
Solutions Stochastic Processes and Simulation II, August 21, 2018

Problem 1: Poisson Processes

Let {N(t), t ≥ 0} be a homogeneous Poisson Process on (0,∞) with rate λ. Let {Si, i = 1, 2, · · · }
be the points of the Poisson Process, such that 0 < S1 < S2 < S3 < · · · . De�ne S0 = 0.

a) Provide the de�nition of a Poisson Process. (4p)

Solution: A non-decreasing non-negative integer valued process {N(t); t ≥ 0} is a Poisson

Process with rate λ > 0 if

• N(0) = 0

• for all 0 ≤ t1 < t2 < t3 < t4 <∞, N(t4)−N(t3) is independent of N(t2)−N(t1)

• for 0 ≤ s ≤ t <∞, N(t)−N(s) is Poisson distributed with parameter λ(t− s)

b) Let n be a strictly positive integer. Suppose that we know that N(1) = n. What is the

distribution of S1? That is, compute P(S1 ≤ t|N(1) = n) for t ∈ [0, 1]? (4p)

Solution: First note that

P(S1 ≤ t|N(1) = n) = 1− P(S1 > t|N(1) = n) = 1− P(N(t) = 0|N(1) = n).

By the order statistic property the probability that all n points in [0, 1] are in [t, 1] is (1− t)n.
So, P(S1 ≤ t|N(1) = n) = 1− (1− t)n.

De�ne independently of {N(t), t ≥ 0} a second homogeneous Poisson process {X(t), t ≥ 0} on
(0,∞) with rate β.

c) What is the distribution of X(S1)? (4p)

Solution You can see {N(t) + X(t), t ≥ 0} as a single Poisson Process with rate λ + β and

the points of the process belong independently to the N process with probability λ/(λ+ β) and
the the X process otherwise. Set p = λ/(λ+ β). Then for k ∈ {0, 1, · · · }, P(X(S1) = k) is the
probability that the �rst k points of the combined Poisson process are all belonging to X and

the k + 1-st to N , which is (1− p)kp.

It is also possible to note that the �rst point of N arrives after an exponential time with

density λe−λt, and we note that X(t) is Poisson distributed with expectation βt. Therefore, for
k ∈ {0, 1, · · · }

P(X(S1) = k) =

∫ ∞
0

λe−λt
(βt)k

k!
e−βtdt = λβk

∫ ∞
0

tk

k!
e−(λ+β)tdt,

which can be computed using (by repeated partial integration)∫ ∞
0

tk

k!
e−(λ+β)tdt =

1

λ+ β

∫ ∞
0

tk−1

(k − 1)!
e−(λ+β)tdt = · · · = 1

(λ+ β)k

∫ ∞
0

e−(λ+β)tdt =
1

(λ+ β)k+1
,

which gives that P(X(S1) = k) = λβk

(λ+β)k+1 = (1− p)kp.



Problem 2: Renewal Theory

A factory has two machines. Each machine can be either broken or working. If both machines

are working one is �producing�, while the other is �on stand-by�. If only one machine is working,

that machine is �producing�, while the other one is �in repair�. If both machines are broken,

then one machine is �in repair�, while the other ones is �waiting to go in repair�. So, the pair of

machines can be in three states:

A One machine �producing�, the other �on stand-by�.

B One machine �producing�, the other �in repair�.

C One machine �in repair�, the other waiting to go �in repair�.

Assume that a �producing� machine breaks down after an exponentially distributed time with

expectation 1/λ, which is independent of everything else in the process. If just before that

moment the other machine was �on stand-by�, it becomes �producing� immediately and the

machine which broke down immediately gets �in repair�. If at the moment of break down of one

machine, the other machine is �in repair�, then the newly broken down machine has to wait for

its repair. to start again until the �rst machine is fully repaired. Then it gets �in repair� itself.

The time needed for repair for a machine is not random and equal to exactly one time unit.

Assume that at time S0 = 0 one machine just became �producing�, while the other just gets �in

repair� (So, the pair just enters state B at time 0). Let

Sk := min{t > Sk−1 : A machine starts producing} for k ∈ {1, 2, · · · }.

be the k-th time one of the machines just becomes �producing� (and by the de�nition of the

model, the other just gets �in repair�). That is Sk is the k-th time strictly after time 0, that the

pair of machines enters state B. For k ∈ {1, 2, · · · }, de�ne Xk = Sk − Sk−1.

a) Argue that for k ∈ {1, 2, · · · }, the random variable Xk satis�es

P(Xk ≤ t) = 0 for t < 1 and P(Xk ≤ t) = 1− e−λt for t ≥ 1.
Furthermore, show that E[Xk] = 1 + e−λ/λ. (4p)

Solution: Let X be distributed as Xk for k = 1, 2, · · · . In order to return to state B both

the working machine has to break down and the repair of the other machine has to �nish. Let

T be the time until break down. If T < 1, the repair of the second machine is still going on

and the time until re-entering B is exactly 1 time unit (time until repair), while if T > 1, the
repair of the second machine is already �nished. So, the time until re-entering B is equal to T .
That is, X = max(T, 1) Since T is exponentially distributed with parameter λ we obtain that

P(X1 ≤ t) = 0 for t ≤ 1 and P(X1 ≤ t) = P(T ≤ t) =
∫ t
0 λe

−λsds = 1− e−λt for t ≥ 1.

