Chapter 11

11.1 If Y is a discrete random variable taking values in $\{1,2, \cdots, n\}$ and for $i=1,2, \cdots n$ let X_{i} be a random variable with distribution function $F_{i}(x)$ which is independent of Y. Then $X_{Y}=\sum_{i=1}^{n} X_{i} \mathbb{1}(Y=i)$ has density function
$\mathbb{P}\left(X_{Y} \leq x\right)=\sum_{i=1}^{n} \mathbb{P}\left(X_{Y} \leq x \mid Y=i\right) \mathbb{P}(Y=i)=\sum_{i=1}^{n} \mathbb{P}\left(X_{i} \leq x\right) \mathbb{P}(Y=i)=\sum_{i=1}^{n} F_{i}(x) \mathbb{P}(Y=i)$.
Setting $P_{i}=\mathbb{P}(Y=i)$ brings us to the answer of the first part of the question: We simulate first Y, e.g. by simulating a uniform on $(0,1)$, say U and setting

$$
Y=\min \left\{y \in \mathbb{N}: \sum_{i=1}^{y} P_{i} \geq U\right\}
$$

and then simulating from F_{Y}.
We can apply this to $P_{1}=1 / 3, P_{2}=2 / 3, F_{1}(x)=1-e^{-2 x}$ for $x \in(0, \infty)$ and $F_{2}(x)=x$ for $x \in(0,1)$.
11.5 Let X_{i} be a random variable with distribution function $F_{i}(x)$ for $i=1,2, \cdots, n$ and assume that the X_{i} 's are independent. Then,

$$
\prod_{i=1}^{n} F_{i}(x)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \leq x\right)=\mathbb{P}\left(\text { all } X_{i} \text { are at most } x\right)=\mathbb{P}\left(\max X_{i} \leq x\right)
$$

So, you can simulate from $\prod_{i=1}^{n} F_{i}(x)$ by simulating from the F_{i} 's separately and take the maximum of the simulated values. Similarly,

$$
1-\prod_{i=1}^{n}\left(1-F_{i}(x)\right)=1-\prod_{i=1}^{n} \mathbb{P}\left(X_{i}>x\right)=1-\mathbb{P}\left(\min X_{i}>x\right)=\mathbb{P}\left(\min X_{i} \leq x\right)
$$

So, you can simulate from $\prod_{i=1}^{n} F_{i}(x)$ by simulating from the F_{i} 's separately and take the minimum of the simulated values.

If $F(x)=x^{n}$ for $x \in(0,1)$ one can use part a) and simulate n independent random variables with distribution function $x \in(0,1)$ (that is n independent uniforms) or one can use the inverse distribution method and simulate a single uniform U and compute $U^{1 / n}$.
11.7 We are going to use a rejection algorithm. we note that

$$
\frac{d}{d x} f(x)=30\left(2 x-6 x^{2}+4 x^{3}\right)=60 x(1-2 x)(1-x)
$$

So, $f(x)$ takes its extrima in $x=0, x=1 / 2$ and $x=1$, where $f(0)=0, f(1 / 2)=30 / 16$ and $f(1)=0$. So $f(1 / 2)$ is the maximum of $f(x)$ in $(0,1)$ and we can use Section 11.2.2 with $g(y)=1$ on $(0,1)$ and $c=30 / 16$. Then simulate two independent uniforms Y and U on $(0,1)$ and if $U \leq f(Y) / c$ then set $X=Y$ otherwise simulate new Y and U and repeat the procedure.
11.8 a) We use the rejection method for $f(x)=\frac{\lambda^{n} x^{n-1}}{(n-1)!} e^{-\lambda x}$ and $g(x)=(\lambda / n) e^{-(\lambda / n) x}$. We first compute c which is taken to be the maximum of $f(x) / g(x)$

$$
\begin{aligned}
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{d}{d x} \frac{n(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda \frac{n-1}{n} x}=\left(\frac{n \lambda^{n-1} x^{n-2}}{(n-2)!}-\frac{\lambda^{n} x^{n-1}}{(n-2)!}\right) & e^{-\lambda \frac{n-1}{n} x} \\
& =(n-\lambda x) \frac{n \lambda^{n-1} x^{n-2}}{(n-2)!} e^{-\lambda \frac{n-1}{n} x}
\end{aligned}
$$

