
Solutions of the first exam:
Stochastic Processes and Simulation II

May 30th 2023

Exercise 1: Poisson processes

(i) Give the definition of a compound Poisson process Xptq and write an expression for its
mean ErXptqs and its variance VarpXptqq.

Solution: A stochastic process tXptq, t ě 0u is said to be a compound Poisson process if it
can be represented as

Xptq “

Nptq
ÿ

i“1

Yi, t ě 0,

where tNptq, t ě 0u is a Poisson process, and tYi, i ě 1u is a family of i.i.d. random variables
that is also independent of tNptq, t ě 0u.
If tNptq, t ě 0u is a Poisson process with rate λ, then ErXptqs “ λtErY1s and VarpXptqq “
λtErY 2

1 s.

Due to the current climate crisis, lots of families are migrating from climate affected countries
seeking for better living conditions. Data show that most of the climate refugees migrates
from Afghanistan, India and Pakistan. Assume that family are migrating from Afghanistan
according to a Poisson process with rate 7 per day. Suppose also that the size of a family
is 1, 2, 3, 4, respectively with probability 1{8, 3{8, 3{8, 1{8, independently for each family and
from the migration process.

(ii) What is the expected value and variance of the number of refugees migrating from
Afghanistan in a week?

Solution: We have that ErY1s “ 2.5 and ErY 2
1 s “ 11

8
` 43

8
` 93

8
` 161

8
“ 7. Hence,

ErXp7qs “ 7 ¨ 7 ¨ 2.5 “ 122.5 and VarpXp7qq “ 7 ¨ 7 ¨ 7 “ 343.

(iii) Using the central limit theorem, find the approximate probability that at least 1800
refugees migrate from Afghanistan in the next 100 days. The answer can be given in terms
of φpxq “ PpZ ď xq, where Z „ N p0, 1q is a standard normal random variable.

Solution: We want to compute PpXp100q ą 1800q. Using the central limit theorem, we can

approximate Xp100q´ErXp100qs?
VarpXp100qq

as a standard normal random variable Z „ N p0, 1q. We also

know that ErXp100qs “ 7 ¨ 100 ¨ 2.5 “ 1750 and that VarpXp100qq “ 7 ¨ 100 ¨ 7 “ 4900. Hence

PpXp100q ą 1800q “ P

˜

Xp100q ´ ErXp100qs
a

VarpXp100qq
ą

1800´ ErXp100qs
a

VarpXp100qq

¸

« P
ˆ

Z ą
1800´ 1750

70

˙

“ P
ˆ

Z ą
5

7

˙

“ 1´ φ

ˆ

5

7

˙

« 0.24.
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Exercise 2: Renewal theory

(i) Let tNptq, t ě 0u be a renewal process with i.i.d. interarrival times Xn, n ě 1, and let

µ “ ErXns. Prove that the rate of the renewal process Nptq
t

converges to 1
µ

almost surely as
tÑ 8.

Solution: If SNptq is the time of the last renewal prior to or at time t, while SNptq`1 is the time
of the first renewal after time t, then

SNptq
Nptq

ď
t

Nptq
ă
SNptq`1
Nptq

.

By the strong law of large numbers, since Nptq Ñ 8, we have that the left-hand side term
SNptq
Nptq

converges to µ a.s., and that the right-hand side term
SNptq`1

Nptq
, which can be written as

SNptq`1

Nptq`1
Nptq`1
Nptq

“
SNptq`1

Nptq`1

´

1` 1
Nptq

¯

, converges to µ a.s.. Hence the term in the middle must

also converge to µ a.s., and the result is proven by taking the reciprocal.

Suppose that at one of the border control stations between Afghanistan and Iran, all the
refugees that arrive from Afghanistan receive help to reach the nearest city in Iran thanks
to a bus service provided by some volunteers authorized by the governments. Assume that
refugees arrive according to a Poisson process with rate λ. Assume that, as soon as there are
N refugees at the station, a bus picks them all up and departs. The bus service association
incurs a cost at a rate of nc per unit time whenever there are n refugees waiting at the station.

(ii) Describe the problem in terms of a renewal reward process. State and use the renewal
reward theorem to compute the long-run average cost.

Solution: We can model the problem as a renewal reward process where the renewals/cycles
are described by the arrivals of buses and the reward is a cost which is paid gradually through
a cycle at rate nc per unit time.
The renewal reward theorem says that, if the expected reward in a cycle ErRs and the expected
cycle length ErXs are finite, then

(i) Rptq
t
Ñ

ErRs
ErXs almost surely as tÑ 8;

(ii) ErRptqs
t

Ñ
ErRs
ErXs as tÑ 8.

