Chapter 7

7.1 We know that $N(t)<n$ means that the n-th arrival occurs strictly after time t, which is equivalent to $S_{n}>t$. So, (a) is true.

For part (b) it is good to observe that $N(t)=n$ implies that the n-th arrival occurs before or at time t, Which implies that $S_{n} \leq t$, so (b) is not true.
Similarly, $S_{n}<t$ implies that the n-th arrival occurs before time t, but the $n+1$-st arrival might be after time t, while $N(t)>n$ implies that the $n+1$-st arrival was before time t and therefore (c) is not true.
7.3 (a) Assume $t \geq y$ (otherwise the probability below is 0). Then using that $N(t)=n$ is equivalent to $S_{n} \leq t$ and $S_{n+1}>t$, we obtain
$\mathbb{P}\left(N(t)=n \mid S_{n}=y\right)=\mathbb{P}\left(S_{n} \leq t<S_{n+1} \mid S_{n}=y\right)=\mathbb{P}\left(S_{n+1}-S_{n}>t-y\right)=1-F(t-y)$.
(b) Recall (e.g. page 33) that

$$
f_{S_{n}}(y)=\frac{\lambda e^{-\lambda y}(\lambda y)^{n-1}}{(n-1)!}
$$

We obtain that

$$
\begin{aligned}
& \mathbb{P}(N(t)=n)=\int_{0}^{\infty} \mathbb{P}\left(N(t)=n \mid S_{n}=y\right) f_{S_{n}}(y) d y \\
& =\int_{0}^{t} \mathbb{P}\left(N(t)=n \mid S_{n}=y\right) f_{S_{n}}(y) d y=\int_{0}^{t}(1-F(t-y)) \frac{\lambda e^{-\lambda y}(\lambda y)^{n-1}}{(n-1)!} d y \\
& \quad=\int_{0}^{t} e^{-\lambda(t-y)} \frac{\lambda e^{-\lambda y}(\lambda y)^{n-1}}{(n-1)!} d y=e^{-\lambda t} \frac{\lambda^{n}}{(n-1)!} \int_{0}^{t} y^{n-1} d t=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} .
\end{aligned}
$$

This is of course exactly what we want, because with the given F the renewal process has exponential inter-arrival times, which makes the process a homogeneous Poisson Process.
7.5 This exercise is heavily based on Example 7.3 Let $\{N(t) ; t \geq 0\}$ be a renewal process with uniform $(0,1)$ interarrival times and let S_{n} be the time of the n-th arrival in this process. Then, by the definition of $N(1)$,

$$
N=\min \left\{n \geq 0 ; S_{n}>1\right\}=N(1)+1 .
$$

Thus $\mathbb{E}[N]=\mu(1)+1$, which by Example 7.3 equals $e^{1}-1+1=e$.
7.6 (a) For this exercise to make sense assume that r is a positive integer. The answer follows immediately from the fact that the sum of r independent exponential (λ) distributed random variables has density function f. Therefore, $\mathbb{P}(N(t) \geq n)$ is the probability that the $n \times r$-th arrival in a homogeneous Poisson Process with rate λ is before time t, which is the probability that a Poisson random variable with expectation λt is at least $n r$.

Alternatively letting $f_{n}(x)$ be the density function of S_{n}, we obtain $f_{1}(x)=f(x)$ and $f_{n}(x)=f * f_{n-1}(x)=\int_{0}^{x} f(y) f_{n-1}(x-y) d y$ and by induction it is straightforward to prove that $f_{n}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{n r-1}}{(n r-1)!}$. Indeed, it is trivial for $n=1$ and using the above expression for $f_{n}(x)$ we obtain

$$
\begin{array}{rl}
f_{n+1}(x)=\int_{0}^{x} & f(y) f_{n}(x-y) d y=\int_{0}^{x} \frac{\lambda e^{-\lambda y}(\lambda y)^{r-1}}{(r-1)!} \frac{\lambda e^{-\lambda(x-y)}(\lambda(x-y))^{n r-1}}{(n r-1)!} d y \\
& =\frac{(\lambda x)^{(n+1) r}}{((n+1) r-1)!} e^{-\lambda x} \frac{1}{x^{2}} \int_{0}^{x} \frac{((n+1) r-1)!}{(r-1)!(n r-1)!}(y / x)^{r-1}(1-y / x)^{n r-1} d y
\end{array}
$$

