Chapter 11

11.1 If Y is a discrete random variable taking values in $\{1, 2, \dots, n\}$ and for $i = 1, 2, \dots, n$ let X_i be a random variable with distribution function $F_i(x)$ which is independent of Y. Then $X_Y = \sum_{i=1}^n X_i \mathbb{1}(Y = i)$ has density function

$$\mathbb{P}(X_Y \le x) = \sum_{i=1}^n \mathbb{P}(X_Y \le x | Y=i) \mathbb{P}(Y=i) = \sum_{i=1}^n \mathbb{P}(X_i \le x) \mathbb{P}(Y=i) = \sum_{i=1}^n F_i(x) \mathbb{P}(Y=i)$$

Setting $P_i = \mathbb{P}(Y = i)$ brings us to the answer of the first part of the question: We simulate first Y, e.g. by simulating a uniform on (0, 1), say U and setting

$$Y = \min\{y \in \mathbb{N} : \sum_{i=1}^{y} P_i \ge U\}$$

and then simulating from F_Y .

We can apply this to $P_1 = 1/3$, $P_2 = 2/3$, $F_1(x) = 1 - e^{-2x}$ for $x \in (0, \infty)$ and $F_2(x) = x$ for $x \in (0, 1)$.

11.5 Let X_i be a random variable with distribution function $F_i(x)$ for $i = 1, 2, \dots, n$ and assume that the X_i 's are independent. Then,

$$\prod_{i=1}^{n} F_i(x) = \prod_{i=1}^{n} \mathbb{P}(X_i \le x) = \mathbb{P}(\text{ all } X_i \text{ are at most } x) = \mathbb{P}(\max X_i \le x).$$

So, you can simulate from $\prod_{i=1}^{n} F_i(x)$ by simulating from the F_i 's separately and take the maximum of the simulated values. Similarly,

$$1 - \prod_{i=1}^{n} (1 - F_i(x)) = 1 - \prod_{i=1}^{n} \mathbb{P}(X_i > x) = 1 - \mathbb{P}(\min X_i > x) = \mathbb{P}(\min X_i \le x).$$

So, you can simulate from $\prod_{i=1}^{n} F_i(x)$ by simulating from the F_i 's separately and take the minimum of the simulated values.

If $F(x) = x^n$ for $x \in (0, 1)$ one can use part a) and simulate *n* independent random variables with distribution function $x \in (0, 1)$ (that is *n* independent uniforms) or one can use the inverse distribution method and simulate a single uniform *U* and compute $U^{1/n}$.

11.7 We are going to use a rejection algorithm. we note that

$$\frac{d}{dx}f(x) = 30(2x - 6x^2 + 4x^3) = 60x(1 - 2x)(1 - x)$$

So, f(x) takes its extrima in x = 0, x = 1/2 and x = 1, where f(0) = 0, f(1/2) = 30/16and f(1) = 0. So f(1/2) is the maximum of f(x) in (0, 1) and we can use Section 11.2.2 with g(y) = 1 on (0, 1) and c = 30/16. Then simulate two independent uniforms Y and U on (0, 1) and if $U \leq f(Y)/c$ then set X = Y otherwise simulate new Y and U and repeat the procedure. **11.8** a) We use the rejection method for $f(x) = \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x}$ and $g(x) = (\lambda/n) e^{-(\lambda/n)x}$. We first compute c which is taken to be the maximum of f(x)/g(x)

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{d}{dx}\frac{n(\lambda x)^{n-1}}{(n-1)!}e^{-\lambda\frac{n-1}{n}x} = \left(\frac{n\lambda^{n-1}x^{n-2}}{(n-2)!} - \frac{\lambda^n x^{n-1}}{(n-2)!}\right)e^{-\lambda\frac{n-1}{n}x} = (n-\lambda x)\frac{n\lambda^{n-1}x^{n-2}}{(n-2)!}e^{-\lambda\frac{n-1}{n}x}.$$

This derivative is positive for $x \in (0, n/\lambda)$ and negative for $x \in (n/\lambda, \infty)$ and therefore f(x)/g(x) takes its maximum if $x = n/\lambda$ and the maximum is $f(n/\lambda)/g(n/\lambda) = \frac{n^n}{(n-1)!}e^{-(n-1)}$. So, we can set $c = \frac{n^n}{(n-1)!}e^{-(n-1)}$ and from the theory we know this is also the expected number of trials before we accept a proposed realisation of the random variable.