This derivative is positive for $x \in(0, n / \lambda)$ and negative for $x \in(n / \lambda, \infty)$ and therefore $f(x) / g(x)$ takes its maximum if $x=n / \lambda$ and the maximum is $f(n / \lambda) / g(n / \lambda)=$ $\frac{n^{n}}{(n-1)!} e^{-(n-1)}$. So, we can set $c=\frac{n^{n}}{(n-1)!} e^{-(n-1)}$ and from the theory we know this is also the expected number of trials before we accept a proposed realisation of the random variable.
b) Stirling's formula is $n!\approx \sqrt{2 \pi n} n^{n} e^{-n}$. Filling that in, in part a) gives

$$
c \approx \frac{n^{n} e^{-(n-1)}}{(n-1)^{n-1} \sqrt{2 \pi(n-1)} e^{-(n-1)}}=\sqrt{\frac{n-1}{2 \pi}}\left(\frac{n-1}{n}\right)^{-n}=\sqrt{\frac{n-1}{2 \pi}}\left(1-\frac{1}{n}\right)^{-n} .
$$

Since $\left(1-\frac{1}{n}\right)^{n} \rightarrow e^{-1}$ as $n \rightarrow \infty$, we have $\frac{c}{\sqrt{n-1}} \rightarrow \frac{1}{\sqrt{2 \pi}} e$ as $n \rightarrow \infty$.
c) To apply the rejection method we can generate independently an exponential Y_{2} with mean 1 and a Uniform U and set $Y=n Y_{2} / \lambda$. Note that for a constant K, K times an exponentially distributed random variable with parameter μ is an exponentially distributed random variable with parameter μ / K. Then applying the rejection method gives. if

$$
U \leq \frac{n(\lambda Y)^{n-1}}{(n-1)!} e^{-\lambda \frac{n-1}{n} Y} / \frac{n^{n}}{(n-1)!} e^{-(n-1)},
$$

that is if

$$
U \leq\left(\frac{\lambda Y}{n}\right)^{n-1} e^{-(n-1)\left(\frac{\lambda Y}{n}-1\right)}=\left(Y_{2}\right)^{n-1} e^{-(n-1)\left(Y_{2}-1\right)}
$$

or

$$
-\log U \geq(n-1)\left[-\log \left(Y_{2}\right)+Y_{2}-1\right]
$$

then set $X=Y=n Y_{2} / \lambda$. Otherwise repeat. Note that $-\log U$ is distributed as an exponential with mean 1 and instead of simulating U and computing $-\log U$ we could have immediately simulated Y_{1} and the acceptance inequality would be:

$$
Y_{1} \geq(n-1)\left[-\log \left(Y_{2}\right)+Y_{2}-1\right] .
$$

d) An independent exponential can be obtained by observing that conditioned on

$$
Y_{1} \geq(n-1)\left[-\log \left(Y_{2}\right)+Y_{2}-1\right]
$$

then $Y_{1}-(n-1)\left[-\log \left(Y_{2}\right)+Y_{2}-1\right]$ is independent of $(n-1)\left[-\log \left(Y_{2}\right)+Y_{2}-1\right]$ and exponentially distributed with mean 1 , by the memoryless property of the exponential distribution.
11.13 Let U_{k} be the U random variable generated in the k-th round and Y_{k} the Y random variable generated in the k-th round. Let A_{k} be the event that you accept in the k-th round. Assume that we repeat the procedure infinitely many times independently, and we only take X from the first accepted round. So we want to compute $\mathbb{P}\left(Y_{k}=i \mid A_{k}\right)$ and show that this is equal to $\mathbb{P}(X=i)$.

