
Chapter 7

7.1 We know that N(t) < n means that the n-th arrival occurs strictly after time t, which
is equivalent to Sn > t. So, (a) is true.

For part (b) it is good to observe that N(t) = n implies that the n-th arrival occurs
before or at time t, Which implies that Sn ≤ t, so (b) is not true.

Similarly, Sn < t implies that the n-th arrival occurs before time t, but the n+1-st arrival
might be after time t, while N(t) > n implies that the n+ 1-st arrival was before time t
and therefore (c) is not true.

7.3 (a) Assume t ≥ y (otherwise the probability below is 0). Then using that N(t) = n
is equivalent to Sn ≤ t and Sn+1 > t, we obtain

P(N(t) = n|Sn = y) = P(Sn ≤ t < Sn+1|Sn = y) = P(Sn+1 − Sn > t− y) = 1− F (t− y).

(b) Recall (e.g. page 33) that

fSn(y) =
λe−λy(λy)n−1

(n− 1)!
.

We obtain that

P(N(t) = n) =

∫ ∞
0

P(N(t) = n|Sn = y)fSn(y)dy

=

∫ t

0

P(N(t) = n|Sn = y)fSn(y)dy =

∫ t

0

(1− F (t− y))
λe−λy(λy)n−1

(n− 1)!
dy

=

∫ t

0

e−λ(t−y)
λe−λy(λy)n−1

(n− 1)!
dy = e−λt

λn

(n− 1)!

∫ t

0

yn−1dt = e−λt
(λt)n

n!
.

This is of course exactly what we want, because with the given F the renewal process has
exponential inter-arrival times, which makes the process a homogeneous Poisson Process.

7.5 This exercise is heavily based on Example 7.3 Let {N(t); t ≥ 0} be a renewal process
with uniform (0,1) interarrival times and let Sn be the time of the n-th arrival in this
process. Then, by the definition of N(1),

N = min{n ≥ 0;Sn > 1} = N(1) + 1.

Thus E[N ] = µ(1) + 1, which by Example 7.3 equals e1 − 1 + 1 = e.
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7.6 (a) For this exercise to make sense assume that r is a positive integer. The answer fol-
lows immediately from the fact that the sum of r independent exponential (λ) distributed
random variables has density function f . Therefore, P(N(t) ≥ n) is the probability that
the n× r-th arrival in a homogeneous Poisson Process with rate λ is before time t, which
is the probability that a Poisson random variable with expectation λt is at least nr.

Alternatively letting fn(x) be the density function of Sn, we obtain f1(x) = f(x) and
fn(x) = f ∗ fn−1(x) =

∫ x
0
f(y)fn−1(x − y)dy and by induction it is straightforward to

prove that fn(x) = λe−λx(λx)nr−1

(nr−1)! . Indeed, it is trivial for n = 1 and using the above

expression for fn(x) we obtain

fn+1(x) =

∫ x

0

f(y)fn(x− y)dy =

∫ x

0

λe−λy(λy)r−1

(r − 1)!

λe−λ(x−y)(λ(x− y))nr−1

(nr − 1)!
dy

=
(λx)(n+1)r

((n+ 1)r − 1)!
e−λx

1

x2

∫ x

0

((n+ 1)r − 1)!

(r − 1)!(nr − 1)!
(y/x)r−1(1− y/x)nr−1dy

Now performing a change of variables z = y/x (and thus dy = xdz and recognizing the
density of a beta distribution, we obtain, that the above equals

λ
(λx)(n+1)r−1

((n+ 1)r − 1)!
e−λx

∫ 1

0

((n+ 1)r − 1)!

(r − 1)!(nr − 1)!
zr−1(1− z)nr−1dz = λ

(λx)(n+1)r−1

((n+ 1)r − 1)!
e−λx

as desired.

Now recall that P(N(t) ≥ n) = P(Sn ≤ t) =
∫ t
0
fn(x)dx. Integration by parts (or using

your favorite mathematical software) gives the desired result.

7.9 Say that a renewal occurs when a new job starts (so either when a job is completed or
at a shock). The inter“arrival” distribution is the distribution of the random variable X
and we know that P(X > t) is the product of the probability that the first shock occurs
after time t and the probability that it takes longer than t time units to finish a job. That
is, P(X > t) = e−λt(1−F (t)). For ease of exposition, assume that F (t) has a derrivative,
that is, the time until job completion has a density (in the absence of shocks).

Also recall that

E[X] =

∫ ∞
0

P(X > t)dt =
1

λ
−
∫ ∞
0

e−λtF (t)dt =
1

λ
− 1

λ

∫ ∞
0

e−λtf(t)dt,

where we sed integration by parts in the last identity.

