - \alpha(x_0) - \beta(x_0) x_i \right]^2$, with kernel $K_{\lambda}(x_0, x_i)$. Show that the estimate is given by

$$\hat{f}(x_0) = b(x_0)^\top \left(\mathbf{B}^\top \mathbf{W}(x_0) \mathbf{B} \right)^{-1} \mathbf{B}^\top \mathbf{W}(x_0) \mathbf{y},$$

where $b(x)^{\top} = (1, x)$, **B** is the $N \times 2$ matrix with the *i*-th row given by $b(x_0)^{\top}$, and $\mathbf{W}(x_0)$ is the $N \times N$ diagonal matrix with the *i*-th diagonal element given by $K_{\lambda}(x_0, x_i)$. (4p)

- b) Now let $\hat{f}(x_0) = \sum_{i=1}^{N} l_i(x_0)y_i$, show that $\sum_{i=1}^{N} x_i l_i(x_0) = x_0$. (2p) Explain **in words** how the condition $\sum_{i=1}^{N} x_i l_i(x_0) = x_0$ reduces the bias at the two edges of the data points. (2p)
- c) In part a) and b), suppose that $K_{\lambda}(x_0, x_j)$ is a Gaussian kernel with λ the standard deviation. Explain clearly **in words** the bias-variance tradeoff when λ varies from small to big values. (2p)

Problem 5

For parts a) to c) below, suppose that the data is generated from the model $Y = f(X) + \epsilon$, with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.

a) If $\hat{f}_k(x_0)$ is the k-nearest neighbor regression fit and assume that the values of x_i in the sample are fixed (i.e., non-random), show that the expected prediction error at x_0 is given by

$$E\left[\left(Y - \hat{f}_k(x_0)\right)^2 | X = x_0\right] = \sigma^2 + \left[f(x_0) - \frac{1}{k}\sum_{l=1}^k f(x_{(l)})\right]^2 + \sigma^2/k,$$

where the subscript (l) indicates the *l*-th nearest neighbor to x_0 . (4p)

- b) Discuss the bias-variance tradeoff in part a) as k changes. (2p)
- c) Now consider the ridge regression fit $\hat{f}_{\lambda}(x)$, where λ is the parameter controlling the shrinkage, show that the variance in the expected prediction error at x_0 , $E\left[\left(Y \hat{f}_{\lambda}(x_0)\right)^2 | X = x_0\right]$, is given by $Var[\hat{f}_{\lambda}(x_0)] = \|\mathbf{X}(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}x_0\|^2 \sigma^2$. (4p)

Good Luck!