b) Stirling's formula is $n! \approx \sqrt{2\pi n} n^n e^{-n}$. Filling that in, in part a) gives

$$c \approx \frac{n^n e^{-(n-1)}}{(n-1)^{n-1} \sqrt{2\pi(n-1)} e^{-(n-1)}} = \sqrt{\frac{n-1}{2\pi}} \left(\frac{n-1}{n}\right)^{-n} = \sqrt{\frac{n-1}{2\pi}} \left(1 - \frac{1}{n}\right)^{-n}$$

Since $\left(1-\frac{1}{n}\right)^n \to e^{-1}$ as $n \to \infty$, we have $\frac{c}{\sqrt{n-1}} \to \frac{1}{\sqrt{2\pi}}e$ as $n \to \infty$.

c) To apply the rejection method we can generate independently an exponential Y_2 with mean 1 and a Uniform U and set $Y = nY_2/\lambda$. Note that for a constant K, K times an exponentially distributed random variable with parameter μ is an exponentially distributed random variable with parameter μ/K . Then applying the rejection method gives. if

$$U \le \frac{n(\lambda Y)^{n-1}}{(n-1)!} e^{-\lambda \frac{n-1}{n}Y} / \frac{n^n}{(n-1)!} e^{-(n-1)},$$

that is if

$$U \le \left(\frac{\lambda Y}{n}\right)^{n-1} e^{-(n-1)(\frac{\lambda Y}{n}-1)} = (Y_2)^{n-1} e^{-(n-1)(Y_2-1)}$$

or

$$-\log U \ge (n-1)[-\log(Y_2) + Y_2 - 1],$$

then set $X = Y = nY_2/\lambda$. Otherwise repeat. Note that $-\log U$ is distributed as an exponential with mean 1 and instead of simulating U and computing $-\log U$ we could have immediately simulated Y_1 and the acceptance inequality would be:

$$Y_1 \ge (n-1)[-\log(Y_2) + Y_2 - 1].$$

d) An independent exponential can be obtained by observing that conditioned on

$$Y_1 \ge (n-1)[-\log(Y_2) + Y_2 - 1]$$

then $Y_1 - (n-1)[-\log(Y_2) + Y_2 - 1]$ is independent of $(n-1)[-\log(Y_2) + Y_2 - 1]$ and exponentially distributed with mean 1, by the memoryless property of the exponential distribution. **11.13** Let U_k be the U random variable generated in the k-th round and Y_k the Y random variable generated in the k-th round. Let A_k be the event that you accept in the k-th round. Assume that we repeat the procedure infinitely many times independently, and we only take X from the first accepted round. So we want to compute $\mathbb{P}(Y_k = i|A_k)$ and show that this is equal to $\mathbb{P}(X = i)$.

$$\mathbb{P}(Y_k = i | A_k) = \frac{\mathbb{P}(Y_k = i \cap A_k)}{\mathbb{P}(A_k)} = \frac{\mathbb{P}(Y_k = i \cap U_k < \frac{P_i}{CQ_i})}{\sum_{j=1}^n \mathbb{P}(Y_k = j \cap U_k < \frac{P_j}{CQ_j})}$$
$$= \frac{\mathbb{P}(Y_k = i)\mathbb{P}(U_k < \frac{P_i}{CQ_i})}{\sum_{j=1}^n \mathbb{P}(Y_k = j)\mathbb{P}(U_k < \frac{P_j}{CQ_j})} = \frac{Q_i \frac{P_i}{CQ_i}}{\sum_{j=1}^n Q_j \frac{P_j}{CQ_j}} = \frac{P_i}{\sum_{j=1}^n P_j} = P_i.$$

To jump from the first to the second line we have used that the U_k 's are independent of the Y_k 's.

11.30 In this exercise $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ and $f_t(x) = \frac{e^{tx}f(x)}{M(t)}$, where M(t) can be seen as a normalizing constant.

$$e^{tx}f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2 - 2tx\sigma^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu-t\sigma^2)^2 - t^2\sigma^4 - 2\mu\sigma^2t}{2\sigma^2}} = e^{t^2\sigma^2/2 + \mu t}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu-t\sigma^2)^2}{2\sigma^2}}$$

Now note that the part from the fraction on is the density of a Normal distribution with mean $\mu + t\sigma^2$ and variance σ^2 . The factor $e^{t^2\sigma^2/2+\mu t}$ is a constant as a function of x. Therefore, $f_t(x)$ is a constant (as function of x) times $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu-t\sigma^2)^2}{2\sigma^2}}$, and because $f_t(x)$ should integrate to 1, the constant should be equal to 1.