$$
\begin{aligned}
\mathbb{P}\left(Y_{k}=i \mid A_{k}\right)=\frac{\mathbb{P}\left(Y_{k}=i \cap A_{k}\right)}{\mathbb{P}\left(A_{k}\right)}=\frac{\mathbb{P}\left(Y_{k}=i \cap U_{k}<\frac{P_{i}}{C Q_{i}}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(Y_{k}=j \cap U_{k}<\frac{P_{j}}{C Q_{j}}\right)} \\
=\frac{\mathbb{P}\left(Y_{k}=i\right) \mathbb{P}\left(U_{k}<\frac{P_{i}}{C Q_{i}}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(Y_{k}=j\right) \mathbb{P}\left(U_{k}<\frac{P_{j}}{C Q_{j}}\right)}=\frac{Q_{i} \frac{P_{i}}{C Q_{i}}}{\sum_{j=1}^{n} Q_{j} \frac{P_{j}}{C Q_{j}}}=\frac{P_{i}}{\sum_{j=1}^{n} P_{j}}=P_{i} .
\end{aligned}
$$

To jump from the first to the second line we have used that the U_{k} 's are independent of the Y_{k} 's.
11.30 In this exercise $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ and $f_{t}(x)=\frac{e^{t x} f(x)}{M(t)}$, where $M(t)$ can be seen as a normalizing constant.
$e^{t x} f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}-2 t x \sigma^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x-\mu-t \sigma^{2}\right)^{2}-t^{2} \sigma^{4}-2 \mu \sigma^{2} t}{2 \sigma^{2}}}=e^{t^{2} \sigma^{2} / 2+\mu t} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x-\mu-t \sigma^{2}\right)^{2}}{2 \sigma^{2}}}$.
Now note that the part from the fraction on is the density of a Normal distribution with mean $\mu+t \sigma^{2}$ and variance σ^{2}. The factor $e^{t^{2} \sigma^{2} / 2+\mu t}$ is a constant as a function of x. Therefore, $f_{t}(x)$ is a constant (as function of x) times $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x-\mu-t \sigma^{2}\right)^{2}}{2 \sigma^{2}}}$, and because $f_{t}(x)$ should integrate to 1 , the constant should be equal to 1 .
11.31 We want to use variance reduction by conditioning. In order to use the method of part b we need that $\mathbb{E}\left[D_{n} \mid W_{n}\right]=W_{n}-\mu$. However

$$
\mathbb{E}\left[D_{n} \mid W_{n}\right]=\mathbb{E}\left[W_{n}-S_{n} \mid W_{n}\right]=W_{n}-\mathbb{E}\left[S_{n} \mid W_{n}\right] .
$$

So, we need $\mathbb{E}\left[S_{n} \mid W_{n}\right]=\mu$. This is however not the case. It is even possible that we have a queue with infinitely many servers, so $\mathbb{P}\left(D_{n}=0\right)=1$, while if $W_{n}=S_{n}$ has non-zero variance, $W_{n}-\mu$ is with positive probability not 0 .

If we want to use D_{n} to simulate W_{n}, we can use conditioning for variance reduction, since

$$
\mathbb{E}\left[W_{n} \mid D_{n}\right]=\mathbb{E}\left[D_{n}+S_{n} \mid D_{n}\right]=D_{n}+\mathbb{E}\left[S_{n} \mid D_{n}\right]=D_{n}+\mu
$$

Because the service time of a customer is independent of how long he or she has been in the queue.
11.32 We use that X and Y are identically distributed and thus that $\operatorname{Var}(X)=\operatorname{Var}(Y)$ and $\operatorname{Corr}(X, Y)=\operatorname{Cov}(X, Y) / \operatorname{Var}(X)$.
$\operatorname{Var}\left(\frac{X+Y}{2}\right)=\frac{1}{4} \operatorname{Var}(X+Y)=\frac{1}{4}(\operatorname{Var} X+\operatorname{Var} Y+2 \operatorname{Cov}(X, Y))=\frac{\operatorname{Var}(X)}{4}(2+2 \operatorname{Corr}(X, Y))$,
which is in the interval $\operatorname{Var}(X) \times[0,1]$ because the correlation takes values in $[-1,1]$.
11.33 Note that $a \mathbb{E}[X]-\mathbb{E}\left[X^{2}\right]=\mathbb{E}[X(a-X)] \geq 0$, because both factors in the product are in the interval $[0, a]$ and part (a) follows. Using this we obtain that

