Some solutions, Stochastic processes II

Chapter 5

$5.3 X$ is exponentially distributed and therefore memoryless. This implies that for all $t, s>0$, we have

$$
\mathbb{P}(X>t+s \mid X>t)=\mathbb{P}(X>s) .
$$

In particular, this implies that for any continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$(or any other nice enough function), we have

$$
\mathbb{E}[f(X) \mid X>t]=\mathbb{E}[f(X+t)]
$$

So,

$$
\mathbb{E}\left[X^{2} \mid X>1\right]=\mathbb{E}\left[(X+1)^{2}\right]=\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X]+1,
$$

which is only equal to $\mathbb{E}\left[X^{2}\right]+1$ if $\mathbb{E}[X]=0$ (which is never for an exponental distribution), and equal to

$$
(1+\mathbb{E}[X])^{2}=(\mathbb{E}[X])^{2}+2 \mathbb{E}[X]+1
$$

if $\mathbb{E}\left[X^{2}\right]=(\mathbb{E}[X])^{2}$ (i.e. if $\operatorname{Var}(X)=0$), which is also never. So only $3(\mathrm{a})$ is true.
5.8 Let X have density function $f_{X}(t)=\lambda e^{-\lambda t}$ and Y have density function $f_{Y}(t)=\mu e^{-\mu t}$, both for $t \geq 0$. Furthermore X and Y are independent.

We compute

$$
\begin{aligned}
\mathbb{P}(X>t \mid X & \leq Y)=\frac{\mathbb{P}(X>t, X \leq Y)}{\mathbb{P}(X \leq Y)}=\frac{\int_{t}^{\infty} \int_{x}^{\infty} f_{Y}(y) f_{X}(x) d y d x}{\int_{0}^{\infty} \int_{x}^{\infty} f_{Y}(y) f_{X}(x) d y d x} \\
& =\frac{\int_{t}^{\infty} \int_{x}^{\infty} \mu e^{-\mu y} \lambda e^{-\lambda x} d y d x}{\int_{0}^{\infty} \int_{0}^{\infty} \mu e^{-\mu y} \lambda e^{-\lambda x} d y d x}=\frac{\int_{t}^{\infty} \lambda e^{-\lambda x} e^{-\mu x} d x}{\int_{0}^{\infty} \lambda e^{-\lambda x} e^{-\mu x} d x}=\frac{\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}}{\frac{\lambda}{\lambda+\mu}}=e^{-(\lambda+\mu) t},
\end{aligned}
$$

which is equal to $\mathbb{P}(\min (X, Y)>t)$. (See page 288).
5.36 Let $\{N(t), t \geq 0\}$ be a homogeneous Poisson Process with rate λ and let for $i=1,2, \cdots$ the random variables X_{i} be independent identically distributed exponential random variables with mean $1 / \mu$, which are independent of $\{N(t), t \geq 0\}$. Define $S(t)=s \prod_{i=1}^{N(t)} X_{i}$. Then using the "telescoping property of expectations"
$\mathbb{E}[S(t)]=\mathbb{E}\left[\prod_{i=1}^{N(t)} X_{i}\right]=\mathbb{E}\left[\mathbb{E}\left[\prod_{i=1}^{N(t)} X_{i} \mid N(t)\right]\right]=\mathbb{E}\left[\prod_{i=1}^{N(t)} \mathbb{E}\left[X_{i} \mid N(t)\right]\right]=\mathbb{E}\left[\prod_{i=1}^{N(t)}(1 / \mu)\right]=\mathbb{E}\left[(1 / \mu)^{N(t)}\right]$,
where we used the independence of the X_{i} 's for the third identity. We may now use that $N(t)$ is Poisson distributed with expectation λt and thus that

$$
\mathbb{E}\left[(1 / \mu)^{N(t)}\right]=\sum_{k=0}^{\infty} \mathbb{P}(N(t)=k)(1 / \mu)^{k}=\sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}(1 / \mu)^{k}=e^{-\lambda(1-1 / \mu) t} .
$$

