
Chapter 11

11.1 If Y is a discrete random variable taking values in {1, 2, · · · , n} and for i = 1, 2, · · ·n
letXi be a random variable with distribution function Fi(x) which is independent of Y .
Then XY =

∑n
i=1Xi11(Y = i) has density function

P(XY ≤ x) =
n∑
i=1

P(XY ≤ x|Y = i)P(Y = i) =
n∑
i=1

P(Xi ≤ x)P(Y = i) =
n∑
i=1

Fi(x)P(Y = i).

Setting Pi = P(Y = i) brings us to the answer of the first part of the question: We
simulate first Y , e.g. by simulating a uniform on (0, 1), say U and setting

Y = min{y ∈ N :

y∑
i=1

Pi ≥ U}

and then simulating from FY .

We can apply this to P1 = 1/3, P2 = 2/3, F1(x) = 1− e−2x for x ∈ (0,∞) and F2(x) = x
for x ∈ (0, 1).

11.5 Let Xi be a random variable with distribution function Fi(x) for i = 1, 2, · · · , n and
assume that the Xi’s are independent. Then,

n∏
i=1

Fi(x) =
n∏
i=1

P(Xi ≤ x) = P( all Xi are at most x) = P(maxXi ≤ x).

So, you can simulate from
∏n

i=1 Fi(x) by simulating from the Fi’s separately and take the
maximum of the simulated values. Similarly,

1−
n∏
i=1

(1− Fi(x)) = 1−
n∏
i=1

P(Xi > x) = 1− P(minXi > x) = P(minXi ≤ x).

So, you can simulate from
∏n

i=1 Fi(x) by simulating from the Fi’s separately and take the
minimum of the simulated values.

If F (x) = xn for x ∈ (0, 1) one can use part a) and simulate n independent random
variables with distribution function x ∈ (0, 1) (that is n independent uniforms) or one
can use the inverse distribution method and simulate a single uniform U and compute
U1/n.

11.7 We are going to use a rejection algorithm. we note that

d

dx
f(x) = 30(2x− 6x2 + 4x3) = 60x(1− 2x)(1− x).

So, f(x) takes its extrima in x = 0, x = 1/2 and x = 1, where f(0) = 0, f(1/2) = 30/16
and f(1) = 0. So f(1/2) is the maximum of f(x) in (0, 1) and we can use Section 11.2.2
with g(y) = 1 on (0, 1) and c = 30/16. Then simulate two independent uniforms Y and
U on (0, 1) and if U ≤ f(Y )/c then set X = Y otherwise simulate new Y and U and
repeat the procedure.
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11.8 a) We use the rejection method for f(x) = λnxn−1

(n−1)! e
−λx and g(x) = (λ/n)e−(λ/n)x.

We first compute c which is taken to be the maximum of f(x)/g(x)

d

dx

f(x)

g(x)
=

d

dx

n(λx)n−1

(n− 1)!
e−λ

n−1
n
x =

(
nλn−1xn−2

(n− 2)!
− λnxn−1

(n− 2)!

)
e−λ

n−1
n
x

= (n− λx)
nλn−1xn−2

(n− 2)!
e−λ

n−1
n
x.

This derivative is positive for x ∈ (0, n/λ) and negative for x ∈ (n/λ,∞) and there-
fore f(x)/g(x) takes its maximum if x = n/λ and the maximum is f(n/λ)/g(n/λ) =
nn

(n−1)!e
−(n−1). So, we can set c = nn

(n−1)!e
−(n−1) and from the theory we know this is also

the expected number of trials before we accept a proposed realisation of the random
variable.

b) Stirling’s formula is n! ≈
√

2πnnne−n. Filling that in, in part a) gives

c ≈ nne−(n−1)

(n− 1)n−1
√

2π(n− 1)e−(n−1)
=

√
n− 1

2π

(
n− 1

n

)−n
=

√
n− 1

2π

(
1− 1

n

)−n
.

