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Queueing systems

Queueing system:

(i) customers arrive in some random manner at service facility;

(ii) upon arrival, they might have to wait some time in queue until it is
their turn to be served;

(iii) once served they leave the system.

Quantities of interest:

• L, the average number of customers in the system;

• LQ , the average number of customers waiting in queue;

• W , the average time a customer spends in the system;

• WQ , the average time a customer spends waiting in queue.

Stochastic Processes and Simulation II



DR
AF
T

Queueing systems Exponential models The PASTA principle The M/G/1 queue Exercises

Cost equations

Basic cost equation. If customers pay money to the system according
to some rule, then

average rate at which the system earns

= λa × average amount a customer pays,

where λa is the average arrival rate of the customers. Note that if N(t)

denotes the number of arrivals by time t, then λa = limt→∞
N(t)
t .

More equations:

• 1 SEK per unit time while in the system: L = λaW (Little’s
formula).

• 1 SEK per unit time while in the queue: LQ = λaWQ .

• 1 SEK per unit time while in service (with service time S):

average number of customers in service = λaE(S).

Stochastic Processes and Simulation II
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The models

Types of queue:

• The M/M/1 queue. Poisson (memoryless) arrivals, exponential
(memoryless) service times, 1 server.

• The M/G/1 queue. Poisson (memoryless) arrivals, general service
times, 1 server.

• The M/M/k queue. Poisson (memoryless) arrivals, exponential
(memoryless) service times, k servers.

Types of service:

• FCFS - first come, first served.

• LCFS - last come, first served: arriving customers move to the front
of the queue, or start service immediately and one of the customers
in service moves back to the front of the queue.

• PS - processor sharing: the capacity of the server is equally shared
between the customers, which then don’t have to wait at all.
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Analyzing the models

• Determine the limiting probabilities Pn = P(L = n), for n = 0, 1, . . . ,
representing the long-run probabilities that the system contains
exactly n customers.

Condition for the limiting probabilities to exist:

mean departure time < mean arrival time,

otherwise the queue size increases to infinity.

• Determine the quantities L, LQ ,W ,WQ .

Stochastic Processes and Simulation II
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The M/M/1 queue

The M/M/1 queue:

(i) customers arrive according to a Poisson process with rate λ;

(ii) FCFS policy, i.e., if the server is free a customer goes directly into
service, otherwise it joins the end of the queue; service times are
i.i.d. exponential r.v.’s, S ∼ Exp(µ).

(iii) a customer leaves the system immediately after being served and the
first in the queue (if any) enters service.

Condition: λ < µ, i.e., the arrival rate must be smaller than the service
rate.
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Limiting probabilities

• Continuous-time Markov chain, balance equations:

λP0 = µP1,

(λ+ µ)Pn = λPn−1 + µPn+1, n ≥ 1.

• Rewriting, P1 = λ
µP0 and Pn+1 = λ

µPn +
(
Pn − λ

µPn−1
)

for n ≥ 1.
Solving in terms of P0, for n ≥ 2,
Pn = λ

µPn−1 +
(
Pn−1 − λ

µPn−2
)

= λ
µPn−1 =

(
λ
µ

)n
P0.

• Since 1 =
∑∞

n=0 Pn =
∑∞

n=0

(
λ
µ

)n
P0 = P0

1−λµ
, we get the limiting

probabilities

P0 = 1− λ

µ
,

Pn =

(
λ

µ

)n(
1− λ

µ

)
, n ≥ 1.

Note the necessary condition λ < µ.
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Quantities of interest

• L =
∑∞

n=0 nPn =
∑∞

n=0 n
(
λ
µ

)n(
1− λ

µ

)
= λ

µ−λ (using the identity∑∞
n=0 nx

n = x
(1−x)2 ).

• W = L
λ = 1

µ−λ .

• WQ = W − E[S ] = W − 1
µ = λ

µ(µ−λ) .

• LQ = λWQ = λ2

µ(µ−λ) . Note that LQ 6= L− 1, but LQ = L− λ
µ .

Example 8.3.
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Time spent in the system

• The amount of time that a customer spends in the system is

W ∗ ∼ Exp(µ− λ).

Proof. Given the number of customers already in the system when our
customer arrives N = n, W ∗ is distributed as the sum of n + 1 i.i.d.
exponential r.v.’s with rate µ, i.e., as Γ(n + 1, µ). Write

fN|W ∗=t(n) =
fN,W ∗(n, t)

fW ∗(t)
=

fN(n)fW ∗|N=n(t)

fW ∗(t)

=

(
λ
µ

)n(
1− λ

µ

)
µeµt (µt)

n

n!

fW ∗(t)
= K

(λt)n

n!
,

with K = (µ−λ)e−µt
fW∗ (t) . Since

1 =
∑∞

n=0 fN|W ∗=t(n) = K
∑∞

n=0
(λt)n

n! = Keλt , we get K = e−λt . Hence,

fW ∗(t) =
(µ− λ)e−µt

K
= (µ− λ)e−(µ−λ)t .
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The next arrival

Example 8.4.