Similarly, using that $\mathbb{E}\left[\left(X_{i}\right)^{2}\right]=\operatorname{Var}\left(X_{i}\right)+\left(\mathbb{E}\left[X_{i}\right]\right)^{2}=1 / \mu^{2}+1 / \mu^{2}=2 / \mu^{2}$, we obtain
$\mathbb{E}\left[(S(t))^{2}\right]=\mathbb{E}\left[\left(\prod_{i=1}^{N(t)} X_{i}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\prod_{i=1}^{N(t)}\left(X_{i}\right)^{2} \mid N(t)\right]\right]=\mathbb{E}\left[\prod_{i=1}^{N(t)}\left(2 / \mu^{2}\right)\right]=\mathbb{E}\left[\left(2 / \mu^{2}\right)^{N(t)}\right]=e^{-\lambda\left(1-2 / \mu^{2}\right) t}$.
5.40 Use definition 5.2 (page 299) and see that
(1) $N_{1}(0)+N_{2}(0)=0$,
(2) for all $0 \leq t_{1}<t_{2}<t_{3}<t_{4} . N_{1}\left(t_{2}\right)-N_{1}\left(t_{1}\right), N_{1}\left(t_{4}\right)-N_{1}\left(t_{3}\right), N_{2}\left(t_{2}\right)-N_{2}\left(t_{1}\right)$ and $N_{2}\left(t_{4}\right)-N_{2}\left(t_{3}\right)$ are independent and therefore, $N_{1}\left(t_{2}\right)+N_{2}\left(t_{2}\right)-N_{1}\left(t_{1}\right)-N_{2}\left(t_{1}\right)$ and $N_{1}\left(t_{4}\right)+N_{2}\left(t_{4}\right)-N_{1}\left(t_{3}\right)-N_{2}\left(t_{3}\right)$ are independent, and we have independent increments, (3)

$$
\begin{aligned}
& \mathbb{P}\left(N_{1}(t+h)+N_{2}(t+h)-N_{1}(t)-N_{2}(t)=1\right) \\
= & \mathbb{P}\left(N_{1}(t+h)-N_{1}(t)=1, N_{2}(t+h)-N_{2}(t)=0\right) \\
& +\mathbb{P}\left(N_{1}(t+h)-N_{1}(t)=0, N_{2}(t+h)-N_{2}(t)=1\right) \\
= & \left(\lambda_{1} h+o(h)\right)\left(1-\lambda_{2} h+o(h)\right)+\left(1-\lambda_{1} h+o(h)\right)\left(\lambda_{2} h+o(h)\right) \\
= & \left(\lambda_{1}+\lambda_{2}\right) h+o(h)
\end{aligned}
$$

while (4)

$$
\begin{aligned}
& \mathbb{P}\left(N_{1}(t+h)+N_{2}(t+h)-N_{1}(t)-N_{2}(t) \geq 2\right) \\
= & \mathbb{P}\left(N_{1}(t+h)-N_{1}(t)=N_{2}(t+h)-N_{2}(t)=1\right) \\
& +\mathbb{P}\left(N_{1}(t+h)-N_{1}(t) \geq 2 \cup N_{2}(t+h)-N_{2}(t) \geq 2\right) \\
\leq & \mathbb{P}\left(N_{1}(t+h)-N_{1}(t)=N_{2}(t+h)-N_{2}(t)=1\right) \\
& +\mathbb{P}\left(N_{1}(t+h)-N_{1}(t) \geq 2\right)+\mathbb{P}\left(N_{2}(t+h)-N_{2}(t) \geq 2\right) \\
= & \left(\lambda_{1} h+o(h)\right)\left(\lambda_{2} h+o(h)\right)+o(h)+o(h) \\
= & o(h) .
\end{aligned}
$$

