Chapter 7

7.1 We know that N(¢) < n means that the n-th arrival occurs strictly after time ¢, which
is equivalent to S, > t. So, (a) is true.

For part (b) it is good to observe that N(t) = n implies that the n-th arrival occurs
before or at time ¢, Which implies that S,, < ¢, so (b) is not true.

Similarly, S,, < t implies that the n-th arrival occurs before time ¢, but the n+ 1-st arrival
might be after time ¢, while N(¢) > n implies that the n + 1-st arrival was before time ¢
and therefore (c) is not true.

7.3 (a) Assume ¢ > y (otherwise the probability below is 0). Then using that N(t) = n
is equivalent to S,, <t and S,,;1 > t, we obtain

P(N(t) =n|S, =y) =P(S, <t < Sp1|S =y) =P(Sp41 — S >t —y)=1—F(t —vy).

(b) Recall (e.g. page 33) that

We obtain that
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This is of course exactly what we want, because with the given F' the renewal process has
exponential inter-arrival times, which makes the process a homogeneous Poisson Process.

7.5 This exercise is heavily based on Example 7.3 Let {N(¢);t > 0} be a renewal process
with uniform (0,1) interarrival times and let S, be the time of the n-th arrival in this
process. Then, by the definition of N(1),

N =min{n > 0;5, > 1} = N(1) + 1.

Thus E[N] = p(1) 4+ 1, which by Example 7.3 equals e* — 1+ 1 =e.



7.6 (a) For this exercise to make sense assume that r is a positive integer. The answer fol-
lows immediately from the fact that the sum of r independent exponential (\) distributed
random variables has density function f. Therefore, P(N(t) > n) is the probability that
the n x r-th arrival in a homogeneous Poisson Process with rate A is before time ¢, which
is the probability that a Poisson random variable with expectation At is at least nr.

Alternatively letting fn(x) be the density function of S, we obtain fi(z) = f(x) and
fulx) = f* fual fo Y) fn—1(x — y)dy and by induction it is straightforward to

prove that f,(z) = %

expression for f,(z) we obtain
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. Indeed, it is trivial for n = 1 and using the above

Now performing a change of variables z = y/x (and thus dy = xdz and recognizing the
density of a beta distribution, we obtain, that the above equals
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as desired.

Now recall that P(N(t) > n) = P(S,, <t) fo fn(z)dz. Integration by parts (or using
your favorite mathematical software) gives the desured result.

7.9 Say that a renewal occurs when a new job starts (so either when a job is completed or
at a shock). The inter “arrival” distribution is the distribution of the random variable X
and we know that P(X > ¢) is the product of the probability that the first shock occurs
after time ¢ and the probability that it takes longer than ¢ time units to finish a job. That
is, P(X > t) = e (1 — F(t)). For ease of exposition, assume that F(¢) has a derrivative,
that is, the time until job completion has a density (in the absence of shocks).

Also recall that
E[X] —/ P(X > t)dt = — —/ e ME(t)dt = < — —/ e Mf(t)dt,
0 A Jo A Ay

where we sed integration by parts in the last identity.

The rate at which renewals occur is 1/E[X] = I — 7ai- The rate at which shocks

occur is A. So the rate at which jobs are completed is the rate of renewals minus the rate
of shocks, which is

A(1—1‘ O 1):%{00}0 Ai]:t(f)




7.12 Consider a renewal process, in which renewals occur if d-events occur. Let X be the
time between two d events. Assume that there is an event at time 0 (for the long run
rate adding a single point does not matter). Throughout what follows, note that there is
a difference in meaning between “d-events” and “events”.

Condition on the time of the first event to occur after time 0, call that time S;. Then
note that the time of the first d-event is equal to S; if the S; < d and it is distributed as
S1 plus the time until the first d-event otherwise. So
d o0 o0 o0
1
E[X] = / the Mdt+ / Xe M (I+E[X])dt = / the Mdt+ / AeTVE[X]dt = TH+E[X]e ™
0 d 0 d

So, E[X] = m and the rate of d-events is A\(1 — e=*¥) and the proportion of all
events which are d-events is the rate of d-events divided by the rate of events, which is
1 —e M,

7.15 a) Let X1, Xs, -+ be a sequence of random variables taking values 2, 4 and 6 each
with probability 1/3 and let N be the first index ¢, for which X; = 2 (this is a stopping
time, since whether N =i only depends on Xi, Xy, -+ X}).

So, upto and including the N-th trip out of the room, the X;’s correspond to the time of
the excursion. After that the random variables have no relevant interpretation.

b) Note E[X;] = 4 and E[N] = 3 So, E[T] = 12.

¢) B[N, Xi|N = n] = YV EBIXG|X: # 2] + E[X,|X, = 2] = (n— 1)5 + 2, which is
generally not equal to 4n = E[> " | X].

d) B, X)) = S0 B, XN = n]P(N = n) = 302, ((n — 1)5 + 2)P(N = n) =
SE[N — 1] +2 = 12.

7.16 In this example E[>_~ | X;] = 4 because N is defined as the fourth time X; = 1.
E[X;] = 1/13 for all ¢, because the cards are ordered uniformly at random and 4 out of 52
cards are aces. So, in order for the equality to hold we need E[N| = 52, which is clearly
nonsense, because that implies that the 52-th card must be an ace with probability 1.

Wald’s identity does not hold here, because the X;’s are not independent. One can see
this by P(Xy = 1|X; = 1) = 3/51, while P(X, = 1|X; =0) = 4/51.

7.19 Use Example 7.3 and equation (7.9) on page 422. Where Y (¢) is the time from time
t until the next renewal. In this question p = 1/2, m(1) = e — 1 by Example 7.3 and
t = 1. Filling that in in (7.9). We obtain ¢/2 = 1 + E[Y'(1)]. So the expected time until
the next arrival at time 1 is given by E[Y (1)] = ¢/2 — 1.

