Chapter 10

In this chapter it is good to remember that a picture tells a thousand words. It is therefore good to draw some kind of Brownian Motion to get inspiration from.
10.1 In these exercises, the variance parameter of the Brownian Motion is 1 .

$$
B(s)+B(t)=2 B(s)+[B(t)-B(s)] \sim 2 N_{1}+N_{2},
$$

where N_{1} and N_{2} are independent $N_{1} \sim \mathcal{N}(0, s)$ and $N_{2} \sim \mathcal{N}(0, t-s)$. So by properties of the normal distribution

$$
B(s)+B(t) \sim \mathcal{N}\left(2 \times 0+0,2^{2} s+(t-s)\right)=\mathcal{N}(0,3 s+t)
$$

10.2 For $t \geq 0$ set $B^{\prime}(t)=B\left(t_{1}+t\right)-A$ and set $B^{\prime}=B-A$ and $s^{\prime}=s-t_{1}$ and $t_{2}^{\prime}=t_{2}-t_{1}$. $B^{\prime}(\cdot)$ then defines a standard Brownian motion. We first compute the distribution of $B^{\prime}\left(s^{\prime}\right)$ conditioned on $B^{\prime}\left(t_{2}^{\prime}\right)=B^{\prime}$. Or for $N_{1} \sim \mathcal{N}\left(0, s^{\prime}\right)$ and $N_{2} \sim \mathcal{N}\left(0, t_{2}^{\prime}-s^{\prime}\right)$ and N_{1} and N_{2} independent we want to compute the conditional density

$$
\begin{aligned}
f_{N_{1} \mid N_{1}+N_{2}}\left(x \mid B^{\prime}\right) & =\frac{f_{N_{1}, N_{2}}\left(x, B^{\prime}-x\right)}{f_{N_{1}+N_{2}}\left(B^{\prime}\right)} \\
& =\frac{\frac{1}{\sqrt{2 \pi s^{\prime}}} \exp \left[-\frac{x^{2}}{2 s^{\prime}}\right] \frac{1}{\sqrt{2 \pi\left(t_{2}^{\prime}-s^{\prime}\right)}} \exp \left[-\frac{\left(B^{\prime}-x\right)^{2}}{2\left(t_{2}^{\prime}-s^{\prime}\right)}\right]}{\frac{1}{\sqrt{2 \pi t_{2}^{\prime}}} \exp \left[\frac{B^{\prime 2}}{2 t_{2}^{\prime}}\right]} \\
& =\sqrt{\frac{t_{2}^{\prime}}{2 \pi s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right)}} \exp \left(-\frac{x^{2}\left(t_{2}^{\prime}-s^{\prime}\right) t_{2}^{\prime}+\left(B^{\prime}-x\right)^{2} s^{\prime} t_{2}^{\prime}-B^{\prime 2} s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right)}{2 s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right) t_{2}^{\prime}}\right) \\
& =\frac{1}{\sqrt{2 \pi \frac{s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right)}{t_{2}^{\prime}}}} \exp \left(-\frac{x^{2}\left(t_{2}^{\prime}\right)^{2}-2 B^{\prime} x s^{\prime} t_{2}^{\prime}+B^{22} s^{\prime 2}}{2 s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right) t_{2}^{\prime}}\right) \\
& =\frac{1}{\sqrt{2 \pi \frac{s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right)}{t_{2}^{\prime}}}} \exp \left(-\frac{\left(x-\frac{B^{\prime} s^{\prime}}{t_{2}^{\prime}}\right)^{2}}{2 \frac{s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right)}{t_{2}^{\prime}}}\right)
\end{aligned}
$$

which is the density function of a normal distribution with mean $B^{\prime} s^{\prime} / t_{2}^{\prime}$ (which lies on the straight line from the origin to $\left.\left(t_{2}^{\prime}, B^{\prime}\right)\right)$ and variance $\frac{s^{\prime}\left(t_{2}^{\prime}-s^{\prime}\right)}{t_{2}^{\prime}}$. To obtain the density of $B(s)$ conditioned on $B\left(t_{1}\right)=A$ and $B\left(t_{2}\right)=B$, we note that $B(s)=B^{\prime}\left(s-t_{1}\right)+A=B^{\prime}\left(s^{\prime}\right)+A$.