Now performing a change of variables $z=y / x$ (and thus $d y=x d z$ and recognizing the density of a beta distribution, we obtain, that the above equals

$$
\lambda \frac{(\lambda x)^{(n+1) r-1}}{((n+1) r-1)!} e^{-\lambda x} \int_{0}^{1} \frac{((n+1) r-1)!}{(r-1)!(n r-1)!} z^{r-1}(1-z)^{n r-1} d z=\lambda \frac{(\lambda x)^{(n+1) r-1}}{((n+1) r-1)!} e^{-\lambda x}
$$

as desired.
Now recall that $\mathbb{P}(N(t) \geq n)=\mathbb{P}\left(S_{n} \leq t\right)=\int_{0}^{t} f_{n}(x) d x$. Integration by parts (or using your favorite mathematical software) gives the desired result.
7.9 Say that a renewal occurs when a new job starts (so either when a job is completed or at a shock). The inter"arrival" distribution is the distribution of the random variable X and we know that $\mathbb{P}(X>t)$ is the product of the probability that the first shock occurs after time t and the probability that it takes longer than t time units to finish a job. That is, $\mathbb{P}(X>t)=e^{-\lambda t}(1-F(t))$. For ease of exposition, assume that $F(t)$ has a derrivative, that is, the time until job completion has a density (in the absence of shocks).

Also recall that

$$
\mathbb{E}[X]=\int_{0}^{\infty} \mathbb{P}(X>t) d t=\frac{1}{\lambda}-\int_{0}^{\infty} e^{-\lambda t} F(t) d t=\frac{1}{\lambda}-\frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda t} f(t) d t
$$

where we sed integration by parts in the last identity.
The rate at which renewals occur is $1 / \mathbb{E}[X]=\frac{\lambda}{1-\int_{0}^{\infty} e^{-\lambda t} f(t) d t}$. The rate at which shocks occur is λ. So the rate at which jobs are completed is the rate of renewals minus the rate of shocks, which is

$$
\lambda\left(\frac{1}{1-\int_{0}^{\infty} e^{-\lambda t} f(t) d t}-1\right)=\lambda \frac{\int_{0}^{\infty} e^{-\lambda t} f(t) d t}{1-\int_{0}^{\infty} e^{-\lambda t} f(t) d t}
$$

7.12 Consider a renewal process, in which renewals occur if d-events occur. Let X be the time between two d events. Assume that there is an event at time 0 (for the long run rate adding a single point does not matter). Throughout what follows, note that there is a difference in meaning between " d-events" and "events".

Condition on the time of the first event to occur after time 0 , call that time S_{1}. Then note that the time of the first d-event is equal to S_{1} if the $S_{1} \leq d$ and it is distributed as S_{1} plus the time until the first d-event otherwise. So
$\mathbb{E}[X]=\int_{0}^{d} t \lambda e^{-\lambda t} d t+\int_{d}^{\infty} \lambda e^{-\lambda t}(t+\mathbb{E}[X]) d t=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t+\int_{d}^{\infty} \lambda e^{-\lambda t} \mathbb{E}[X] d t=\frac{1}{\lambda}+\mathbb{E}[X] e^{-\lambda d}$.
So, $\mathbb{E}[X]=\frac{1}{\lambda\left(1-e^{-\lambda d}\right)}$ and the rate of d-events is $\lambda\left(1-e^{-\lambda d}\right)$ and the proportion of all events which are d-events is the rate of d-events divided by the rate of events, which is $1-e^{-\lambda d}$.
7.15 a) Let X_{1}, X_{2}, \cdots be a sequence of random variables taking values 2,4 and 6 each with probability $1 / 3$ and let N be the first index i, for which $X_{i}=2$ (this is a stopping time, since whether $N=i$ only depends on $\left.X_{1}, X_{2}, \cdots X_{i}\right)$.

So, upto and including the N-th trip out of the room, the X_{i} 's correspond to the time of the excursion. After that the random variables have no relevant interpretation.
b) Note $\mathbb{E}\left[X_{i}\right]=4$ and $\mathbb{E}[N]=3$ So, $\mathbb{E}[T]=12$.
c) $\mathbb{E}\left[\sum_{i=1}^{N} X_{i} \mid N=n\right]=\sum_{i=1}^{n-1} \mathbb{E}\left[X_{i} \mid X_{i} \neq 2\right]+\mathbb{E}\left[X_{n} \mid X_{n}=2\right]=(n-1) 5+2$, which is generally not equal to $4 n=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$.
d) $\mathbb{E}\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{n=1}^{\infty} \mathbb{E}\left[\sum_{i=1}^{n} X_{i} \mid N=n\right] \mathbb{P}(N=n)=\sum_{n=1}^{\infty}((n-1) 5+2) \mathbb{P}(N=n)=$ $5 \mathbb{E}[N-1]+2=12$.
7.16 In this example $\mathbb{E}\left[\sum_{i=1}^{N} X_{i}\right]=4$ because N is defined as the fourth time $X_{i}=1$. $\mathbb{E}\left[X_{i}\right]=1 / 13$ for all i, because the cards are ordered uniformly at random and 4 out of 52 cards are aces. So, in order for the equality to hold we need $\mathbb{E}[N]=52$, which is clearly nonsense, because that implies that the 52 -th card must be an ace with probability 1 .