Where we have used that the product of two functions which are linear in h is $o(h)$. This finishes the proof.
5.45 Let $\{N(t), t \geq 0\}$ be a homogeneous Poisson Process with rate λ, which is independent of $T(\geq 0)$, which has mean μ and variance σ^{2}. Note that

$$
\operatorname{Cov}(T, N(T))=\mathbb{E}[T N(T)]-\mathbb{E}[T] \mathbb{E}[N(T)]
$$

Then observe
$\mathbb{E}[T N(T)]=\mathbb{E}[\mathbb{E}[T N(T)] \mid T]]=\mathbb{E}[T \times \lambda T]=\lambda \mathbb{E}\left[T^{2}\right]=\lambda\left(\operatorname{Var}(T)+(\mathbb{E}[T])^{2}\right)=\lambda\left(\sigma^{2}+\mu^{2}\right)$
and

$$
\mathbb{E}[N(T)]=\mathbb{E}[\mathbb{E}[N(T)] \mid T]]=\mathbb{E}[\lambda T]=\lambda \mathbb{E}[T]=\lambda \mu
$$

So,

$$
\operatorname{Cov}(T, N(t))=\lambda\left(\sigma^{2}+\mu^{2}\right)-\mu \times \lambda \mu=\lambda \sigma^{2}
$$

The variance of $N(T)$ can be computed similarly: $\operatorname{Var}(N(T))=\mathbb{E}\left[(N(T))^{2}\right]-(\mathbb{E}[N(T)])^{2}$, where

$$
\mathbb{E}\left[(N(T))^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[(N(T))^{2}\right] \mid T\right]=\mathbb{E}\left[\lambda T+\lambda^{2} T^{2}\right]=\lambda \mu+\lambda^{2}\left(\sigma^{2}+\mu^{2}\right)
$$

So,

$$
\operatorname{Var}(N(T))=\lambda \mu+\lambda^{2}\left(\sigma^{2}+\mu^{2}\right)-(\lambda \mu)^{2}=\lambda \mu+\lambda^{2} \sigma^{2} .
$$

5.49 A translation of this problem is to compute $\mathbb{P}(N(T)-N(s)=1)$, where $\{N(t), t \geq 0\}$ be a homogeneous Poisson Process with rate λ. Because if $N(T)-N(s)>1$, then the first arrival after s is not the last one before T while if $N(T)-N(s)=0$, the first arrival after s is after T. By definition we have

$$
\begin{equation*}
\mathbb{P}(N(T)-N(s)=1)=\frac{(\lambda(T-s))^{1}}{1!} e^{-\lambda(T-s)}=\lambda(T-s) e^{-\lambda(T-s)} \tag{1}
\end{equation*}
$$

This value is maximized if the derivative with respect to s is 0 or if $s=0$ or if $s=T$. if $s=T$, (1) is clearly 0 , while if $s=0$ this value is $\lambda T e^{-\lambda T}$, which is easily checked to be at most e^{-1}. The derivative of $\mathbb{P}(N(T)-N(s)=1)$ is 0 , if $\lambda(\lambda(T-s)-1) e^{-\lambda(T-s)}=0$, which implies that $T-s=1 / \lambda$. Filling in this value for s in (1) gives $\mathbb{P}(N(T)-N(s)=1)=e^{-1}$, which is the maximal probability of winning.
5.60 By the order statistic property we obtain (a) $(1 / 3)^{2}=1 / 9$, (b) $1-(2 / 3)^{2}=5 / 9$.
5.46 Let $\{N(t), t \geq 0\}$ be a homogeneous Poisson Process with rate λ and let for $i=$ $1,2, \cdots$ the random variables X_{i} be independent identically distributed random variables with mean μ, which are independent of $\{N(t), t \geq 0\}$. Then,