A straightforward computation now gives

E[X1] = E[max(1, T )] =

∫ 1

0
λe−λsds+

∫ ∞
1

sλe−λsds

= (1− e−λ) +
∫ ∞
0

(s′ + 1)λe−λ(s
′+1)ds′ = (1− e−λ) + e−λ

∫ ∞
0

(s′ + 1)λe−λs
′
ds′

= (1− e−λ) + e−λE[T + 1] = (1− e−λ) + e−λ + e−λ/λ
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b) Compute the long run fraction of time that none of the machines is working (that is the

fraction of time the pair of machines is in state C). (4p)

Solution: Use renewal reward theory. Where the reward is the time spend in state C between

two �renewals�. By a) the expected duration of a cycle is 1 + e−λ/λ, while the expected time in

state C is 1− T if T < 1 and 0 otherwise. This boils down to that the expected time spend in

state C during a cycle is∫ 1

0
λe−λt(1− t)dt = (1− e−λ)−

∫ 1

0
λte−λtdt = (1− e−λ) +

∫ ∞
1

λte−λtdt−
∫ ∞
0

λte−λtdt

We notice that (1− e−λ)+
∫∞
1 λte−λtdt is the answer to part a) and

∫∞
0 λte−λtdt = E[T ] = 1/λ.

So, the expected time spend in state C during a cycle is 1 + e−λ/λ − 1/λ, and the asymptotic

fraction of time spent in state C is given by

1 + e−λ/λ− 1/λ

1 + e−λ/λ
=
λ+ e−λ − 1

λ+ e−λ
.

Let N(t) be the number of �renewals� up to time t. That is N(t) = n if and only if Sn ≤ t and
Sn+1 > t.

c) For t→∞, compute E[t− SN(t)]. That is, compute the expected time since the last renewal

at time t, in the limit as t→∞. (4p)

Solution: Use the arguments of page 448 of the book: Assume that you obtain reward at rate

t − SN(t) at time t. And let X be distributed as a cycle length X1. Then the expected reward

during a cycle is E[
∫ X
0 tdt] = E[X2]/2. We can compute E[X2] using that X = max(1, T ) and

we obtain

E[X2] =

∫ 1

0
λe−λtdt+

∫ ∞
1

λt2e−λtdt = (1− e−λ) + e−λ
∫ ∞
0

λ(t′ + 1)2e−λt
′
dt′

= (1− e−λ) + e−λ
∫ ∞
0

λe−λt
′
dt′ + 2e−λ

∫ ∞
0

λt′e−λt
′
dt′ + e−λ

∫ ∞
0

λ(t′)2e−λt
′
dt′

= (1− e−λ) + e−λ(1 + 2E[T ] + E[T 2]) = 1 +
2e−λ

λ
+

2e−λ

λ2
.

So, E[t− SN(t)] converges to

1 + 2e−λ

λ + 2e−λ

λ2

1 + e−λ/λ
=
λ2 + λ2e−λ + 2e−λ

λ(1 + e−λ)
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Problem 3: Queueing Theory

Consider an M/M/1 queue with impatient customers. In this model customers arrive according

to a Poisson Process with rate λ. Customers have independent workloads which are exponentially

distributed with expectation 1/µ. In addition, customers which are in the queue, but not in

service might become impatient and leave at rate µ independently of other customers. That

is, customers leave because they are impatient after an exponentially distributed time with

expectation 1/µ, unless they already started service by that time. Note that this expectation is

equal to the expected workload of a customer.

a) For k ∈ {0, 1, 2, · · · }, let Pk be the probability that there are k customers in the system (in

service and in the queue) if the number of customers in the systems starts in the stationary

distribution. Show that

Pk =
(λ/µ)k

k!
e−λ/µ

for k ∈ {0, 1, 2, · · · }. (4p)

Solution: Each customer, whether in service or not, leaves at rate µ. New customers arrive

at rate λ. So the rate of going from kto k + 1 customers is λ for k = 0, 1, · · · and the rate

of going from k to k − 1 customers is µk for k = 1, 2, · · · . Writing the balance equations

(the rate of leaving a state should be equal to entering a state, then gives that λP0 = µP1

and (λ + µk)Pk = λPk−1 + µ(k + 1)Pk+1. It is easyly checked that Pk = (λ/µ)k

k! e−λ/µ for

k ∈ {0, 1, 2, · · · } satis�es this equation, and that
∑∞

k=0
(λ/µ)k

k! e−λ/µ = 1.

b) In the long run, what fraction of arriving customers will enter service before they loose their

patience? (4p)

Hint: Compute the long run number of arriving customers per time unit and the long run

number of served customers leaving the system per time unit.

