
Chapter 8

8.1 Let in the M/M/1 queue the arrival rate be λ and the departure rate µ. Let A be the
(random) number of arrivals during a service period and let T be the (random) time this
service period takes (which is exponential with rate µ). Then, E[A] = E[E[A|T ]] = E[λT ],
because up to time T arrivals occur according to a homogeneous Poisson Process with
intensity λ. So, E[A] = E[λT ] = λ/µ.

The probability that no customer arrives during a service period can be computed in a
similar fashion. Note that if T = t, the probability of no arrivals during the service period
is e−λt, So,

P(A = 0) =

∫ ∞
0

µe−µte−λtdt =
µ

λ+ µ
.

Note that this latter result can also be obtained by observing that the time until the
next arrival and the next departure are (as long as there is at least one customer in the
system) independent exponential random variables. And we can use the theory on the
minimum of independent exponential random variables from Session 1.

8.6 Using page 490 the time in the system of a typical customer for an M/M/1 queue
with arrival rate λ and departure rate 2µ ( with 2µ > λ) is given by W1 = 1

2µ−λ .

To compute properties of the M/M/2 queue with arrival rate λ and service rate µ per
server we use Example 8.6 (page 502). We obtain that

P0 =
1

1 + λ/µ+ (λ/µ)2/2 + 2(
∑∞

n=0(λ/2µ)n − 1− λ/2µ− (λ/2µ)2)

=
1

2
∑∞

n=0(λ/2µ)n − 1
=

1
2

1−λ/2µ − 1
=

1− λ/(2µ)

2− 1 + λ/(2µ)
=

2µ− λ
2µ+ λ

.

Furthermore, P1 = 2P0(λ/2µ), P2 = 2P0(λ/2µ)2 and Pn = 2P0(λ/2µ)n. So, the average
system size in this model is

∞∑
n=1

nPn = 2P0

∞∑
n=1

n(λ/2µ)n = 2P0

∞∑
n=1

n∑
k=1

(λ/2µ)n = 2P0

∞∑
k=1

∞∑
n=k

(λ/2µ)n

= 2P0

∞∑
k=1

(λ/2µ)k
1

1− λ/2µ
= 2P0

(
1

1− λ/2µ
− 1

)
1

1− λ/2µ
= 2P0

2µλ

(2µ− λ)2

=
4µλ

(2µ− λ)(2µ+ λ)
.

Then we use that the average time a customer is in the system the average system size
divided by the arrival rate, which in this case is

W2 =
4µ

(2µ− λ)(2µ+ λ)
=

4µ

2µ+ λ

1

2µ− λ
>

1

2µ− λ
,

where the inequality is because 2µ > λ and thus 4µ
2µ+λ

> 1. So, the average time in the
system is larger for the double server queue. This is because the customers arrive and
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depart from the two systems according to the same rate, appart from when there is only
one customer in the system, then the rate of departure in the single server queue is faster.

The WQ for the single server queue is W1−1/(2µ) = λ
2µ(2µ−λ) . While for the double server

queue it is

W2 − 1/µ =
4µ

(2µ− λ)(2µ+ λ)
− 1

µ
=

λ2

µ(2µ− λ)(2µ+ λ)
=

λ

2µ(2µ− λ)

2λ

2µ+ λ
,

which is less than λ
2µ(2µ−λ) . This implies that the queue length is usually longer in the 1

sever queue.

8.8 Note that in this problem items arrive (as long as there are less than k items already)
on the shelf according to a Poisson process with rate λ and leave (as long as there is at
least 1 item on the shelf) at rate µ. So, the number of items on the shelf can be described
as an M/M/1 system with finite capacity k (see page 500, part (b)). We can use the
resuts on page 501 to compute P0, P1, · · · , Pk, where Pj = (λ/µ)jP0 for 0 ≤ j ≤ k and
Pj = 0 otherwise. So, because the probabilities have to sum up to 1 we obtain

1 =
k∑
j=0

P0(λ/µ)j = P0
1− (λ/µ)k+1

1− (λ/µ)
⇒ P0 =

1− (λ/µ)

1− (λ/µ)k+1
.

Only customers that arrive when there are 0 items on the shelf go away empty handed.
So the fraction of customers leaving empty handed is P0.

To find the average time an item is on the shelf we compute first the average number of
items on the shelf (which is L in the notation of this chapter), which can be computed
(among other ways)

k∑
j=0

jPj = P0

k∑
j=1

j(λ/µ)j = P0

k∑
j=1

j∑
i=1

(λ/µ)j = P0

k∑
i=1

k∑
j=i

(λ/µ)j

= P0

k∑
i=1

(λ/µ)i
k∑
j=i

(λ/µ)j−i = P0

k∑
i=1

(λ/µ)i
1− (λ/µ)k−i

1− (λ/µ)
= P0

k∑
i=1

(λ/µ)i − (λ/µ)k

1− (λ/µ)

=
P0

1− (λ/µ)

(
(λ/µ)

1− (λ/µ)k

1− (λ/µ)
− k(λ/µ)k

)
=

1

1− (λ/µ)k+1

(
λ

1− (λ/µ)k

µ− λ
− k(λ/µ)k

)
.