11.31 We want to use variance reduction by conditioning. In order to use the method of part b we need that $\mathbb{E}[D_n|W_n] = W_n - \mu$. However

$$\mathbb{E}[D_n|W_n] = \mathbb{E}[W_n - S_n|W_n] = W_n - \mathbb{E}[S_n|W_n].$$

So, we need $\mathbb{E}[S_n|W_n] = \mu$. This is however not the case. It is even possible that we have a queue with infinitely many servers, so $\mathbb{P}(D_n = 0) = 1$, while if $W_n = S_n$ has non-zero variance, $W_n - \mu$ is with positive probability not 0.

If we want to use D_n to simulate W_n , we can use conditioning for variance reduction, since

$$\mathbb{E}[W_n|D_n] = \mathbb{E}[D_n + S_n|D_n] = D_n + \mathbb{E}[S_n|D_n] = D_n + \mu.$$

Because the service time of a customer is independent of how long he or she has been in the queue.

11.32 We use that X and Y are identically distributed and thus that Var(X) = Var(Y) and Corr(X, Y) = Cov(X, Y)/Var(X).

$$Var(\frac{X+Y}{2}) = \frac{1}{4}Var(X+Y) = \frac{1}{4}(VarX+VarY+2Cov(X,Y)) = \frac{Var(X)}{4}(2+2Corr(X,Y)) = \frac{Var($$

which is in the interval $Var(X) \times [0, 1]$ because the correlation takes values in [-1, 1].

11.33 Note that $a\mathbb{E}[X] - \mathbb{E}[X^2] = \mathbb{E}[X(a-X)] \ge 0$, because both factors in the product are in the interval [0, a] and part (a) follows. Using this we obtain that

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \le a\mathbb{E}[X] - (\mathbb{E}[X])^2 = \mathbb{E}[X](a - \mathbb{E}[X]).$$

The final part follows by observing that because $\mathbb{P}(0 \le X \le a) = 1$ and (by finding that x(a-x) takes its maximum in a/2) that $\max_{x \in [0,a]} x(a-x) = a^2/4$.

11.23 (a) Let $m(t) = \int_0^t \lambda(s) ds$ and assume that $\lambda(s) > 0$ for $s > \infty \mathbb{P}(X_1 > x) = e^{-m(x)}$, but also

$$e^{-m(x)} = \mathbb{P}(X_1 > x) = \mathbb{P}\left(\int_0^{X_1} \lambda(t)dt > \int_0^x \lambda(t)dt\right) = \mathbb{P}\left(\int_0^{X_1} \lambda(t)dt > m(x)\right),$$

which gives the desired result.

(b) We know that $\mathbb{P}(X_i - X_{i-1} > t | X_{i-1} = s) = e^{-[m(t+s) - m(s)]}$ therefore

$$\mathbb{P}\left(\int_{X_{i-1}}^{X_i} \lambda(t)dt > x | X_{i-1} = s\right) = \mathbb{P}(m(X_i) - m(X_{i-1}) > x | X_{i-1} = s) = \mathbb{P}(m(X_i) > x + m(s) | X_{i-1} = s)$$

Now the only information obtained from $X_{i-1} = s$ on the event $m(X_i) > x + m(s)$ is that $X_i > s$, thus

$$\mathbb{P}\left(\int_{X_{i-1}}^{X_i} \lambda(t)dt > x | X_{i-1} = s\right) = \mathbb{P}(X_i > m^{-1}(x+m(s)) | X_i > s) = e^{-x+m(s)}/e^{-m(s)} = e^{-x}.$$

As desired. Note that the probability above is independent of s and therefore we have independence for the different i.

11.24 Simulate two independent Poisson processes one homogeneous with rate b (e.g. by simulating i.i.d. exponentials with rate b and treat those as the interarrival times) and one inhomogeneous with rate 1/(t + a) and use example 11.13 to simulate the second process. Then combine the points of the two processes.