10.3

$$
\begin{aligned}
\mathbb{E}\left[B\left(t_{1}\right) B\left(t_{2}\right) B\left(t_{3}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[B\left(t_{1}\right) B\left(t_{2}\right) B\left(t_{3}\right) \mid B\left(t_{1}\right)\right]\right] \\
& =\mathbb{E}\left[B\left(t_{1}\right) \mathbb{E}\left[B\left(t_{2}\right) B\left(t_{3}\right) \mid B\left(t_{1}\right)\right]\right] .
\end{aligned}
$$

We now consider the inner expectation $\mathbb{E}\left[B\left(t_{2}\right) B\left(t_{3}\right) \mid B\left(t_{1}\right)\right]$:

$$
\begin{aligned}
\mathbb{E}\left[B\left(t_{2}\right) B\left(t_{3}\right) \mid B\left(t_{1}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[B\left(t_{2}\right) B\left(t_{3}\right) \mid B\left(t_{1}\right), B\left(t_{2}\right)\right] \mid B\left(t_{1}\right)\right] \\
& =\mathbb{E}\left[\left(B\left(t_{2}\right)\right)^{2} \mid B\left(t_{1}\right)\right] .
\end{aligned}
$$

So, using that $\left(B\left(t_{2}\right)\right)^{2}=\left(B\left(t_{2}\right)-B\left(t_{1}\right)\right)^{2}+2\left(B\left(t_{2}\right)-B\left(t_{1}\right)\right) B\left(t_{1}\right)+B\left(t_{1}\right)^{2}$,

$$
\begin{aligned}
& \mathbb{E}\left[B\left(t_{1}\right) B\left(t_{2}\right) B\left(t_{3}\right)\right] \\
& =\mathbb{E}\left[B\left(t_{1}\right) \mathbb{E}\left[\left(B\left(t_{2}\right)\right)^{2} \mid B\left(t_{1}\right)\right]\right] \\
& =\mathbb{E}\left[B\left(t_{1}\right)\right] \operatorname{Var}\left(B\left(t_{2}\right) \mid B\left(t_{1}\right)\right)+2 \mathbb{E}\left[B\left(t_{1}\right)^{2} \mathbb{E}\left[B\left(t_{2}\right)-B\left(t_{1}\right) \mid B\left(t_{1}\right)\right]+\mathbb{E}\left[B\left(t_{1}\right)\left[\left(B\left(t_{1}\right)\right)^{2}\right]\right]\right. \\
& =\mathbb{E}\left[B\left(t_{1}\right)\right]\left(t_{2}-t_{1}\right)+0+\mathbb{E}\left[B\left(t_{1}\right)\left(B\left(t_{1}\right)\right)^{2}\right] \\
& =0+0+\mathbb{E}\left[\left(B\left(t_{1}\right)\right)^{3}\right] \\
& =0
\end{aligned}
$$

where we have used that the odd moments of the normal distribution are 0 .
10.4 Using equation (10.6) on page 611 , we obtain that

$$
\mathbb{P}\left(T_{a}<\infty\right)=\lim _{z \rightarrow 0} \frac{2}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-y^{2} / 2} d y=\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-y^{2} / 2} d y=1,
$$

because it is twice the integral over the density of a standard normal distribution over the positve half-line.

$$
\begin{aligned}
\mathbb{E}\left[T_{a}\right]=\int_{0}^{\infty} \mathbb{P}\left(T_{a}>t\right) d t & =\int_{0}^{\infty} 1-\mathbb{P}\left(T_{a} \leq t\right) d t \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} \int_{0}^{a / \sqrt{t}} e^{-y^{2} / 2} d y d t \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} \int_{0}^{a^{2} / y^{2}} e^{-y^{2} / 2} d t d y \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty}\left(a^{2} / y^{2}\right) e^{-y^{2} / 2} d y \\
& \geq \frac{2}{\sqrt{2 \pi}} \int_{0}^{1}\left(a^{2} / y^{2}\right) e^{-y^{2} / 2} d y \\
& \geq \frac{2}{\sqrt{2 \pi}} \int_{0}^{1}\left(a^{2} / y^{2}\right) e^{-1 / 2} d y=\infty
\end{aligned}
$$

10.6 Translated to a Brownian Motion problem we want to know

$$
\mathbb{P}\left(T_{b+c}>t \mid B(0)=b\right)=\mathbb{P}\left(T_{c}>t \mid B(0)=0\right)=1-\mathbb{P}\left(T_{c} \leq t\right)
$$

and we can use equation (10.6) on page 611.