The rate at which renewals occur is 1/E[X] = λ
1−

∫∞
0 e−λtf(t)dt

. The rate at which shocks

occur is λ. So the rate at which jobs are completed is the rate of renewals minus the rate
of shocks, which is

λ

(
1

1−
∫∞
0
e−λtf(t)dt

− 1

)
= λ

∫∞
0
e−λtf(t)dt

1−
∫∞
0
e−λtf(t)dt

.
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7.12 Consider a renewal process, in which renewals occur if d-events occur. Let X be the
time between two d events. Assume that there is an event at time 0 (for the long run
rate adding a single point does not matter). Throughout what follows, note that there is
a difference in meaning between “d-events” and “events”.

Condition on the time of the first event to occur after time 0, call that time S1. Then
note that the time of the first d-event is equal to S1 if the S1 ≤ d and it is distributed as
S1 plus the time until the first d-event otherwise. So

E[X] =

∫ d

0

tλe−λtdt+

∫ ∞
d

λe−λt(t+E[X])dt =

∫ ∞
0

tλe−λtdt+

∫ ∞
d

λe−λtE[X]dt =
1

λ
+E[X]e−λd.

So, E[X] = 1
λ(1−e−λd) and the rate of d-events is λ(1 − e−λd) and the proportion of all

events which are d-events is the rate of d-events divided by the rate of events, which is
1− e−λd.

7.15 a) Let X1, X2, · · · be a sequence of random variables taking values 2, 4 and 6 each
with probability 1/3 and let N be the first index i, for which Xi = 2 (this is a stopping
time, since whether N = i only depends on X1, X2, · · ·Xi).

So, upto and including the N -th trip out of the room, the Xi’s correspond to the time of
the excursion. After that the random variables have no relevant interpretation.

b) Note E[Xi] = 4 and E[N ] = 3 So, E[T ] = 12.

c) E[
∑N

i=1Xi|N = n] =
∑n−1

i=1 E[Xi|Xi 6= 2] + E[Xn|Xn = 2] = (n − 1)5 + 2, which is
generally not equal to 4n = E[

∑n
i=1Xi].

d) E[
∑N

i=1Xi] =
∑∞

n=1 E[
∑n

i=1Xi|N = n]P(N = n) =
∑∞

n=1((n − 1)5 + 2)P(N = n) =
5E[N − 1] + 2 = 12.

7.16 In this example E[
∑N

i=1Xi] = 4 because N is defined as the fourth time Xi = 1.
E[Xi] = 1/13 for all i, because the cards are ordered uniformly at random and 4 out of 52
cards are aces. So, in order for the equality to hold we need E[N ] = 52, which is clearly
nonsense, because that implies that the 52-th card must be an ace with probability 1.

Wald’s identity does not hold here, because the Xi’s are not independent. One can see
this by P(X2 = 1|X1 = 1) = 3/51, while P(X2 = 1|X1 = 0) = 4/51.

7.19 Use Example 7.3 and equation (7.9) on page 422. Where Y (t) is the time from time
t until the next renewal. In this question µ = 1/2, m(1) = e − 1 by Example 7.3 and
t = 1. Filling that in in (7.9). We obtain e/2 = 1 + E[Y (1)]. So the expected time until
the next arrival at time 1 is given by E[Y (1)] = e/2− 1.

7.20 In this example we use the Strong law of large numbers and note that

Wn =
n−1

∑n
i=1Ri

n−1
∑

j=1Xj

.

Because the Ri’s are independent and identically distributed (i.i.d.) the numerator con-
verges almost surely to E[R] by the strong law of large numbers. The Xj’s are also i.i.d.
and therefore, again by the strong law of large numbers, the denominator converges almost
surely to E[X]. Which implies that Wn converges almost surely to the desired limit.
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7.26 In this problems, the renewals are arrivals of trains. We use renewal-reward theory.
We first look at what happens upto the arrival of the N -th customer. The cost upto the
arrival of the first customer is 0. Then the expected cost between the first and second
arrival is c times the expected time between the first and second arrival, which is c/λ
(recall the arrivals occur according to a Poisson process) and in general for 0 ≤ k ≤ N−1,
the expected cost between the k-th and k+ 1-st arrival is kc times the expected duration
between those arrivals, which is k/λ. So the total expected cost up to the arrival of the

N -th customer is
∑N−1

k=0 kc/λ = cN(N−1)
2λ

.

In this problem the total cost a customer brings with it is c times the time he is waiting
for the train. So the N customers waiting contribute cKN .

Then in the interval between the arrival of the N -th customer and K time units later,
arrive a Poisson number (say M) of customers with expectation λK. Say that there arrival
times (measured from the time of arrival of the N -th customer are T1, T2, · · · , TM . The
expected extra cost those customers bring with them is cE[

∑M
i=1(K − Ti)]. Note

E[
M∑
i=1

(K − Ti)] = E[E[
M∑
i=1

(K − Ti)|M ]].

