
Solutions Stochastic Processes and Simulation II, May 28, 2018

Problem 1: Poisson Processes

Let {N(t), t ≥ 0} be a homogeneous Poisson Process on (0,∞) with rate λ. Let {Si, i = 1, 2, · · · }
be the points of the Poisson Process, such that S1 < S2 < S3 < · · · . De�ne S0 = 0.

a) Provide the distribution of S1. (3p)

Solution: A homogeneous Poisson process with intensity λ has no points in (0, t) with proba-

bility e−λt, which implies P(S1 > t) = e−λt, i.e. S1 is exponentially distributed with expectation

1/λ. Also possible to say immediately that an homogeneous Poisson process has independent

exponentially distributed inter-arrival times.

b) For x ∈ [0, T ] compute P[T − Sn > x|N(T ) = n]. (4p)

Solution: By order statistic property the n points of the Poisson Process in (0, T ) are distributed
as n independent random variables, uniformly distributed on (0, T ). The probability that all n
of those points fall in the interval (0, T − x) (in which case T − SN > x is given by

(
T−x
T

)n
. So,

P[T − Sn > x|N(T ) = n] =
(
T−x
T

)n
=
(
1− x

T

)n
.

c) Compute E[T − Sn|N(T ) = n]. (2p)

Solution: Using the standard identity E[X] =
∫∞
0 P(X > x)dx for all non negative continuous

random variables X, we obtain

E[T − Sn|N(T ) = n] =

∫ ∞
0

P[T − Sn > x|N(T ) = n]dx =

∫ T

0

(
1− x

T

)n
dx

= − T

n+ 1

(
1− x

T

)n+1
]x=Tx=0 =

T

n+ 1
.

d) Compute E[T − SN(T )]. (3p)

Solution:

E[T − SN(T )] = P(N(T ) = 0)T +
∞∑
n=1

P(N(T ) = n)E[T − Sn|N(T ) = n]

= e−λTT +

∞∑
n=1

(λT )n

n!
e−λT

T

n+ 1
= e−λTT +

1

λ

∞∑
n=1

(λT )n+1

(n+ 1)!
e−λT

= e−λTT +
1

λ
(1− e−λT − λTe−λT ) = 1− e−λT

λ



Problem 2: Renewal Theory

Alice and Bob play a match consisting of rallies, where Alice starts the �rst rally and the winner

of a rally starts the next rally.

The probability that Alice wins a rally that she starts herself is pa (and she loses that rally with

probability 1− pa), while the probability that Bob wins a rally that he starts himself is pb (and
he loses the rally with probability 1− pb). Conditioned on who starts the rally, the outcomes of

a rally is independent of the outcomes of other rallies. Assume that 0 < pa < 1 and 0 < pb < 1.

Let {N(t), t ∈ N≥0} be the number of rallies won by Alice among the �rst t rallies, and for

n ∈ N≥1 let Sn = min{k ∈ N≥1;N(k) = n} be the number of rallies Alice needs to play in order

to win n rallies.

a) Provide the distribution and expectation of S1. (4p)

Solution If Alice wins the �rst game, then S1 = 1, so P(S1 = 1) = pa. If Bob wins the �rst game,

then the number of extra games it takes for Alice to win again is geometrically distributed with

parameter 1− pb (and thus expectation 1/(1− pb)). So, P(S1 = k+1) = (1− pa)(pb)k−1(1− pb)
for k ≥ 1.

It follows immediately that

E[S1] = P(S1 = 1) + P(S1 6= 1)(1 + E[Geometric r.v. with parameter 1− pb]

= pa + (1− pa)(1 +
1

1− pb
) = 1 +

1− pa
1− pb

.

b) Compute E[N(t)]/t, for t→∞. (4p)

Solution N(t) is a renewal process with mean interarrival time E[S1]. By the Elementary

renewal theorem, we therefore obtain that E[N(t)]/t→ 1/E[S1] = 1−pb
(1−pa)+(1−pb) .

Assume now that Alice and Bob get points for their �winning streaks� (rows of consecutive wins).