Wald's identity does not hold here, because the X_{i} 's are not independent. One can see this by $\mathbb{P}\left(X_{2}=1 \mid X_{1}=1\right)=3 / 51$, while $\mathbb{P}\left(X_{2}=1 \mid X_{1}=0\right)=4 / 51$.
7.19 Use Example 7.3 and equation (7.9) on page 422. Where $Y(t)$ is the time from time t until the next renewal. In this question $\mu=1 / 2, m(1)=e-1$ by Example 7.3 and $t=1$. Filling that in in (7.9). We obtain $e / 2=1+\mathbb{E}[Y(1)]$. So the expected time until the next arrival at time 1 is given by $\mathbb{E}[Y(1)]=e / 2-1$.
7.20 In this example we use the Strong law of large numbers and note that

$$
W_{n}=\frac{n^{-1} \sum_{i=1}^{n} R_{i}}{n^{-1} \sum_{j=1} X_{j}} .
$$

Because the R_{i} 's are independent and identically distributed (i.i.d.) the numerator converges almost surely to $\mathbb{E}[R]$ by the strong law of large numbers. The X_{j} 's are also i.i.d. and therefore, again by the strong law of large numbers, the denominator converges almost surely to $\mathbb{E}[X]$. Which implies that W_{n} converges almost surely to the desired limit.
7.26 In this problems, the renewals are arrivals of trains. We use renewal-reward theory. We first look at what happens upto the arrival of the N-th customer. The cost upto the arrival of the first customer is 0 . Then the expected cost between the first and second arrival is c times the expected time between the first and second arrival, which is c / λ (recall the arrivals occur according to a Poisson process) and in general for $0 \leq k \leq N-1$, the expected cost between the k-th and $k+1$-st arrival is $k c$ times the expected duration between those arrivals, which is k / λ. So the total expected cost up to the arrival of the N-th customer is $\sum_{k=0}^{N-1} k c / \lambda=\frac{c N(N-1)}{2 \lambda}$.
In this problem the total cost a customer brings with it is c times the time he is waiting for the train. So the N customers waiting contribute $c K N$.
Then in the interval between the arrival of the N-th customer and K time units later, arrive a Poisson number (say M) of customers with expectation λK. Say that there arrival times (measured from the time of arrival of the N-th customer are $T_{1}, T_{2}, \cdots, T_{M}$. The expected extra cost those customers bring with them is $c \mathbb{E}\left[\sum_{i=1}^{M}\left(K-T_{i}\right)\right]$. Note

$$
\mathbb{E}\left[\sum_{i=1}^{M}\left(K-T_{i}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{M}\left(K-T_{i}\right) \mid M\right]\right] .
$$

Using the order statistic property $\mathbb{E}\left[\sum_{i=1}^{M}\left(K-T_{i}\right) \mid M\right]=\mathbb{E}\left[\sum_{i=1}^{M}\left(K-U_{i}\right) \mid M\right]$, where the $U_{i} \mathrm{~S}$ are independent and all uniformly distributed on the interval $[0, K]$. So,

$$
\mathbb{E}\left[\sum_{i=1}^{M}\left(K-U_{i}\right) \mid M\right]=M K-M K / 2=M K / 2 .
$$

Using this, we obtain that the expected extra cost those customers bring with them is $c \mathbb{E}[M] K / 2=c \lambda K^{2} / 2$. So the total expected cost until a bus arrives is

$$
\frac{c N(N-1)}{2 \lambda}+c K N+\frac{c \lambda K^{2}}{2}
$$

The expected duration until a bus arrives (a renewal) is K plus the expected time until the N-th arrival, which is $K+N / \lambda$.
So, using the theory on Renewal-Reward systems the long run average cost is given by

$$
\frac{\frac{c N(N-1)}{2 \lambda}+c K N+\frac{c \lambda K^{2}}{2}}{K+N / \lambda}=\frac{c N(N-1)+2 c \lambda K N+c \lambda^{2} K^{2}}{2(K \lambda+N)} .
$$