11.17 (a) Let f(x) be the density associated with the distribution function F, then $\lambda(t) = f(t)/(1 - F(t))$. We first compute the hazard of $X_{(1)}$ Note that this hazard is given by

$$\begin{split} \lim_{h\searrow 0} h^{-1} \mathbb{P}(X_{(1)} \le t + h | X_{(1)} > t) &= \lim_{h\searrow 0} h^{-1} (1 - \mathbb{P}(X_{(1)} > t + h | X_{(1)} > t)) \\ &= \lim_{h\searrow 0} h^{-1} \left(1 - \frac{\mathbb{P}(X_i > t + h \text{ for all } i = 1, 2, \cdot, n)}{\mathbb{P}(X_i > t \text{ for all } i = 1, 2, \cdot, n)} \right) &= \lim_{h\searrow 0} h^{-1} \left(1 - \frac{(\mathbb{P}(X_1 > t + h))^n}{(\mathbb{P}(X_1 > t))^n} \right) \\ &= \lim_{h\searrow 0} h^{-1} \left(1 - \frac{(\mathbb{P}(X_1 > t) - f(t)h + o(h))^n}{(1 - F(t))^n} \right) = \lim_{h\searrow 0} h^{-1} \left(1 - \left(1 - \frac{f(t)h + o(h)}{1 - F(t)} \right)^n \right) \\ &= n \frac{f(t)}{1 - F(t)} = n\lambda(t). \end{split}$$

More general assume that the *j*-th "arrival" is at time t_j and let \mathcal{J} be the index set for which the X_i 's are larger than t_j , i.e. $\mathcal{J} = \{i \in 1, 2, \cdots, n; X_i > t_j\}$. Then for $t > t_j$

$$\lim_{h \searrow 0} h^{-1} \mathbb{P}(X_{(j+1)} \le t + h | X_{(j+1)} > t) = \lim_{h \searrow 0} h^{-1} (1 - \mathbb{P}(X_{(1)} > t + h | X_{(1)} > t))$$

=
$$\lim_{h \searrow 0} h^{-1} \left(1 - \frac{\mathbb{P}(X_i > t + h \text{ for all } i \in \mathcal{J}}{\mathbb{P}(X_i > t \text{ for all } i \in \mathcal{J}} \right) = \lim_{h \searrow 0} h^{-1} \left(1 - \frac{(\mathbb{P}(X_1 > t + h))^{n-j}}{(\mathbb{P}(X_1 > t))^{n-j}} \right)$$

=
$$\cdots (\text{as above}) \cdots = (n - j) \frac{f(t)}{1 - F(t)} = (n - j)\lambda(t).$$

So, conditioned on the *j*-th arrival being at time t_j , the j + 1-st arrival has hazard $(n-j)\lambda(t)$ for $t > t_j$.

(b) Since F is continuous and not decreasing F^{-1} is increasing. Let U_1, U_2, \dots, U_n be independent and identically distributed uniform random variables on (0, 1) and for $i = 1, 2, \dots, n$ set $Y_i = F^{-1}(U_i)$. Note that Y_i is distributed as X_i and that because F^{-1} is increasing $Y_{(i)} = f^{(-1)}(U_{(i)})$. Which gives the desired result. Now the *i*-th order statistic of *n* uniforms is Beta distributed with parameters *i* and n + i + 1.

(c) This is actually the order statistic property for a Poisson process with intensity 1. The numerator is distributed as the *i*-th point of the Poisson process, while the numerator is distributed as the n+1-st point. By the order statistic property, conditioned on the n+1-st point being at time t the positions of the first n points are distributed as n independent identically distributed uniforms on (0, t) and the positions of the first n points divided by t are distributed as n independent identically distributed as n independent identically distributed uniforms on (0, t) and the positions of the first n points divided by t are distributed as n independent identically distributed uniforms on (0, 1) as desired.

(d) Use the order statistic property as in part c. We know that $S_n = y(Y_1 + \cdots + Y_{n+1})$ and the points S_1, \cdots, S_{n-1} are then distributed as n-1 independent uniforms on $(0, S_n) = (0, y)$.

(e) Let V_1, V_2, \cdots be independent identically distributed uniforms on (0, 1). Note that $\mathbb{P}(V_{(n)} \leq x) = \prod_{j=1}^{n} \mathbb{P}(V_j \leq x) = x^n$ for $x \in (0, 1)$, while $\mathbb{P}(U_1^{1/n} \leq x) = \mathbb{P}(U_1 \leq x^n) = x^n$ for $x \in (0, 1)$, which shows the first line of step II. The remaining part is obtained by using part (d) and noting that $U_{(j-1)}/U_{(j)}$ is distributed as the maximum of j - 1 i.i.d. uniforms on (0, 1).