In our model, the long-run average cost is then given by ErRs
ErXs “

Ercost in a cycles
Erlength of a cycles

. The expected
cost up to the arrival of the first refugee is 0. The expected cost between the first and the
second arrival is c

λ
, and in general the expected cost between the k-th and the k` 1-st arrival

is kc
λ

. Hence we have that ErRs “
řN´1
k“0

kc
λ
“

cNpN´1q
2λ

. Moreover, we have that ErXs “ N
λ

.
The long-run avarage cost is then

ErRs
ErXs

“

cNpN´1q
2λ
N
λ

“
cpN ´ 1q

2
.
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Consider now a slightly different model and assume that, as soon as there are N refugees at
the station, a bus is called and takes T units of time to arrive. Again, when it arrives all the
refugees are picked up.

(iii) What is the expected cost in a cycle?

Solution: The expected cost in a cycle can now be splitted in the sum of three type of costs
R1, R2 and R3. The first cost is cost up to the arrival of the N -th refugees (which we

calculated above), hence ErR1s “
cNpN´1q

2λ
. The second cost is the cost coming from the N

refugees at the station while waiting for the bus to arrive once it is called. This cost is simply
ErR2s “ cNT . The third cost is the cost of the refugees arriving during time T that the bus
takes to arrive. Let M be the number of new arrivals during this time. By the order statistic
property, they are uniformly distributed in the interval of length T , hence their expected cost
is ErR3s “ cErM sT

2
“ cλT 2

2
. Summing up these three types of cost, we have that

ErRs “
cNpN ´ 1q

2λ
` cNT `

cλT 2

2
.

(iv) Bonus (2 points): What is the long-run average cost?

Solution: The expected length of a cycle is now ErXs “ N
λ
`K. Hence the long-run average

cost is
ErRs
ErXs

“

cNpN´1q
2λ

` cNT ` cλT 2

2
N
λ
`K

“
cNpN ´ 1q ` 2cλTN ` cλ2T 2

2pN ` Tλq
.

Exercise 3: Queueing theory

When the refugees arrive at the border control station they are sent to a registration desk to
fill in some documents. Suppose that there is only one active desk, that the refugees arrive at
a Poisson rate λ independently of each other, and that the time it takes for each registration
is exponentially distributed with mean 1{µ, independently of everything else.

(i) Specify what type of queueing model best describes the registration process. Write down
the balance equations and show how they can be solved to compute the limiting probability
P0 that there are no refugees at the border control station. What condition must λ and µ
satisfy in order for the limiting probabilities to exist?

Solution: The registration process can be described as an M{M{1 queueing model, where the
arrival times are i.i.d. Exppλq and the service times are i.i.d. Exppµq. The balance equations
are

λP0 “ µP1,

pλ` µqPn “ λPn´1 ` µPn`1, n ě 1.
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We have that P1 “
λ
µ
P0 and Pn`1 “

λ
µ
Pn `

`

Pn ´
λ
µ
Pn´1

˘

for n ě 1. Solving in terms of

P0, for n ě 2, Pn “
λ
µ
Pn´1 `

`

Pn´1 ´
λ
µ
Pn´2

˘

“ λ
µ
Pn´1 “

`

λ
µ

˘n
P0. Since 1 “

ř8

n“0 Pn “
ř8

n“0

`

λ
µ

˘n
P0 “

P0

1´λ
µ

, we get that P0 “ 1´ λ
µ
. The condition to be satisfied is λ ă µ.

(ii) What is the average number of refugees at the station? What is the average number of
refugees in the queue at the station?

Solution: The average number of refugees at the station is given by L “ λ
µ´λ

. Since

W “ L
λ
“ 1

µ´λ
and WQ “ W ´ ErSs “ W ´ 1

µ
“ λ

µpµ´λq
, the average number of refugees

in queue at the station is given by LQ “ λWQ “
λ2

µpµ´λq
.

(iii) Assume now that the refugees arrive on average every 10 minutes according to Poisson
process, and that the time S it takes for each registration is not anymore exponentially dis-
tributed, but ErSs “ VarpSq “ 5 minutes. What is the average number of refugees at the
station? What is the average number of refugees in the queue at the station?

Solution: The registration process can now be described as an M{G{1 queueing model, where
the arrival times are i.i.d. Exp

`

1
10

˘

and the service times are i.i.d. with mean ErSs “ 5. By the

Pollaczek-Khintchine formula, we have that WQ “
λErS2s

2p1´λErSsq , where ErS2s “ VarpSq`ErSs2 “

5` 25 “ 30. Hence, WQ “
1
10

30

2p1´ 1
10

5q
“ 3 minutes. The average number of refugees in queue at

the station is then

LQ “ λWQ “
1

10
3 “

3

10
.