7.20 In this example we use the Strong law of large numbers and note that

W, = —n__ll Lo B
n Zj:l X;

Because the R;’s are independent and identically distributed (i.i.d.) the numerator con-
verges almost surely to E[R] by the strong law of large numbers. The X;’s are also i.i.d.
and therefore, again by the strong law of large numbers, the denominator converges almost
surely to E[X]. Which implies that W,, converges almost surely to the desired limit.



7.26 In this problems, the renewals are arrivals of trains. We use renewal-reward theory.
We first look at what happens upto the arrival of the N-th customer. The cost upto the
arrival of the first customer is 0. Then the expected cost between the first and second
arrival is ¢ times the expected time between the first and second arrival, which is ¢/A
(recall the arrivals occur according to a Poisson process) and in general for 0 < &k < N—1,
the expected cost between the k-th and k + 1-st arrival is kc times the expected duration
between those arrivals, which is k/\. So the total expected cost up to the arrival of the

N-th customer is ZkN:_Ol kc/\ = CN(é\,[\_l)-

In this problem the total cost a customer brings with it is ¢ times the time he is waiting
for the train. So the N customers waiting contribute cK'N.

Then in the interval between the arrival of the N-th customer and K time units later,
arrive a Poisson number (say M) of customers with expectation AK . Say that there arrival
times (measured from the time of arrival of the N-th customer are Ty, Ts,--- ,Ty. The

expected extra cost those customers bring with them is cE[S.M (K — T;)]. Note

E[Z(K -T)] = EUE[Z(K — )| M]J.

Using the order statistic property E[>M, (K — T;)|M] = E[X.X, (K — U;)|M], where the
U;s are independent and all uniformly distributed on the interval [0, K]. So,

E) (K —U)|M] = MK — MK/2 = MK/2.

=1

Using this, we obtain that the expected extra cost those customers bring with them is
cE[M]K/2 = cAK?/2. So the total expected cost until a bus arrives is

cN(N —1) CAK?
———~ +¢cKN )
o\ +c + 5

The expected duration until a bus arrives (a renewal) is K plus the expected time until
the N-th arrival, which is K + N/A.

So, using the theory on Renewal-Reward systems the long run average cost is given by

%—FCKN—F% _ cN(N — 1)+ 2eAKN 4 cA*K?
K+ N/\ a 2(KA+ N)




7.22 Let X be the time until the first replacement of the car (the renewal), Y is the time
until the first breakdown. Note that if Y > T then X =Y, while if Y < T then X is T’
plus the time until the first arrival in a Poisson Process with rate u. So,

E[X] = E[X|Y < T|P(Y <T)+E[X|Y > T|P(Y > T),

where E(X|Y <T]=(T+1/p), EX|Y >T] = (T +1/)) and
PY>T)=1-PY <T)=e*. So,

EX]=(T+1/u)1 -+ (T +1/NeM=T+1/p+ (/X —1/u)e .
The rate at which new cars are bought is 1/E[X].

Note that the number of repairs before a new car is bought depends on Y, if Y < T
then the number of repairs is 1 plus a Poisson number of further repairs with expectation
w(T —=Y), while if Y > T the number of repairs is 0. So, the expected number of repairs
before buying a new car is

T T T
/ Ae (14 u(T — s))ds = (14 uT) / Ae Mds — / Ause N ds
0 0 0

=1+ pT)(1—e?) —p (/OT e Mds — Te_AT) =(1- %)(1 — e £ uT,

where the second identity is obtained by integration by parts. If the cost of a repair
is 7 and the cost of a new car is C, then the expected cost until buying a new car is
C + ((1 - 51— e M) + ,uT) r and by renewal reward theory, the expected cost per
time unit is this number divided by E[X]

7.31 Define X (t) = A(t) + Y (t), that is X (¢) is the time between the last renewal before
time ¢ and the first renewal after time ¢. Note that the only relevant (fore this question)
information we get from A(t) = s is that X (¢) > s.

1—F(x—|—s).

P(Y (1) > 2|A(t) = 5) = P(X(t) > 45| A(t) = 5) = P(X() > 2+ X () > 5) = —— Fs)

7.38 Assume that the distance (in miles) between A and B is given by D. The expected
time (in hours) driving from A to B is then

“1D D D
— —dv = —(log 60 — log 40) = — log(3/2).
| gy = 310500 ~ log40) = 2 log(3/2)

The expected time driving from B to A is %% + %% = ST%' By theory on regenerative
processes we obtain that the long run fraction of time spent driving from A to B is
expected time from A to B 2% log(3/2)  12log(3/2)
expected return time  L2log(3/2) + 22 12log(3/2) + 5’

Similarly, the long run fraction driving 40 mph is

1D

210 _ 3 |

Dlog(3/2) + 22 12log(3/2) +5



7.46 If the destination of a jump is independent of the inter-jump time, then this is a
Markov Process.

7.47 Let X; be distributed as the random time the process stays in i. So y; is E[X;]. Let
J be the random variable describing the state to which the process jumps when leaving
state . Now observe

i = E[X;] = E[E[X;]J]] = ZR-J-E[XAJ =j]) = Z Pyjt;;.

For the second part of the problem let a cycle start whenever the process enters state 7.
We observe that P; is the expected fraction of time the process spends in state i. So, P,
is the expected time per cycle that the process spends in state i per cycle (which is by
definition p;) divided by the expected cycle length. So the expected cycle length is yu;/P;.

The expected time per cycle that the process is in state ¢ on its way to state j is Fj;t;;.
So the long run fraction of time spent in state ¢ on the way to state j is given by the
above, divided by the expected cycle length as desired.
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