Since
(
1− 1

n

)n → e−1 as n→∞, we have c√
n−1 →

1√
2π
e as n→∞.

c) To apply the rejection method we can generate independently an exponential Y2 with
mean 1 and a Uniform U and set Y = nY2/λ. Note that for a constant K, K times an ex-
ponentially distributed random variable with parameter µ is an exponentially distributed
random variable with parameter µ/K. Then applying the rejection method gives. if

U ≤ n(λY )n−1

(n− 1)!
e−λ

n−1
n
Y /

nn

(n− 1)!
e−(n−1),

that is if

U ≤
(
λY

n

)n−1
e−(n−1)(

λY
n
−1) = (Y2)

n−1e−(n−1)(Y2−1)

or
− logU ≥ (n− 1)[− log(Y2) + Y2 − 1],

then set X = Y = nY2/λ. Otherwise repeat. Note that − logU is distributed as an
exponential with mean 1 and instead of simulating U and computing − logU we could
have immediately simulated Y1 and the acceptance inequality would be:

Y1 ≥ (n− 1)[− log(Y2) + Y2 − 1].

d) An independent exponential can be obtained by observing that conditioned on

Y1 ≥ (n− 1)[− log(Y2) + Y2 − 1]

then Y1 − (n − 1)[− log(Y2) + Y2 − 1] is independent of (n − 1)[− log(Y2) + Y2 − 1] and
exponentially distributed with mean 1, by the memoryless property of the exponential
distribution.

16



11.13 Let Uk be the U random variable generated in the k-th round and Yk the Y random
variable generated in the k-th round. Let Ak be the event that you accept in the k-th
round. Assume that we repeat the procedure infinitely many times independently, and
we only take X from the first accepted round. So we want to compute P(Yk = i|Ak) and
show that this is equal to P(X = i).

P(Yk = i|Ak) =
P(Yk = i ∩ Ak)

P(Ak)
=

P(Yk = i ∩ Uk < Pi
CQi

)∑n
j=1 P(Yk = j ∩ Uk < Pj

CQj
)

=
P(Yk = i)P(Uk <

Pi
CQi

)∑n
j=1 P(Yk = j)P(Uk <

Pj
CQj

)
=

Qi
Pi
CQi∑n

j=1Qj
Pj
CQj

=
Pi∑n
j=1 Pj

= Pi.

To jump from the first to the second line we have used that the Uk’s are independent of
the Yk’s.

11.30 In this exercise f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 and ft(x) = etxf(x)
M(t)

, where M(t) can be seen
as a normalizing constant.

etxf(x) =
1√

2πσ2
e−

(x−µ)2−2txσ2

2σ2 =
1√

2πσ2
e−

(x−µ−tσ2)2−t2σ4−2µσ2t

2σ2 = et
2σ2/2+µt 1√

2πσ2
e−

(x−µ−tσ2)2

2σ2 .

Now note that the part from the fraction on is the density of a Normal distribution
with mean µ + tσ2 and variance σ2. The factor et

2σ2/2+µt is a constant as a function of

x. Therefore, ft(x) is a constant (as function of x) times 1√
2πσ2

e−
(x−µ−tσ2)2

2σ2 , and because

ft(x) should integrate to 1, the constant should be equal to 1.

11.31 We want to use variance reduction by conditioning. In order to use the method of
part b we need that E[Dn|Wn] = Wn − µ. However

E[Dn|Wn] = E[Wn − Sn|Wn] = Wn − E[Sn|Wn].

So, we need E[Sn|Wn] = µ. This is however not the case. It is even possible that we have
a queue with infinitely many servers, so P(Dn = 0) = 1, while if Wn = Sn has non-zero
variance, Wn − µ is with positive probability not 0.

If we want to use Dn to simulate Wn, we can use conditioning for variance reduction,
since

E[Wn|Dn] = E[Dn + Sn|Dn] = Dn + E[Sn|Dn] = Dn + µ.

Because the service time of a customer is independent of how long he or she has been in
the queue.

11.32 We use that X and Y are identically distributed and thus that V ar(X) = V ar(Y )
and Corr(X, Y ) = Cov(X, Y )/V ar(X).

V ar(
X + Y

2
) =

1

4
V ar(X+Y ) =

1

4
(V arX+V arY+2Cov(X, Y )) =

V ar(X)

4
(2+2Corr(X, Y )),

which is in the interval V ar(X)× [0, 1] because the correlation takes values in [−1, 1].
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11.33 Note that aE[X]−E[X2] = E[X(a−X)] ≥ 0, because both factors in the product
are in the interval [0, a] and part (a) follows. Using this we obtain that

V ar(X) = E[X2]− (E[X])2 ≤ aE[X]− (E[X])2 = E[X](a− E[X]).

The final part follows by observing that because P(0 ≤ X ≤ a) = 1 and (by finding that
x(a− x) takes its maximum in a/2) that maxx∈[0,a] x(a− x) = a2/4.

11.23 (a) Let m(t) =
∫ t
0
λ(s)ds and assume that λ(s) > 0 for s >∞ P(X1 > x) = e−m(x),

but also

e−m(x) = P(X1 > x) = P
(∫ X1

0

λ(t)dt >

∫ x

0

λ(t)dt

)
= P

(∫ X1

0

λ(t)dt > m(x)

)
,

which gives the desired result.