10.7

$$
\begin{aligned}
& \mathbb{P}\left(\max _{t_{1} \leq s \leq t_{2}} B(s)>x\right) \\
& =\int_{-\infty}^{x} \mathbb{P}\left(\max _{t_{1} \leq s \leq t_{2}} B(s)>x \mid B\left(t_{1}\right)=y\right) f_{B\left(t_{1}\right)}(y) d y+\int_{x}^{\infty} \mathbb{P}\left(\max _{t_{1} \leq s \leq t_{2}} B(s)>x \mid B\left(t_{1}\right)=y\right) f_{B\left(t_{1}\right)}(y) d y \\
& =\int_{-\infty}^{x} \mathbb{P}\left(\max _{t_{1} \leq s \leq t_{2}} B(s)>x \mid B\left(t_{1}\right)=y\right) \frac{1}{\sqrt{2 \pi t_{1}}} e^{-y^{2} /\left(2 t_{1}\right)} d y+\int_{x}^{\infty} 1 \times \frac{1}{\sqrt{2 \pi t_{1}}} e^{-y^{2} /\left(2 t_{1}\right)} d y \\
& =\int_{-\infty}^{x} \mathbb{P}\left(\max _{0 \leq s^{\prime} \leq t_{2}-t_{1}} B\left(s^{\prime}\right)>x-y\right) \frac{1}{\sqrt{2 \pi t_{1}}} e^{-y^{2} /\left(2 t_{1}\right)} d y+\int_{x}^{\infty} 1 \times \frac{1}{\sqrt{2 \pi t_{1}}} e^{-y^{2} /\left(2 t_{1}\right)} d y .
\end{aligned}
$$

Using the display on page 612, the first integral becomes

$$
\begin{aligned}
& \int_{-\infty}^{x} \mathbb{P}\left(\max _{0 \leq s^{\prime} \leq t_{2}-t_{1}} B\left(s^{\prime}\right)>x-y\right) \frac{1}{\sqrt{2 \pi t_{1}}} e^{-y^{2} /\left(2 t_{1}\right)} d y \\
& =\int_{-\infty}^{x} \frac{2}{\sqrt{2 \pi}} \int_{(x-y) / \sqrt{t_{2}-t_{1}}}^{\infty} e^{-z^{2} / 2} d z \frac{1}{\sqrt{2 \pi t_{1}}} e^{-y^{2} /\left(2 t_{1}\right)} d y \\
& =\frac{1}{\pi \sqrt{t_{1}}} \int_{-\infty}^{x} \int_{(x-y) / \sqrt{t_{2}-t_{1}}}^{\infty} e^{-z^{2} / 2} e^{-y^{2} /\left(2 t_{1}\right)} d z d y
\end{aligned}
$$

and I do not think it gets nicer than this.
10.9 Let $\{X(t), t \geq 0\}=\{\sigma B(t)+\mu t, t \geq 0\}$. So,

$$
\begin{aligned}
f_{X(s), X(t)}(x, y) & =f_{\sigma B(s), \sigma B(t)}(x-\mu s, y-\mu t) \\
& =\frac{1}{\sigma^{2}} f_{B(s), B(t)}\left(\frac{x-\mu s}{\sigma}, \frac{y-\mu t}{\sigma}\right) \\
& =\frac{1}{\sigma^{2}} f_{B(s), B(t)-B(s)}\left(\frac{x-\mu s}{\sigma}, \frac{y-x-\mu(t-s)}{\sigma}\right) \\
& =\frac{1}{\sigma^{2}} f_{B(s)}\left(\frac{x-\mu s}{\sigma}\right) f_{B(t)-B(s)}\left(\frac{y-x-\mu(t-s)}{\sigma}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2} s}} e^{-\frac{(x-\mu s)^{2}}{2 s \sigma^{2}}} \frac{1}{\sqrt{2 \pi \sigma^{2}(t-s)}} e^{-\frac{(y-x-\mu(t-s))^{2}}{2(t-s) \sigma^{2}}}
\end{aligned}
$$

and it doesn't get much nicer than this.
10.10 Let $\{X(t), t \geq 0\}=\{\sigma B(t)+\mu t, t \geq 0\}$. If $s<t$ then,