To compute the average time an item is on the shelf (W in the notation of the chapter
we use W = L/λa). Where we note that λa is λ(1− Pk).
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8.12 The model described here is just an M/M/2 queue (what a server does if he is not
serving is really irrelevant). So, we can use Example 8.6 on page 502 with k = 2 to answer
part a. The rate of going from 0 to 1 is P0λ, while the rate of going from 2 to 1 is P2×2µ.

8.28 Let A be the event that the first departure we consider leaves the system empty,
Ac be its complement and D be the time between two departures. Then P(D > t|Ac) is
the probabitily that the service time of the customer after the one just served is larger
than t, which is e−µt. P(D > t|A) is the probability that the time until arrival of the
next customer plut its service rate exceeds t, which is the probability that the sum of
two independent exponential random variables with expectations 1/λ and 1/µ exceeds t.
Because an = dn = Pn (section 8.2.2) we know that the probability that the system is
empty after the arrival under consideration is P0 = 1− λ/µ.

Recall that the moment generating function ψ(r) of an exponentially distributed random
variable with mean γ is for r > γ given by∫ ∞

0

γe−γtertdt =
γ

γ − r

and that the moment generating function of the sum of two independent random variables
is the product of the moment generating functions of those random variables. Computing
now the moment generating function of D (say ψD(r)) we obtain for r < λ < µ.

ψD(r) = E[e−rD] = (1− P(A))
µ

µ− r
+ P(A)

µ

µ− r
× λ

λ− r

=
λ

µ

µ

µ− r
+ (1− λ/µ)

µλ

(µ− r)(λ− r)
=
λ(λ− r) + λ(µ− λ)

(µ− r)(λ− r)
=

λ

λ− r
,

which is the moment generation function of an exponential distributed random variable
with expectation 1/λ.

8.36 Replacing First-Come-First-Served by Last-Come-First-Served has no influence on
the system size and the queue lengths, since in both cases, at the end of a service a
customer from the queue enters (if queue is not empty) and the workloads of different
customers. in the queue are independent. The busy period distribution does not change
either, because still you have to clear up all workload in the system, and the time this
takes does not depend on the order you deal with them. The time spend in the system
changes in distribution though. Intuitively speaking this can be seen by that in LCLS
if no customers arrive between your arrival and the departure of the person in service
during your arrival, then you don’t stay long in the queue, independently of the number of
customers in the queue at the time of your arrival. The same arguments hold for chosing
a random customer from the queue.

The expectations are still the same for all mentioned service disciplines because the
equations deduce section 8.2 (in particular W = L/λ) are independent of the service
discipline.
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8.37 In an M/G/1 queue customers arrive and depart one at a time, so the number of
times the system enters state 0 is equal or 1 different from the number of times it departs
state 0. By PASTA the fraction of arriving customers in state 0 is P0. Now note that for
time T by the strong law of large numbers the ammount of work brought in by customers
divided by T converges as T → ∞ to λE[S], which is also the assymptotic fraction of
time that the server is busy (which is 1− P0).

The average work a customer sees in the system at departure is E[S] times the average
number of customers a departure sees. However, by the same argument as above, this is
equal to E[S] times the number of other customers a new arrival sees, which by PASTA
is E[S] times L, where L is given by L in (8.34).

8.40 a(i) The change in the number of customers in the system follows the same law
for a first come first serve discipline and a last come first serve discipline. In the latter
discipline you only start touching the n − 1 other initial customers in the system once
the number of customers in the system is n. What happens with the other customers
up to this time can be exactly described by what happens with the busy period of an
M/G/1 queue with Last Come First Serve discipline. We know from Section 8.5.3 that
the expected busy period is given by

E[B] =
E[S]

1− λE[S]
.

a(ii) would then be (n− 1)E[B].

b(i) E[T |N ] = NE[B]

b(ii) E[T ] = E[E[T |N ]] = E[N ]E[B] = λAE[B].

8.23 a) appropriate states might be B for broken down and states 0, 1, 2, · · · representing
the number of customers in the queue if the stat is not broken down.
b) The rate at which customers enter state B is given by α×

∑∞
k=1 Pk = α(1−PB−P0) and

the rate at which customers leave state B is given by βPB. The rate at which customers
enter state 0 is βPB + µP1 and the rate at which they leave is λP0 , while for state
k > 0, the rate of entering the state is λPk−1 + µPk+1 and the rate of leaving the state is
(λ+ µ+ α)Pk. It is possible to solve these equations but not needed for this question.
c) The expected system size is L =

∑∞
k=1 kPk, the rate at which customers enter λa =

λ(1− PB). So the avarage amount of time a customer spends in the system is

L/λa =
∞∑
k=1

kPk/[λ(1− PB)].

d) The rate at which customers leave through breakdowns is α
∑∞

k=1 kPk = αL, while
the rate at which customers leave should be equal to the rate at which customers enter,
which is λa = λ(1− PB). So, the proportion of entering customers leaving at the end of
their service is given by 1− αL

λ(1−PB)
.

e) Customers arrive according to a Poisson process, so by PASTA the answer to the
question is PB.
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