Starting from a stationary state, what is the probability that the next
arrival finds Na = n customers in the system?

Inspection paradox: It is not Pn =
(
λ
µ

)n(
1− λ

µ

)
. Indeed, the time from

the current time t to the next arrival is Exp(λ), as well as the time from
t to the last arrival. Hence, time between the the last and the next
arrivals is Γ(2, λ). We will see that:

• E[Na] < L, i.e., the average number of customers seen by the next
arrival is less than the average number of customers in the system;

• P(Na = 0) > P0, i.e., the next arrival is more likely to find an empty
system than is an average arrival.
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Conditioning on the number of customers currently in the system X ,

P(Na = n) =
∞∑
k=0

P(Na = n |X = k)P(X = k)

=
∞∑
k=0

P(Na = n |X = k)

(
λ

µ

)n(
1− λ

µ

)

=
∞∑
k=n

P(Na = n |X = k)

(
λ

µ

)n(
1− λ

µ

)

=
∞∑
i=0

P(Na = n |X = n + i)

(
λ

µ

)n+i(
1− λ

µ

)
.
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For n > 0, the next arrival finds n customers if there are i services before
the arrival and then the arrival before the next service, i.e.,

P(Na = n) =
∞∑
i=0

(
µ

λ+ µ

)i
λ

λ+ µ

(
λ

µ

)n+i(
1− λ

µ

)

=

(
λ

µ

)n(
1− λ

µ

)
λ

λ+ µ

∞∑
i=0

(
λ

λ+ µ

)i

=

(
λ

µ

)n+1(
1− λ

µ

)
.

Note that E[Na] =
∑∞

n=0 nP(Na = n) = λ
µ

∑∞
n=1 nPn = λ

µL < L.

For n = 0, the next arrival finds the system empy if there are i services
before the arrival, i.e.,

P(Na = 0) =
∞∑
i=0

(
µ

λ+ µ

)i(
λ

µ

)i(
1− λ

µ

)

=

(
1− λ

µ

) ∞∑
i=0

(
λ

λ+ µ

)i

=

(
1− λ

µ

)(
1 +

λ

µ

)
.

Note that P(Na = 0) > P0 = 1− λ
µ .
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The M/M/1 queue with capacity K

There can be no more than K customers in the system at any time.

• Continuous-time Markov chain, balance equations:

λP0 = µP1,

(λ+ µ)Pn = λPn−1 + µPn+1, 1 ≤ n ≤ K − 1,

µPK = λPK−1.

• Rewriting in terms of P0, we obtain P1 = λ
µP0 and Pn =

(
λ
µ

)n
P0.

• Using
∑K

n=0 Pn = 1, we get the limiting probabilities

Pn =

(
λ
µ

)n(
1− λ

µ

)
1−

(
λ
µ

)K+1
, n = 0, 1, . . . ,K .

No need to impose the condition λ < µ, since the queue size is
bounded and it cannot increase indefinitely.
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The M/M/k queue

If any of the k servers are free, a customer goes directly into service,
otherwise it joins the end of the queue.

• If there are n = 1, . . . , k customers in the system, the time until a
departure is the minimum of n i.i.d. exponentials with rate µ, hence
it will be exponential with rate nµ.

• Continuous-time Markov chain, balance equations:

λP0 = µP1,

(λ+ nµ)Pn = λPn−1 + (n + 1)µPn+1, n < K ,

(λ+ kµ)Pn = λPn−1 + kµPn+1, n ≥ k.

• The limiting probabilities are given in Example 8.6. Note the
necessary condition λ < kµ.
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Birth and death queueing models

Birth and death queueing model: arrival rate λn and departure rate µn

depend on the number of customers in the system n = 0, 1, . . . .

Examples:

• M/M/1: λn = λ for n ≥ 0 and µn = µ for n ≥ 1.

• M/M/1 with capacity K : λn =

{
λ, n < K ,

0, n ≥ K ,
and µn = µ for n ≥ 1.

• M/M/k: λn = λ for n ≥ 0 and µn =

{
nµ, n ≤ K ,

kµ, n ≥ K .

Example 8.7: M/M/1 with impatient customers.
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Idle and busy periods in birth and death models

The system alternates between idle periods when there are no customers
and busy periods in which there is at least one customer.

• Idle periods are i.i.d. I ∼ Exp(λ0), hence E[I ] = 1
λ0

.

• Busy periods are also i.i.d., hence the long-run proportion of time in
which the system is empy is

P0 =
E[I ]

E[I ] + E[B]
=

1

1 + λ0E[B]
,

which gives

E[B] =
1− P0

λ0P0
.