$$
\begin{aligned}
f_{X(t) \mid X(s)}(x \mid c) & =\frac{1}{\sigma} f_{B(t) \mid B(s)}\left(\left.\frac{x-\mu t}{\sigma} \right\rvert\, \frac{c-\mu s}{\sigma}\right) \\
& =\frac{1}{\sigma} \frac{f_{B(s), B(t)}\left(\frac{c-\mu s}{\sigma}, \frac{x-\mu t}{\sigma}\right)}{f_{B(s)}\left(\frac{c-s}{\sigma}\right)} \\
& =\frac{1}{\sigma} \frac{f_{B(s), B(t)-B(s)}\left(\frac{c-\mu s}{\sigma}, \frac{x-c-\mu(t-s)}{\sigma}\right)}{f_{B(s)}\left(\frac{c-\mu s}{\sigma}\right)} \\
& =\frac{1}{\sigma} \frac{f_{B(s)}\left(\frac{c-\mu s}{\sigma}\right) f_{B(t)-B(s)}\left(\frac{x-c-\mu(t-s)}{\sigma}\right)}{f_{B(s)}\left(\frac{c-\mu s}{\sigma}\right)} \\
& =\frac{1}{\sigma} f_{B(t)-B(s)}\left(\frac{x-c-\mu(t-s)}{\sigma}\right) \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}(t-s)}} \exp \left[-\frac{(x-c-\mu(t-s))^{2}}{2 \sigma^{2}(t-s)}\right]
\end{aligned}
$$

So conditioned on $X(s)=c, X(t)$ is normal distributed with expectation $c+\mu(t-s)$ and variance $\sigma^{2}(t-s)$.
Similarly if $s>t$, then

$$
\begin{aligned}
f_{X(t) \mid X(s)}(x \mid c) & =\frac{1}{\sigma} f_{B(t) \mid B(s)}\left(\left.\frac{x-\mu t}{\sigma} \right\rvert\, \frac{c-\mu s}{\sigma}\right) \\
& =\frac{1}{\sigma} \frac{f_{B(t), B(s)}\left(\frac{x-\mu t}{\sigma}, \frac{c-\mu s}{\sigma}\right)}{f_{B(s)}\left(\frac{c-\mu s}{\sigma}\right)} \\
& =\frac{1}{\sigma} \frac{f_{B(t), B(s)-B(t)}\left(\frac{x-\mu t}{\sigma}, \frac{c-x-\mu(s-t)}{\sigma}\right)}{f_{B(s)}\left(\frac{c-\mu s}{\sigma}\right)} \\
& =\frac{1}{\sigma} \frac{f_{B(t)}\left(\frac{x-\mu t}{\sigma}\right) f_{B(s)-B(t)}\left(\frac{c-x-\mu(s-t)}{\sigma}\right)}{f_{B(s)}\left(\frac{c-\mu s}{\sigma}\right)} \\
& =\frac{1}{\sigma} \frac{\frac{1}{\sqrt{2 \pi t}} \exp \left[-\frac{1}{2 t}\left(\frac{x-\mu t}{\sigma}\right)^{2}\right] \frac{1}{\sqrt{2 \pi(s-t)}} \exp \left[-\frac{1}{2(s-t)}\left(\frac{c-x-\mu(s-t)}{\sigma}\right)^{2}\right]}{\frac{1}{\sqrt{2 \pi s}} \exp \left[-\frac{1}{2 s}\left(\frac{c-\mu s}{\sigma}\right)^{2}\right]} \\
& =\frac{1}{\sqrt{2 \pi \frac{t(s-t)}{s} \sigma^{2}}} \exp \left[\frac{s(s-t)(x-\mu t)^{2}+s t(c-x-\mu(s-t))^{2}-t(s-t)(c-\mu s)^{2}}{2 t(s-t) s \sigma^{2}}\right] \\
& =\frac{1}{\sqrt{2 \pi \frac{t(s-t)}{s} \sigma^{2}}} \exp \left[\frac{\left[\left(x-c^{\left.\frac{t}{s}\right)^{2}}\right.\right.}{2 \frac{t(s-t)}{s} \sigma^{2}}\right] .
\end{aligned}
$$