(b) We know that P(Xi −Xi−1 > t|Xi−1 = s) = e−[m(t+s)−m(s)] therefore

P
(∫ Xi

Xi−1

λ(t)dt > x|Xi−1 = s

)
= P(m(Xi)−m(Xi−1) > x|Xi−1 = s) = P(m(Xi) > x+m(s)|Xi−1 = s)

Now the only information obtained from Xi−1 = s on the event m(Xi) > x+m(s) is that
Xi > s, thus

P
(∫ Xi

Xi−1

λ(t)dt > x|Xi−1 = s

)
= P(Xi > m−1(x+m(s))|Xi > s) = e−x+m(s)/e−m(s) = e−x.

As desired. Note that the probability above is independent of s and therefore we have
independence for the different i.

11.24 Simulate two independent Poisson processes one homogeneous with rate b (e.g. by
simulating i.i.d. exponentials with rate b and treat those as the interarrival times) and
one inhomogeneous with rate 1/(t + a) and use example 11.13 to simulate the second
process. Then combine the points of the two processes.
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11.17 (a) Let f(x) be the density associated with the distribution function F , then
λ(t) = f(t)/(1−F (t). We first compute the hazard of X(1) Note that this hazard is given
by

lim
h↘0

h−1P(X(1) ≤ t+ h|X(1) > t) = lim
h↘0

h−1(1− P(X(1) > t+ h|X(1) > t))

= lim
h↘0

h−1
(

1− P(Xi > t+ h for all i = 1, 2, ·, n
P(Xi > t for all i = 1, 2, ·, n

)
= lim

h↘0
h−1

(
1− (P(X1 > t+ h))n

(P(X1 > t))n

)
= lim

h↘0
h−1

(
1− (P(X1 > t)− f(t)h+ o(h))n

(1− F (t))n

)
= lim

h↘0
h−1

(
1−

(
1− f(t)h+ o(h)

1− F (t)

)n)
= n

f(t)

1− F (t)
= nλ(t).

More general assume that the j-th “arrival” is at time tj and let J be the index set for
which the Xi’s are larger than tj, i.e. J = {i ∈ 1, 2, · · · , n;Xi > tj}. Then for t > tj

lim
h↘0

h−1P(X(j+1) ≤ t+ h|X(j+1) > t) = lim
h↘0

h−1(1− P(X(1) > t+ h|X(1) > t))

= lim
h↘0

h−1
(

1− P(Xi > t+ h for all i ∈ J
P(Xi > t for all i ∈ J

)
= lim

h↘0
h−1

(
1− (P(X1 > t+ h))n−j

(P(X1 > t))n−j

)
= · · · (as above) · · · = (n− j) f(t)

1− F (t)
= (n− j)λ(t).

So, conditioned on the j-th arrival being at time tj, the j + 1-st arrival has hazard
(n− j)λ(t) for t > tj.

(b) Since F is continuous and not decreasing F−1 is increasing. Let U1, U2, · · · , Un be
independent and identically distributed uniform random variables on (0, 1) and for i =
1, 2, · · · , n set Yi = F−1(Ui). Note that Yi is distributed as Xi and that because F−1 is
increasing Y(i) = f (−1)(U(i)). Which gives the desired result. Now the i-th order statistic
of n uniforms is Beta distributed with parameters i and n+ i+ 1.

(c) This is actually the order statistic property for a Poisson process with intensity 1. The
numerator is distributed as the i-th point of the Poisson process, while the numerator is
distributed as the n+1-st point. By the order statistic property, conditioned on the n+1-
st point being at time t the positions of the first n points are distributed as n independent
identically distributed uniforms on (0, t) and the positions of the first n points divided by
t are distributed as n independent identically distributed uniforms on (0, 1) as desired.

(d) Use the order statistic property as in part c. We know that Sn = y(Y1+· · ·+Yn+1) and
the points S1, · · ·Sn−1 are then distributed as n − 1 independent uniforms on (0, Sn) =
(0, y).

(e) Let V1, V2, · · · be independent identically distributed uniforms on (0, 1). Note that

P(V(n) ≤ x) =
∏n

j=1 P(Vj ≤ x) = xn for x ∈ (0, 1), while P(U
1/n
1 ≤ x) = P(U1 ≤ xn) = xn

for x ∈ (0, 1), which shows the first line of step II. The remaining part is obtained by
using part (d) and noting that U(j−1)/U(j) is distributed as the maximum of j − 1 i.i.d.
uniforms on (0, 1).
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