Using the order statistic property E[
∑M

i=1(K − Ti)|M ] = E[
∑M

i=1(K −Ui)|M ], where the
Uis are independent and all uniformly distributed on the interval [0, K]. So,

E[
M∑
i=1

(K − Ui)|M ] = MK −MK/2 = MK/2.

Using this, we obtain that the expected extra cost those customers bring with them is
cE[M ]K/2 = cλK2/2. So the total expected cost until a bus arrives is

cN(N − 1)

2λ
+ cKN +

cλK2

2
.

The expected duration until a bus arrives (a renewal) is K plus the expected time until
the N -th arrival, which is K +N/λ.

So, using the theory on Renewal-Reward systems the long run average cost is given by

cN(N−1)
2λ

+ cKN + cλK2

2

K +N/λ
=
cN(N − 1) + 2cλKN + cλ2K2

2(Kλ+N)
.
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7.22 Let X be the time until the first replacement of the car (the renewal), Y is the time
until the first breakdown. Note that if Y > T then X = Y , while if Y ≤ T then X is T
plus the time until the first arrival in a Poisson Process with rate µ. So,

E[X] = E[X|Y ≤ T ]P(Y ≤ T ) + E[X|Y > T ]P(Y > T ),

where E[X|Y ≤ T ] = (T + 1/µ), E[X|Y > T ] = (T + 1/λ) and
P(Y > T ) = 1− P(Y ≤ T ) = e−λt. So,

E[X] = (T + 1/µ)(1− e−λT ) + (T + 1/λ)e−λt = T + 1/µ+ (1/λ− 1/µ)e−λT .

The rate at which new cars are bought is 1/E[X].

Note that the number of repairs before a new car is bought depends on Y , if Y < T ,
then the number of repairs is 1 plus a Poisson number of further repairs with expectation
µ(T − Y ), while if Y > T the number of repairs is 0. So, the expected number of repairs
before buying a new car is∫ T

0

λe−λs(1 + µ(T − s))ds = (1 + µT )

∫ T

0

λe−λsds−
∫ T

0

λµse−λsds

= (1 + µT )(1− e−λT )− µ
(∫ T

0

e−λsds− Te−λT
)

= (1− µ

λ
)(1− e−λT ) + µT,

where the second identity is obtained by integration by parts. If the cost of a repair
is r and the cost of a new car is C, then the expected cost until buying a new car is
C +

(
(1− µ

λ
)(1− e−λT ) + µT

)
r and by renewal reward theory, the expected cost per

time unit is this number divided by E[X]

7.31 Define X(t) = A(t) + Y (t), that is X(t) is the time between the last renewal before
time t and the first renewal after time t. Note that the only relevant (fore this question)
information we get from A(t) = s is that X(t) ≥ s.

P(Y (t) > x|A(t) = s) = P(X(t) > x+s|A(t) = s) = P(X(t) > x+s|X(t) > s) =
1− F (x+ s)

1− F (s)
.

7.38 Assume that the distance (in miles) between A and B is given by D. The expected
time (in hours) driving from A to B is then∫ 60

40

1

20

D

v
dv =

D

20
(log 60− log 40) =

D

20
log(3/2).

The expected time driving from B to A is 1
2
D
40

+ 1
2
D
60

= 5D
240
. By theory on regenerative

processes we obtain that the long run fraction of time spent driving from A to B is

expected time from A to B

expected return time
=

D
20

log(3/2)
D
20

log(3/2) + 5D
240

=
12 log(3/2)

12 log(3/2) + 5
.

Similarly, the long run fraction driving 40 mph is

1
2
D
40

D
20

log(3/2) + 5D
240

=
3

12 log(3/2) + 5
.
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7.46 If the destination of a jump is independent of the inter-jump time, then this is a
Markov Process.

7.47 Let Xi be distributed as the random time the process stays in i. So µi is E[Xi]. Let
J be the random variable describing the state to which the process jumps when leaving
state i. Now observe

µi = E[Xi] = E[E[Xi|J ]] =
∑
j

PijE[Xi|J = j]) =
∑
j

Pijtij.

For the second part of the problem let a cycle start whenever the process enters state i.
We observe that Pi is the expected fraction of time the process spends in state i. So, Pi
is the expected time per cycle that the process spends in state i per cycle (which is by
definition µi) divided by the expected cycle length. So the expected cycle length is µi/Pi.

The expected time per cycle that the process is in state i on its way to state j is Pijtij.
So the long run fraction of time spent in state i on the way to state j is given by the
above, divided by the expected cycle length as desired.
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