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} \leq a \mathbb{E}[X]-(\mathbb{E}[X])^{2}=\mathbb{E}[X](a-\mathbb{E}[X])
$$

The final part follows by observing that because $\mathbb{P}(0 \leq X \leq a)=1$ and (by finding that $x(a-x)$ takes its maximum in $a / 2)$ that $\max _{x \in[0, a]} x(a-x)=a^{2} / 4$.
11.23 (a) Let $m(t)=\int_{0}^{t} \lambda(s) d s$ and assume that $\lambda(s)>0$ for $s>\infty \mathbb{P}\left(X_{1}>x\right)=e^{-m(x)}$, but also

$$
e^{-m(x)}=\mathbb{P}\left(X_{1}>x\right)=\mathbb{P}\left(\int_{0}^{X_{1}} \lambda(t) d t>\int_{0}^{x} \lambda(t) d t\right)=\mathbb{P}\left(\int_{0}^{X_{1}} \lambda(t) d t>m(x)\right)
$$

which gives the desired result.
(b) We know that $\mathbb{P}\left(X_{i}-X_{i-1}>t \mid X_{i-1}=s\right)=e^{-[m(t+s)-m(s)]}$ therefore
$\mathbb{P}\left(\int_{X_{i-1}}^{X_{i}} \lambda(t) d t>x \mid X_{i-1}=s\right)=\mathbb{P}\left(m\left(X_{i}\right)-m\left(X_{i-1}\right)>x \mid X_{i-1}=s\right)=\mathbb{P}\left(m\left(X_{i}\right)>x+m(s) \mid X_{i-1}=s\right)$
Now the only information obtained from $X_{i-1}=s$ on the event $m\left(X_{i}\right)>x+m(s)$ is that $X_{i}>s$, thus
$\mathbb{P}\left(\int_{X_{i-1}}^{X_{i}} \lambda(t) d t>x \mid X_{i-1}=s\right)=\mathbb{P}\left(X_{i}>m^{-1}(x+m(s)) \mid X_{i}>s\right)=e^{-x+m(s)} / e^{-m(s)}=e^{-x}$.
As desired. Note that the probability above is independent of s and therefore we have independence for the different i.
11.24 Simulate two independent Poisson processes one homogeneous with rate b (e.g. by simulating i.i.d. exponentials with rate b and treat those as the interarrival times) and one inhomogeneous with rate $1 /(t+a)$ and use example 11.13 to simulate the second process. Then combine the points of the two processes.
11.17 (a) Let $f(x)$ be the density associated with the distribution function F, then $\lambda(t)=f(t) /\left(1-F(t)\right.$. We first compute the hazard of $X_{(1)}$ Note that this hazard is given by

$$
\begin{aligned}
& \lim _{h \searrow 0} h^{-1} \mathbb{P}\left(X_{(1)} \leq t+h \mid X_{(1)}>t\right)=\lim _{h \searrow 0} h^{-1}\left(1-\mathbb{P}\left(X_{(1)}>t+h \mid X_{(1)}>t\right)\right) \\
& =\lim _{h \searrow 0} h^{-1}\left(1-\frac{\mathbb{P}\left(X_{i}>t+h \text { for all } i=1,2, \cdot, n\right.}{\mathbb{P}\left(X_{i}>t \text { for all } i=1,2, \cdot n\right.}\right)=\lim _{h \searrow 0} h^{-1}\left(1-\frac{\left(\mathbb{P}\left(X_{1}>t+h\right)\right)^{n}}{\left(\mathbb{P}\left(X_{1}>t\right)\right)^{n}}\right) \\
& =\lim _{h \searrow 0} h^{-1}\left(1-\frac{\left(\mathbb{P}\left(X_{1}>t\right)-f(t) h+o(h)\right)^{n}}{(1-F(t))^{n}}\right)=\lim _{h \searrow 0} h^{-1}\left(1-\left(1-\frac{f(t) h+o(h)}{1-F(t)}\right)^{n}\right) \\
& =n \frac{f(t)}{1-F(t)}=n \lambda(t) .
\end{aligned}
$$