Since W “ WQ`ErSs “ 3` 5 “ 8 minutes, we also have that the average number of refugees
at the station is

L “ λW “
1

10
8 “

4

5
.

Exercise 4: Simulation

(i) Describe and prove the inverse transformation method to simulate a random variable with
distribution function F .

Solution: The inverse transformation method says that, when F´1 is computable, we can
simulate a random variable X from a continuous distribution F by simulating U „ Up0, 1q
and then setting X “ F´1pUq.
To prove it, just notice that, since F is monotone, we have

PpX ď aq “ PpF´1pUq ď aq “ PpU ď F paqq “ F paq.

(ii) How can we simulate a Poisson random variable with mean λ starting from independent
uniform random variables U1, U2, . . . ? Describe the method and argue that it gives the desired
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distribution.

Solution: Generate the sequence U1, U2, . . . stopping at N ` 1 “ mintn :
śn

i“1 Ui ă e´λu.
The random variable N has the desired distribution.
Indeed, it can be shown that N “ maxtn :

řn
i“1´ logpUiq ă λu. Then, since logpUiq „ Expp1q,

we can interpret N as the number of events by time λ of a Poisson process with rate 1, which
is a Poisson random variable with mean λ.

Suppose that the refugees arrive at the border control station according to a nonhomogeneous
Poisson process tNptq, t ě 0u with rate λptq “ 3t2.

(iii) Explain in detail how we can simulate the first T time units of the refugees arrival process
by first simulating the random variable NpT q and then simulating NpT q random variables
representing the arrival times.

Solution: For a nonhomogeneous Poisson process on r0, T s, given NpT q, the event times are

i.i.d. with conditional distribution F ptq “ mptq
mpT q

, where mptq “
şt

0
λpsq ds. In our case, we

have that mptq “
şt

0
3s2 ds “ t3, hence the conditional distribution is F ptq “ t3

T 3 . Since
NpT q „ PopmpT qq, we can simulate the nonhomogeneous Poisson process by first simulating
NpT q as described in (ii) and then simulating NpT q random variables from their common
distribution function F ptq “ t3

T 3 . To do so, we can use the inverse transformation method
to simulate each of them by simulating a uniform variable U „ Up0, 1q and then compute
F´1pUq “ TU1{3.

Exercise 5: Brownian motion

(i) Give the definition of a Brownian motion tXptq, t ě 0u with drift coefficient µ and variance
parameter σ2.

Solution: The process tXptq, t ě 0u is a Brownian motion with drift coefficient µ and vari-
ance parameter σ2 if Xp0q “ 0, tXptq, t ě 0u has stationary and independent increments, and
Xptq „ N pµt, σ2tq.

Data from this year show that, due to emissions of greenhouse gases from human activities,
the global temperature has increased by 1.1 degrees Celsius compared with pre-industrial lev-
els in the period 1850-1900. Recent studies predicted that it will be 2 degrees Celsius warmer
than pre-industrial times by the year 2050.

(ii) Assume that the global temperature evolves according to a Brownian motion with drift
tXptq, t ě 0u and that it is expected to reach the 2 degrees Celsius threshold exactly in 2050.
What is the value of the drift coefficient µ in the unit Celsius/years?
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Solution: The process is expected to increase by 0.9 degrees Celcius in 27 years from now, so
the drift coefficient must be µ “ 0.9

27
“ 1

30
.

Assume that we will be able to find solution to the climate crisis and completely cancel the
effect of the drift in the year 2035, so that the global temperature will evolve according to a
Brownian motion with drift µ until 2035 and then without drift until 2050.

(iii) If in 2035 the global temperature will be exactly at its mean value and if σ “ 1, what is
probability that it will still reach the 2 degrees Celsius threshold by 2050?

Solution: In 2035, so in 12 years from now, the global temperature is expected to increase
by 12 1

30
“ 0.4 degrees Celsius, so it is expected to be 1.5 degrees Celcius warmer than pre-

industrial times. It will then evolve according to a standard Brownian motion without drift.
Note that the probability of hitting the threshold of 2 degrees Celsius before 2050 is equivalent
to the probability that a standard Brownian motion tX̄ptq, t ě 0u starting at 0 increases by
0.5 degrees Celsius within 15 years. Recall that, if we let Ta “ inftt ě 0 : X̄ptq ě au be the
hitting time of barrier a, then PpTa ď tq “ 2?

2π

ş8

a{
?
t
e´y

2{2 dy. Hence, we have that

PpT0.5 ď 15q “
2
?

2π

ż 8

0.5{
?
15

e´y
2{2 dy.
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