This is the density of a Normal random variable with expectation $c t / s$ and variance $\sigma^{2} t(s-t) / s$, which is independent of μ.
10.11 If we consider the logarithm of the described process then with probability $\frac{1}{2}(1+$ $\left.\frac{\mu}{\sigma} \sqrt{h}\right)$ the new process increases $\sigma \sqrt{h}$ per h time units and with probabilty $\frac{1}{2}\left(1-\frac{\mu}{\sigma} \sqrt{h}\right)$ it decreases $\sigma \sqrt{h}$. The expected step is μh and the variance is $\sigma^{2} h$. The new process has independent increments and by the CLT the increment after t / h steps is normal distributed with mean μt and variance $\sigma^{2} t$.
10.32 A Brownian motion is a Gaussian process with expectation function $\mathbb{E}[B(t)]=0$ and Covariance function $\operatorname{Cov}(B(s), B(t))=s$. The Brownian bridge is a Gaussian process with expectation function $\mathbb{E}[Z(t)]=0]$ and $\operatorname{Cov}(Z(s), Z(t))=s(1-t)$ for $0<s, t<1$ (see page 630). For all sequences of times $t_{1}, t_{2}, \cdots, t_{n} .\left(Y\left(t_{1}\right), Y\left(t_{2}\right), \cdots, Y\left(t_{n}\right)\right)$ is a multivariate normal because Z is a Gaussian process and the Y s are just constants times Z 's evaluated at different times. Further $\mathbb{E}[Y(t)]=(t+1)[E][Z(t /(t+1))]=0$, because the expectation function of a Brownian Motion is 0 . To go to the covariance, for $s \leq t$ we have

$$
\begin{aligned}
& \operatorname{Cov}[Y(s), Y(t)]=\operatorname{Cov}\left[(s+1) Z\left(\frac{s}{s+1}\right),(t+1) Z\left(\frac{t}{t+1}\right)\right] \\
& =(s+1)(t+1) \operatorname{Cov}\left[Z\left(\frac{s}{s+1}\right), Z\left(\frac{t}{t+1}\right)\right]=(s+1)(t+1) \frac{s}{s+1}\left(1-\frac{t}{t+1}\right)=s .
\end{aligned}
$$

So the expectation function and covariance function of the Gaussian process $\{Y(t), t \geq 0\}$ are those of a Brownian motion and therefore the process is a Brownian Motion.
10.33 First assume $s>1$, then

$$
\operatorname{Cov}(X(t), X(t+s))=\operatorname{Cov}(N(t+1)-N(t), N(t+s+1)-N(t+s))=0
$$

because it is the covariance between the number of arrivals in the non-overlapping intervals $(t, t+1)$ and $(t+s, t+s+1)$.

If $s \in[0,1]$, then

$$
\begin{aligned}
& \operatorname{Cov}(X(t), X(t+s)) \\
= & \operatorname{Cov}(N(t+1)-N(t), N(t+s+1)-N(t+s)) \\
= & \operatorname{Cov}([N(t+1)-N(t+s)]+[N(t+s)-N(t)],[N(t+s+1)-N(t+1)]+[N(t+1)-N(t+s)]) \\
= & \operatorname{Cov}([N(t+1)-N(t+s)],[N(t+s+1)-N(t+1)]) \\
& +\operatorname{Cov}([N(t+1)-N(t+s)],[N(t+1)-N(t+s)]) \\
& +\operatorname{Cov}([N(t+s)-N(t)],[N(t+s+1)-N(t+1)]) \\
& +\operatorname{Cov}([N(t+s)-N(t)],[N(t+1)-N(t+s)]) \\
= & 0+\operatorname{Var}(N(t+1)-N(t+s))+0+0 \\
= & \lambda((t+1)-(t+s))=\lambda(1-s)
\end{aligned}
$$

Where we have used that covariance of the number of arrivals in non-overlapping interval is 0 , while the variance of the number of arrivals in an interval of length x is the variance of Poisson distributed random variable with mean λx.
10.34 In a Poisson process the waiting times between arrivals are independent and identically exponentially distributed and the exponential distribution is memoryless. In particular $\{N(t) ; t \geq 0\}$ is distributed as $\{N(t+s)-N(s) ; t \geq 0\}$ and therefore $\{Y(t) ; t \geq 0\}=\{\min \{u \geq 0 ; N(t+u)-N(t) \geq 1\}, t \geq 0\}$ is distributed as $\{Y(t+s) ; t \geq 0\}$ for all $s>0$.