7.22 Let X be the time until the first replacement of the car (the renewal), Y is the time until the first breakdown. Note that if $Y>T$ then $X=Y$, while if $Y \leq T$ then X is T plus the time until the first arrival in a Poisson Process with rate μ. So,

$$
\mathbb{E}[X]=\mathbb{E}[X \mid Y \leq T] \mathbb{P}(Y \leq T)+\mathbb{E}[X \mid Y>T] \mathbb{P}(Y>T)
$$

where $\mathbb{E}[X \mid Y \leq T]=(T+1 / \mu), \mathbb{E}[X \mid Y>T]=(T+1 / \lambda)$ and $\mathbb{P}(Y>T)=1-\mathbb{P}(Y \leq T)=e^{-\lambda t}$. So,

$$
\mathbb{E}[X]=(T+1 / \mu)\left(1-e^{-\lambda T}\right)+(T+1 / \lambda) e^{-\lambda t}=T+1 / \mu+(1 / \lambda-1 / \mu) e^{-\lambda T}
$$

The rate at which new cars are bought is $1 / \mathbb{E}[X]$.
Note that the number of repairs before a new car is bought depends on Y, if $Y<T$, then the number of repairs is 1 plus a Poisson number of further repairs with expectation $\mu(T-Y)$, while if $Y>T$ the number of repairs is 0 . So, the expected number of repairs before buying a new car is

$$
\begin{aligned}
& \int_{0}^{T} \lambda e^{-\lambda s}(1+\mu(T-s)) d s=(1+\mu T) \int_{0}^{T} \lambda e^{-\lambda s} d s-\int_{0}^{T} \lambda \mu s e^{-\lambda s} d s \\
& \quad=(1+\mu T)\left(1-e^{-\lambda T}\right)-\mu\left(\int_{0}^{T} e^{-\lambda s} d s-T e^{-\lambda T}\right)=\left(1-\frac{\mu}{\lambda}\right)\left(1-e^{-\lambda T}\right)+\mu T,
\end{aligned}
$$

where the second identity is obtained by integration by parts. If the cost of a repair is r and the cost of a new car is C, then the expected cost until buying a new car is $C+\left(\left(1-\frac{\mu}{\lambda}\right)\left(1-e^{-\lambda T}\right)+\mu T\right) r$ and by renewal reward theory, the expected cost per time unit is this number divided by $\mathbb{E}[X]$
7.31 Define $X(t)=A(t)+Y(t)$, that is $X(t)$ is the time between the last renewal before time t and the first renewal after time t. Note that the only relevant (fore this question) information we get from $A(t)=s$ is that $X(t) \geq s$.
$\mathbb{P}(Y(t)>x \mid A(t)=s)=\mathbb{P}(X(t)>x+s \mid A(t)=s)=\mathbb{P}(X(t)>x+s \mid X(t)>s)=\frac{1-F(x+s)}{1-F(s)}$.
7.38 Assume that the distance (in miles) between A and B is given by D. The expected time (in hours) driving from A to B is then

$$
\int_{40}^{60} \frac{1}{20} \frac{D}{v} d v=\frac{D}{20}(\log 60-\log 40)=\frac{D}{20} \log (3 / 2)
$$

The expected time driving from B to A is $\frac{1}{2} \frac{D}{40}+\frac{1}{2} \frac{D}{60}=\frac{5 D}{240}$. By theory on regenerative processes we obtain that the long run fraction of time spent driving from A to B is

$$
\frac{\text { expected time from A to B }}{\text { expected return time }}=\frac{\frac{D}{20} \log (3 / 2)}{\frac{D}{20} \log (3 / 2)+\frac{5 D}{240}}=\frac{12 \log (3 / 2)}{12 \log (3 / 2)+5}
$$

Similarly, the long run fraction driving 40 mph is

$$
\frac{\frac{1}{2} \frac{D}{40}}{\frac{D}{20} \log (3 / 2)+\frac{5 D}{240}}=\frac{3}{12 \log (3 / 2)+5}
$$

7.46 If the destination of a jump is independent of the inter-jump time, then this is a Markov Process.
7.47 Let X_{i} be distributed as the random time the process stays in i. So μ_{i} is $\mathbb{E}\left[X_{i}\right]$. Let J be the random variable describing the state to which the process jumps when leaving state i. Now observe

$$
\left.\mu_{i}=\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{i} \mid J\right]\right]=\sum_{j} P_{i j} \mathbb{E}\left[X_{i} \mid J=j\right]\right)=\sum_{j} P_{i j} t_{i j} .
$$

For the second part of the problem let a cycle start whenever the process enters state i. We observe that P_{i} is the expected fraction of time the process spends in state i. So, P_{i} is the expected time per cycle that the process spends in state i per cycle (which is by definition μ_{i}) divided by the expected cycle length. So the expected cycle length is μ_{i} / P_{i}.

The expected time per cycle that the process is in state i on its way to state j is $P_{i j} t_{i j}$. So the long run fraction of time spent in state i on the way to state j is given by the above, divided by the expected cycle length as desired.