$$
\begin{aligned}
\operatorname{Cov}\left(N(t), \sum_{i=1}^{N(t)} X_{i}\right) & =\mathbb{E}\left[N(t) \sum_{i=1}^{N(t)} X_{i}\right]-\mathbb{E}[N(t)] \mathbb{E}\left[\sum_{i=1}^{N(t)} X_{i}\right] \\
= & \mathbb{E}\left[\mathbb{E}\left[N(t) \sum_{i=1}^{N(t)} X_{i} \mid N(t)\right]\right]-\mathbb{E}[N(t)] \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{N(t)} X_{i} \mid N(t)\right]\right] \\
= & \mathbb{E}[N(t) \mu N(t)]-\mathbb{E}[N(t)] \mathbb{E}[\mu N(t)]=\mu\left(\lambda t+\lambda^{2} t^{2}\right)-\lambda t \times \mu \lambda t=\mu \lambda t
\end{aligned}
$$

5.78 Consider an inhomogeneous process between time 0 and 9 , where the time is the time (in hours) since 8AM. $\lambda(t)=4$ for $t \in(0,2] ; \lambda(t)=8$ for $t \in(2,4] ; \lambda(t)=8+(t-4)$ for $t \in(4,6]$ and $\lambda(t)=10-2(t-6)$ for $t \in(6,9]$. From the theory on inhomogeneous Poisson processes we know that the total number of arrivals of this Poisson Process is Poisson distributed with expectation $\int_{0}^{9} \lambda(t) d t=8+16+18+21=63$.
5.81b Use part a), but define $G(x)=m(x) / m(t)$ for $x \leq t$ and $G(x)=1$ for $x>t$. Assume that there are $N(t)$ workers injured before time t. Note that this number is Poisson distributed with expectation $m(t)$. By part (a), the times of injury are independent and have distribution $G(x)$ and density $g(x)=m^{\prime}(x) / m(t)$ for $x \leq t$. So, the probability that a worker is still injured at time t is given by $\int_{0}^{t} g(x)(1-F(t-x)) d x$. The expected number of workers injured at time t is then given by this probability times the expected number of workers injured before time t. This product is given by $\int_{0}^{t} m^{\prime}(x)(1-F(t-x)) d x$.
5.95 Let $\{N(t), t \geq 0\}$ be a mixed Poisson Process with random rate L. We first want to compute $\mathbb{E}[L \mid N(t)=n]$. By the definition of conditional expectation we have

$$
\mathbb{E}[L \mid N(t)=n]=\frac{\mathbb{E}[L \mathbb{1}(N(t)=n)]}{\mathbb{P}(N(t)=n)}
$$

The latter is equal to

$$
\frac{\mathbb{E}[\mathbb{E}[L \mathbb{1}(N(t)=n) \mid L]]}{\mathbb{E}[\mathbb{P}(N(t)=n \mid L)]}=\frac{\mathbb{E}\left[L \frac{(L t)^{n}}{n!} e^{-L t}\right]}{\mathbb{E}\left[\frac{(L t)^{n}}{n!} e^{-L t}\right]}=\frac{\mathbb{E}\left[L^{n+1} e^{-L t}\right]}{\mathbb{E}\left[L^{n} e^{-L t}\right]}
$$

For $s>t$ we obtain

$$
\begin{aligned}
& \mathbb{E}[N(s) \mid N(t)=n]=\mathbb{E}[\mathbb{E}[N(s) \mid N(t)=n, L] \mid N(t)=n] \\
&=\mathbb{E}[n+\mathbb{E}[N(s)-N(t) \mid L] \mid N(t)=n]=n+\mathbb{E}[L(t-s) \mid N(t)=n] \\
&=n+(t-s) \mathbb{E}[L \mid N(t)=n] .
\end{aligned}
$$

For $s<t$ we obtain

$$
\mathbb{E}[N(s) \mid N(t)=n]=\mathbb{E}[\mathbb{E}[N(s) \mid N(t)=n, L] \mid N(t)=n]=\mathbb{E}[n s / t \mid N(t)=n]=n s / t
$$

where we have used the order statistic property for computing $\mathbb{E}[N(s) \mid N(t)=n, L]$.