Note that in the M/M/1 queue, we get E[B] =
λ
µ

λ
(
1−λµ

) = 1
µ−λ .
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Steady-state probabilities

• If X (t) is the number of customers in the system at time t, the
limiting probabilities

Pn = lim
t→∞

P(X (t) = n) = P(L = n), n ≥ 0,

represent the proportion of time that the system contains exactly n
customers.

• Let an be the proportion of arriving customers that find n
customers already in the system.

• Let dn be proportion of departing customers that leave behind n
other customers in the system.

They are not always equal: Example 8.1 with a0 = d0 = 1 6= P0.

Stochastic Processes and Simulation II
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Arrivals and departures see the same number of customers

Theorem

The rate at which arrivals find n customers equals the rate at which
departures leave n customers, and

an = dn, n ≥ 0.

Proof. Note that,

an =
rate at which arrivals find n customers

overall arrival rate
and

dn =
rate at which departures leave n customers

overall departure rate
.

Since the number of transitions from n to n + 1 must equal to within 1
the number of transitions from n + 1 to n, the numerators are equal. If
the denominators are equal, then an = dn, and note that the result holds
even if they are not (special cases).

Stochastic Processes and Simulation II
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The PASTA principle

On average, arrivals and departures always see the same number of
customers, but they do not in general see time averages (Example 8.1).

Theorem (The PASTA principle)

Poisson Arrivals See Time Averages. In particular, Pn = an.

Proof 1. Since the Poisson process has independent increments, knowing
that an arrival occurs at time t gives us no information about what
occurred prior to t. Hence, an arrival would just see the system according
to the limiting probabilities, i.e., an = Pn.

Proof 2. The total time the system has exactly n customers by time T is
PnT . Then the number of arrivals in [0,T ] that find n customers is
λPnT . In the long-run (as T →∞), the rate at which arrivals find n
customers is λPn. Since λ is the overall arrival rate, it follows that the
proportion of arrivals that find n customers is an = λPn

λ = Pn.

Stochastic Processes and Simulation II
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Example

Example 8.2: people at a bus stop.
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Work and cost equations

Define the work in the system at any time t as the sum of the remaining
service times of all customers in the system at time t. Let V denote the
average work in the system.

• Each customer pays at a rate of y per unit time when his remaining
service time is y , whether he is in the queue or in service. In other
words, the rate at which the system earns is the work in the system.

• Recall the basic cost equation:

E[rate at which the system earns] = λaE[amount paid by a customer].

• A customer pays at rate S per time unit while he is in queue and at
rate S − x after being in service for time x . Hence, if W ∗ is the time
a given customer spends in queue,

V = λaE
[
SW ∗Q +

∫ S

0

(S − x) dx

]
= λaE[SW ∗Q ] +

λaE[S2]

2
.

• If the service time is independent of the waiting time of customers in

the queue, then V = λaE[S ]WQ + λaE[S2]
2 .

Stochastic Processes and Simulation II
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Quantities of interest

• The time a customer waits in the queue equals the work that he sees
in the system when he arrives, since there is only a single server.

Taking expectations, WQ equals the average work seen by an arrival,
which, due to Poisson arrivals, equals the average work in the
system. Hence, WQ = V .

Pollaczek-Khintchine formula:

WQ =
λE[S2]

2(1− λE[S ])
.

• The other quantities of interest can be obtained:

LQ = λWQ , W = WQ + E[S ], L = λW .

• Note the necessary condition λ < 1
E[S] , i.e., the arrival rate must be

smaller than the service rate.
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Idle and busy periods

• Idle periods are i.i.d. I ∼ Exp(λ), hence E[I ] = 1
λ .

• Busy periods are also i.i.d., hence the long-run proportion of time
in which the system is empty is

P0 =
E[I ]

E[I ] + E[B]
=

1

1 + λE[B]
,

which gives

E[B] =
1− P0

λP0
.

Since the average number of customers in service is λE(S) (cost
equation) and is also 0 · P0 + 1 · (1− P0) = 1− P0, we get
P0 = 1− λE[S ]. Hence,

E[B] =
E[S ]

1− λE[S ]
.
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Number of customers in a busy period

What is the number of customers C served in a busy period?
• On average, for every E[C ] arrivals exactly one will find the system

empty (the first one), hence a0 = 1
E[C ] . Since a0 = P0 = 1− λE[S ],

we get

E[C ] =
1

1− λE[S ]
.

• Recall the RRT: if R(t) is the reward earned by time t, then

lim
t→∞

E[R(t)]

t
=

E[reward earned during a cycle]

E[length of a cycle]
.

If the reward for a customer is 1, then we get

λ =
E[customers per cycle]

E[length of a cycle]
=

E[C ]
1
λ + E[B]

.

Hence,

E[C ] = λE[B] + 1 =
1

1− λE[S ]
.
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Exercises

Session 6. Chapter 8: 1, 6, 8 (do part c before part b), 12a-b.

Session 7. Chapter 8: 23 (for questions c,d,e, express the answer in PS ’s,
where S is the state, but you do not have to compute the PS ’s), 28, 36,
37, 40.
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