$$
\operatorname{Cov}(Y(t), Y(t+s))=\mathbb{E}[Y(t) Y(t+s)]-\mathbb{E}[Y(t)] \mathbb{E}[Y(t+s)]=\mathbb{E}[Y(t) Y(t+s)]-1 / \lambda^{2}
$$

$Y(t)$ has distribution function $f(u)=\lambda e^{-\lambda u}$. So,

$$
\begin{gathered}
\mathbb{E}[Y(t) Y(t+s)]=\mathbb{E}[\mathbb{E}[Y(t) Y(t+s) \mid Y(t)]]=\int_{0}^{\infty} \lambda e^{-\lambda u} \mathbb{E}[Y(t) Y(t+s) \mid Y(t)=u] d u \\
=\int_{0}^{s} \lambda e^{-\lambda u} \mathbb{E}[u Y(t+s) \mid Y(t)=u] d u+\int_{s}^{\infty} \lambda e^{-\lambda u} \mathbb{E}[u Y(t+s) \mid Y(t)=u] d u
\end{gathered}
$$

Now, if $Y(t)>s$ then $Y(t+s)=Y(t)-s$, while if $Y(t)<s$ then $Y(t+s)$ is exponentially distributed with parameter λ and further independent of $Y(t)$. So,

$$
\begin{aligned}
& \mathbb{E}[Y(t) Y(t+s)]=\int_{0}^{s} \lambda e^{-\lambda u} u \frac{1}{\lambda} d u+\int_{s}^{\infty} \lambda e^{-\lambda u} u(u-s) d u \\
&=\int_{0}^{s} e^{-\lambda u} \frac{1}{\lambda} d u-\left[e^{-\lambda u} \frac{u}{\lambda}\right]_{u=0}^{s}+\int_{0}^{\infty} \lambda e^{-\lambda\left(u^{\prime}+s\right)}\left(u^{\prime 2}+u^{\prime} s\right) d u^{\prime} \\
&= \frac{1}{\lambda^{2}}\left(1-e^{-\lambda s}\right)-\frac{s}{\lambda} e^{-\lambda s}+e^{-\lambda s}\left(\operatorname{Var}\left(Y(t)+\mathbb{E}[Y(t)]^{2}\right)+s \mathbb{E}[Y(t)]\right) \\
&=\frac{1}{\lambda^{2}}\left(1-e^{-\lambda s}\right)-\frac{s}{\lambda} e^{-\lambda s}+e^{-\lambda s}\left(\frac{2}{\lambda^{2}}+\frac{s}{\lambda}\right)=\frac{1}{\lambda^{2}}\left(1+e^{-\lambda s}\right)
\end{aligned}
$$

and

$$
\operatorname{Cov}(Y(t), Y(t+s))=\mathbb{E}[Y(t) Y(t+s)]-\frac{1}{\lambda^{2}}=e^{-\lambda s} \frac{1}{\lambda^{2}}
$$

10.35 a)

$$
\begin{aligned}
& \operatorname{Var}(X(t+s)-X(t))=\operatorname{Cov}(X(t+s)-X(t), X(t+s)-X(t)) \\
= & \operatorname{Cov}(X(t+s), X(t+s))-2 \operatorname{Cov}\left(X(t), X(t+s)+\operatorname{Cov}(X(t), X(t))=R_{X}(0)-2 R_{X}(s)+R_{X}(0)\right.
\end{aligned}
$$

as desired.
b) $\mathbb{E}[Y(t)]=\mathbb{E}[X(t+1)]-\mathbb{E}[X(t)]=0$, because $X(\cdot)$ is stationary, while

$$
\begin{aligned}
& \operatorname{Cov}(Y(t), Y(t+s)) \\
= & \operatorname{Cov}(X(t+1)-X(t), X(t+s+1)-X(t+s)) \\
= & \operatorname{Cov}(X(t+1), X(t+s+1))-\operatorname{Cov}(X(t), X(t+s+1)) \\
& -\operatorname{Cov}(X(t+1), X(t+s))+\operatorname{Cov}(X(t), X(t+s)) \\
= & 2 R_{X}(s)-R_{X}(s+1)-R_{X}(s-1),
\end{aligned}
$$

which is independent of t.