If Alice wins k rallies in a row then the points for that streak are k2.

c) Provide the (almost-sure) long run average number of points per rally for Alice. (4p)

Solution Consider a new renewal process {N ′(t), t ∈ N≥0}, whereN ′(t) is the number of �nished
winning streaks of Bob, where a winning streak of Bob ends at rally k if Bob wins rally k and

Alice wins rally k + 1. N ′(t) also constitutes a renewal process. We use now theory on renewal

reward processes, where the duration of a cycle is the duration of a winning streak of Alice

(which has a geometrically distributed length with expectation 1/(1− pa)) plus the duration of

winning streak of Bob (which has a geometrically distributed length with expectation 1/(1−pb)).

The expected number of points Alice gets during a cycle is
∑∞

k=1 k
2(pa)

k−1(1 − pa), which is

the variance plus the square of the expectation of a Geometric distributed random variable with

parameter (1 − pa). That is,
∑∞

k=1 k
2(pa)

k−1(1 − pa) = pa
(1−pa)2 + 1

(1−pa)2 . So, the long run

average number of points per rally for Alice is
(

pa
(1−pa)2 + 1

(1−pa)2

)
/
(

1
1−pa + 1

1−pb

)
.
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Problem 3: Queueing Theory

Consider an M/M/∞ queue in which customers arrive according to a Poisson Process with

rate λ, and customers have independent workloads which are exponentially distributed with

expectation 1/µ. Because there are in�nitely many servers every customer will enter service

immediately upon entering.

a) For k ∈ N≥0. Let Pk be the probability that there are k customers in the system if the number

of customers in the systems starts in the stationary distribution. Show that Pk = (λ/µ)k

k! e−λ/µ

for k ∈ N≥0. (4p)

Solution The rate at which the number of customers increases by 1 is λ, while the rate at which
a customer leaves if there are k customers in the system is kµ. So, using balance equations we

obtain λP0 = µP1 and for k ≥ 1, we have (λ + kµ)Pk = λPk−1 + (k + 1)µPk+1. We then note

that Pk =
(λ/µ)k

k e−λ/µ satis�es those equations and that
∑∞

k=0 Pk = 1.

Now assume that there is one very friendly server (say Claire). If she is �nished serving a

customer while there are still other customers in the system, she takes over the service on one

of those customers (and sends the server who was working on that customer for a co�ee). If a

customer arrives when Claire is idle, that customer will start service with Claire.

b) In the long run, what fraction of arriving customers will start service with Claire? (2p)

Solution Claire is only idle when there are no customers in the system. Because of PASTA, a

fraction P0 of the arriving customers will �nd Claire idle and therefore start their service with

Claire.

c) In the long run, what fraction of customers will �nish their time in the system being served

by Claire. (6p)

Solution As long as there are customers in the system, customers leave from Claire at rate

µ. So the long run average number of customers that leave Claire per time unit is (1 − P0)µ
(where 1 − P0 is the proportion of the time that the system is not empty. In the long run the

number of customers that leave per time unit is λ (because this should equal the long run rate

at which customers arrive). So, the fraction of customers that �nish their service with Claire is

(1− P0)µ/λ.
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Problem 4: Brownian Motion and Stationary Processes

Let {B(t), t ≥ 0} be a standard Brownian motion and for t > 0, let M(t) := max0≤s≤tB(s), be
the maximum of the Brownian motion up to time t.

a) For y > 0 and x > 0, argue that P(M(t) > y,B(t) < y − x) = P(B(t) > y + x). (4p)

Solution Let Ty be inf{t ≥ 0;B(t) > y} be the hitting time of y for this Brownian Motion. Now

use the re�ection principle and note that {B(t)− y, t ≥ Ty} has by symmetry of the Brownian

motion the same distribution as {−(B(t)− y), t ≥ Ty}. Now note that

P(M(t) > y,B(t) < y − x) = P(Ty < t,B(t) < y − x) = P(Ty < t,B(t)−B(Ty) < −x),

by symmetry the latter term is then equal to

P(Ty < t,B(t)−B(Ty) > x) = P(Ty < t,B(t) > x+ y) = P(M(t) > y,B(t) > x+ y).