More general assume that the j-th "arrival" is at time t_{j} and let \mathcal{J} be the index set for which the X_{i} 's are larger than t_{j}, i.e. $\mathcal{J}=\left\{i \in 1,2, \cdots, n ; X_{i}>t_{j}\right\}$. Then for $t>t_{j}$

$$
\begin{array}{r}
\lim _{h \searrow 0} h^{-1} \mathbb{P}\left(X_{(j+1)} \leq t+h \mid X_{(j+1)}>t\right)=\lim _{h \searrow 0} h^{-1}\left(1-\mathbb{P}\left(X_{(1)}>t+h \mid X_{(1)}>t\right)\right) \\
=\lim _{h \searrow 0} h^{-1}\left(1-\frac{\mathbb{P}\left(X_{i}>t+h \text { for all } i \in \mathcal{J}\right.}{\mathbb{P}\left(X_{i}>t \text { for all } i \in \mathcal{J}\right.}\right)=\lim _{h \searrow 0} h^{-1}\left(1-\frac{\left(\mathbb{P}\left(X_{1}>t+h\right)\right)^{n-j}}{\left(\mathbb{P}\left(X_{1}>t\right)\right)^{n-j}}\right) \\
=\cdots(\text { as above }) \cdots=(n-j) \frac{f(t)}{1-F(t)}=(n-j) \lambda(t) .
\end{array}
$$

So, conditioned on the j-th arrival being at time t_{j}, the $j+1$-st arrival has hazard $(n-j) \lambda(t)$ for $t>t_{j}$.
(b) Since F is continuous and not decreasing F^{-1} is increasing. Let $U_{1}, U_{2}, \cdots, U_{n}$ be independent and identically distributed uniform random variables on $(0,1)$ and for $i=$ $1,2, \cdots, n$ set $Y_{i}=F^{-1}\left(U_{i}\right)$. Note that Y_{i} is distributed as X_{i} and that because F^{-1} is increasing $Y_{(i)}=f^{(-1)}\left(U_{(i)}\right)$. Which gives the desired result. Now the i-th order statistic of n uniforms is Beta distributed with parameters i and $n+i+1$.
(c) This is actually the order statistic property for a Poisson process with intensity 1. The numerator is distributed as the i-th point of the Poisson process, while the numerator is distributed as the $n+1$-st point. By the order statistic property, conditioned on the $n+1$ st point being at time t the positions of the first n points are distributed as n independent identically distributed uniforms on ($0, t$) and the positions of the first n points divided by t are distributed as n independent identically distributed uniforms on $(0,1)$ as desired.
(d) Use the order statistic property as in part c. We know that $S_{n}=y\left(Y_{1}+\cdots+Y_{n+1}\right)$ and the points $S_{1}, \cdots S_{n-1}$ are then distributed as $n-1$ independent uniforms on $\left(0, S_{n}\right)=$ $(0, y)$.
(e) Let V_{1}, V_{2}, \cdots be independent identically distributed uniforms on $(0,1)$. Note that $\mathbb{P}\left(V_{(n)} \leq x\right)=\prod_{j=1}^{n} \mathbb{P}\left(V_{j} \leq x\right)=x^{n}$ for $x \in(0,1)$, while $\mathbb{P}\left(U_{1}^{1 / n} \leq x\right)=\mathbb{P}\left(U_{1} \leq x^{n}\right)=x^{n}$ for $x \in(0,1)$, which shows the first line of step II. The remaining part is obtained by using part (d) and noting that $U_{(j-1)} / U_{(j)}$ is distributed as the maximum of $j-1$ i.i.d. uniforms on $(0,1)$.

