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Stochastic Processes and Simulation II

• Lectures: Matteo Sfragara, matteo.sfragara@math.su.se,
Computer labs: Taariq Fahran Nazar, taariq.nazar@math.su.se.

• Book: S.M. Ross, Introduction to Probability Models, 11th edition,
Academic Press, 2014.

• Homepage on kurser.math.su.se, course MT5012 (VT23).
Register also in Ladok.

• Schedule: Monday and Thursday (not on 10/04, 01/05 and 18/05).
09:15-10:00, discussion of exercises,
10:15-11:00, lecture,
11:15-12:00, lecture.
Computer labs on 04/05 and 08/05.

• Written exam + report of lab exercises (with deadlines).
Exam on 30/05, 14:00-19:00.
Re-exam on 15/08, 14:00-19:00.
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Contents

• Poisson processes and continuous-time Markov chains (Chapters
5-6), Sessions 1-2.

• Renewal theory (Chapter 7), Sessions 3-5.

• Queueing theory (Chapter 8), Sessions 6-7.

• Simulation (Chapter 11), Sessions 8-10.

• Brownian motion and stationary processes (Chapter 10), Sessions
11-12.
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Poisson processes

Let N(t) be the number of arrivals by time t, with N(0) = 0.

A stochastic process {N(t), t ≥ 0} is said to be a (homogeneous)
Poisson process with rate λ > 0 if is independent of the past
(independent increments) and the number of arrivals in any interval of
length t is Po(λt) (stationary increments).

Interarrival times are Exp(λ).

• Nonhomogeneous Poisson process: arrival rate λ = λ(t); no
longer stationary increments, arrivals may be more likely to occurr at
certain times.

• Compound Poisson process: groups arrive according to a Poisson
process and their sizes are i.i.d..

• Mixed Poisson process: conditional on a r.v. L = λ, we have a
Poisson process with rate λ; increments are stationary, but not
independent, so it is not a Poisson process.
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Continuous-time Markov chains

A stochastic process {X (t), t ≥ 0} is a continuous-time Markov chain
if the future depends only on the present and not on the past, i.e., if

P(X (t + s) = j |X (s) = i ,X (u) = x(u), 0 ≤ u < s)

= P(X (t + s) = j |X (s) = i).

• The process moves between states according to a discrete-time
Markov chain, but the amount of time it spends in each state,
before jumping to the next state, is exponentially distributed.

• The transition probabilities that a process now in state i will be in
state j at a time t later

Pij(t) = P(X (t + s) = j |X (s) = i).

• If the limiting probabilities Pj = limt→∞ Pij exist (sufficient
conditions), the vector (Pj)j is a stationary distribution and Pj

represents the long-run proportion of time that the process is in
state j .
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Renewal theory

Let N(t) be the number of arrivals by time t. If the interarrival times Xn

are i.i.d., then {N(t), t ≥ 0} is a renewal process.

The time of the n-th renewal is Sn =
∑n

i=1 Xi and N(t) ≥ n iff Sn ≤ t.

Limit theorems: N(t)
t →

1
E[Xn]

and (ERT) E[N(t)]
t → 1

E[Xn]
a.s..

• Reward renewal process R(t) =
∑N(t)

i=1 Rn, with Rn i.i.d. rewards
at each renewal.
Limit theorem (RRT): R(t)

t →
E[Rn]
E[Xn]

and E[R(t)]
t → E[Rn]

E[Xn]
a.s..

• Regenerative process: there exist time points at which the process
restarts itself; they consitute the arrival times of a renewal process.

• Semi-Markov process: as a continuous-time Markov chain, but the
time it spends in a state before jumping is not exponential.

Inspection paradox: the length of a renewal interval containing a
specific time point tends to be larger than an ordinary renewal interval.
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Queueing theory

Queueing system: customers arrive randomly; they might have to wait
some time in queue; once served they leave the system.

Condition: mean departure time < mean arrival time.

What is the average number of customers in the system? What is the
average waiting time?

• M/M/1 queue: Poisson (memoryless) arrivals, exponential
(memoryless) service times, 1 server.

• M/G/1 queue: Poisson (memoryless) arrivals, general service times,
1 server.

• M/M/k queue: Poisson (memoryless) arrivals, exponential
(memoryless) service times, k servers.

The PASTA principle: the proportion of arrivals that find n customers
equals the proportion of time that the system contains n customers.
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Simulation

Given a random vector X = (X1, . . . ,Xn) with density f (x1, . . . , xn) and
some n-dimensional function g , how do we compute

E[g(X)] =

∫ ∫
· · ·

∫
g(x1, . . . , xn)f (x1, . . . , xn) dx1 · · · dxn,

if analytic computation is not possible?

Monte Carlo simulation.

1 Simulate r independent random vectors X(i) = (X
(i)
1 , . . . ,X

(i)
n ),

i = 1, . . . , r , having density f (x1, . . . , xn).

2 Compute Yi = g(X(i)).

3 SLLN: limr→∞

∑r
i=1 Yi

r = E[Yi ] = E[g(X)] a.s..

How to simulate random vectors with specified joint distribution? How

to reduce the variance of
∑r

i=1 Y
(i)

r ? How to simulate Poisson processes?
How to simulate Markov chains?
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Brownian motion

Consider a symmetric random walk, which at each time is equally likely
to go one step up or down. Take smaller and smaller steps in smaller and
smaller time intervals, and eventually take the limit.

The standard Brownian motion {B(t), t ≥ 0} is a scaled symmetric
random walk defined as

B(n)(t) :=
Sbntc√

n
→ B(t) ∼ N (0, t) as n→∞.

where {Si+1 − Si , i ≥ 0} take values +1 and −1 with equal probability.

• The Brownian motion {B(t), t ≥ 0} has independent and
stationary increments.

• Brownian motion with drift µ and variance σ2: X (t) = σB(t) + µt.

Gaussian process: if X (t1), . . . ,X (tn) have joint normal distribution.

Stationary process: if X (t1), . . . ,X (tn) and X (t1 + s), . . . ,X (tn + s)
have the same joint distribution.

Stochastic Processes and Simulation II