Since if B(t) > x+ y then M(t) = max0≤s≤tB(s) ≥ B(t) > x the desired result follows.

b) For 0 < t < 1, show that

P(M(1) > M(t)) =
∫∞
0

∫ y
−∞

2

π
√
t(1−t)

2y−x
t e−

(2y−x)2

2t

(∫∞
y−x e

− z2

2(1−t)dz

)
dxdy

= 2

π
√
t(1−t)

∫∞
0

∫∞
0

∫∞
0

y′+x′

t e−
(y′+x′)2

2t e
− (z′+x′)2

2(1−t) dz′dx′dy′,

where you may use the change of variables, z′ = z − y + x, x′ = y − x and y = y′ for the last

identity. (4p)

Solution M(1) > M(t) if

max
t≤s≤1

B(s) > max
0≤s≤t

B(s). That is, if max
t≤s≤1

(B(s)−B(t)) > M(t)−B(t).

Also note that by the independent increment property maxt≤s≤1(B(s) − B(t)) is independent
of M(t)−B(t) and distributed as M(1− t). So, we obtain that

P(M(1) > M(t)) =

∫ ∞
0

∫ y

−∞
fM(t),B(t)(y, x)P(M(1− t) > y − x)dxdy

We know that fM(t),B(t)(y, x) =
2√
2πt

2y−x
t e−

(2y−x)2

2t , and from the cheat-sheet that

P(Ty−x < t) = P(M(1− t) > y − x) =
∫∞
y−x

2√
2π(1−t)

e
− z2

2(1−t)dz. and the �rst equality follows.

The second equality follows by using the change of variables as described and checking that the

combined conditions 0 < y = y′ <∞, −∞ < x = y′ − x′ < y′ and x′ = y− x < z = z′ + x′ <∞
is equivalent to x′, y′ and z′ all being in the interval (0,∞).

c) Let Tmax(1) = {t ∈ (0, 1);B(t) = M(1)} be the time when the Brownian Motion takes its

maximum on the interval (0, 1). Provide the distribution function of Tmax(1). (4p)

Solution P(Tmax(1) ≤ t) = P(M(t) =M(1)) = 1−P(M(t) < M(1)) = 1− 2
π arccos(

√
t).Where

we have used the note in the last equality.
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Problem 5: Simulation

Consider {N(t); t ≥ 0}, a non-homogeneous Poisson Process on [0,∞) with intensity function

λ(x) = ce−x.

Note that the number of points in this Poisson process on the interval [0, t] is denoted by N(t)
and let N(∞) be the number of points on [0,∞).

a) What is the distribution of N(∞)? (4p)

Solution Because we are considering a Poisson process, the number of points in [0,∞) is Poisson
distributed with expectaction

∫∞
0 λ(x)dx = c.

b) Generate the random variable N ′ as follows.

• Generate U1, which is a random variable which is uniformly distributed on the interval

(0, 1). If − log[U1] ≥ c, then set N ′ = 0.

• If− log[U1] < c then generate U2, which is independent of U1 and also uniformly distributed

on (0, 1). If −(log[U1] + log[U2]) ≥ c set N ′ = 1.

• Continue this way: If −
∑n

k=1 log[Uk] < c, then generate Un+1 which is independent of

U1, U2, · · · , Un and uniformly distributed on (0, 1). If then −
∑n+1

k=1 log[Uk] ≥ c, setN ′ = n.

What is the density of − log[U1]? and what is the distribution of N ′? (4p)

Solution Using inverse function method, we know that − log[U ], where U is a uniform on (0, 1)
is exponentially distributed with expectation 1. So − log[U1] ∼ Exp[1].

By de�nition for n ∈ N≥0 the points
∑n

k=1− log[Uk] are the points of a point process with

intensity 1 and N ′ is the number of those points which are on the interval (0, c). By the

de�nition (or standard properties) of a Poisson Process this number is Poisson distributed with

expectation c.

c) Provide a way to simulate the process {N(t); t ≥ 0}. (4p)

Solution First generate N ′ as in question b and note that this number is distributed as N(∞).
Say N(∞) = n. Then by the order statistic property of Poisson processes, the n points of the

(inhomogeneous) Poisson process can be generated as n independent and identically distributed

random variables with density λ(x)/
∫∞
0 λ(y)dy = e−x. That is the points are n i.i.d. expo-

nential random variables with expectation 1. Denote those points by X1, X2, · · · , Xn Now let

V1, V2, · · · , Vn be i.i.d. Uniform random variables on (0, 1), which are independent of the U ′s in
b. Now, as in b, Xk is distributed as − log[Vk].
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