Solution: Customers enter at rate λ and served customes leave at rate µ as long as there are

customers in the queue. So, in the long run the number of served customers leaving per time unit

is µ(1−P0). So the long run fraction of customers that will enter service is µ(1−P0)
λ = (1−e−λ/µ)

λ/µ .

c) What is the expected time a customer is in the system and what is the expected time a

customer is in the queue? (4p)

Solution: Since customers leave at rate µ, independently of whether they are in service or not,

the expected time they are in the system is 1/µ. The expected time an arriving customer is in

service is 1/µ times the probability that a customer gets into service. This latter probability is

computed in part b). So, the expected time an arriving customer spends in service is (1−e−λ/µ)
λ ,

and the expected time a customer spends in the queue is 1
µ −

(1−e−λ/µ)
λ .
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Problem 4: Brownian Motion and Stationary Processes

Let {B(t), t ≥ 0} be a standard Brownian motion. Let α > 0 be a strictly positive constant and

let {V (t), t ≥ 0} be an Ornstein Uhlenbeck Process, de�ned through V (t) = e−αt/2B(eαt) for
t ≥ 0.

a) Compute E[V (t)] for t ≥ 0. (2p)

Solution: E[V (t)] = E[e−αt/2B(eαt)] = e−αt/2E[B(eαt)] = 0 by the de�nition of a standard

Brownian Motion.

b) Compute the covariance Cov[V (t), V (t+ s)] for t > 0 and s > 0. (4p)

Solution: Cov[V (t), V (t+ s)] = E[V (t)V (t+ s)]−E[V (t)]E[V (t+ s)] = E[V (t)V (t+ s)], where
we have used part a) for the �nal equality. Further

E[V (t)V (t+ s)] = e−α(t+(t+s))/2E[B(eαt)B(eα(t+s))]

= e−α(t+s/2)E[B(eαt)([B(eα(t+s))−B(eαt)] +B(eαt))]

= e−α(t+s/2)
(
E[B(eαt)]E[B(eα(t+s))−B(eαt)] + E[(B(eαt))2]

)
.

Here we have used the independent increment property of the Brownian motion in the last

equation. Now note that E[B(eα(t+s)) − B(eαt)] = 0 and E[(B(eαt))2] = V ar(B(eαt)) = eαt,
which gives that E[V (t)V (t+ s)] = e−αs/2.

c) Provide the distribution of V (1). (2p)

Solution: By the de�nition of Brownian motion V (1) = e−α/2B(eα) has a Normal distribution

with expectation e−α/2 × 0 = 0 and Variance (e−α/2)2 × eα = 1.

d) Let x > 0 and t > 1, compute P
(

min
1≤s≤t

V (s) > 0|V (1) = x

)
. (4p)

Solution: Note that V (s) has the same sign as B(eαs). So, we are interested in

P
(

min
1≤s≤t

B(eαs) > 0|V (1) = x

)
= P

(
min
1≤s≤t

B(eαs) > 0|B(eα) = eα/2x

)
.

By symmetry and translation invariance of the Brownian Motion the Right Hand Side equals

P
(
max
1≤s≤t

B(eαs) < eα/2x|B(eα) = 0

)
= P

(
max

0≤s≤eαt−eα
B(s) < eα/2x|B(0) = 0

)
.

Now using the cheat-cheet and noting that P
(

max
0≤s≤eαt−eα

B(s) < eα/2x|B(0) = 0

)
= P

(
Teα/2x > eαt − eα

)
,

we obtain that P
(

min
1≤s≤t

V (s) > 0|V (1) = x

)
= 1− 2P(B(eαt − eα) > eα/2x).
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Problem 5: Simulation

Consider {N(t); t ≥ 0}, a homogeneous Poisson Process on [0,∞) with rate λ. Note that

the number of points in this Poisson process on the interval [0, t] is denoted by N(t). For

k ∈ {1, 2, · · · }, let Uk be independent and identically distributed random variables which are

uniformly distributed on the interval [0, 1]. And assume that Uk is easy to simulate.

a) Show in detail that the position of the �rst point of the Poisson process {N(t); t ≥ 0} can be

obtained through simulating U1 and then computing − log[U1]/λ. (4p)

Solution: The �rst point of Poisson process has density λe−λt for t ≥ 0. So the probability

that this point is less than t is 1− e−λt. Similarly

P(− log[U1]/λ ≤ t) = P(log[U1] ≥ −λt) = P(U1 ≥ e−λt) = 1− e−λt,

where we have used that U1 is uniform on (0,1).

b) Provide a method to simulate N(T ) for given T > 0, where you generate the uniformly

distributed random variable U2 and no other random variables. (4p)

Solution: We know that N(T ) is Poisson distributed with parameter λT . N(T ) is distributed

as min{K ≥ 0;
∑K

k=0
(λT )k

k! e−λT > U2}. That is, given U2, N(T ) is given by the minimal

K for which
∑K

k=0
(λT )k

k! e−λT > U2. This can be seen by observing that P(N(T ) ≤ n) =∑n
k=0

(λT )k

k! e−λT and

P(min{K ≥ 0;

K∑
k=0

(λT )k

k!
e−λT > U2} ≤ n) = P(

n∑
k=0

(λT )k

k!
e−λT > U2) =

n∑
k=0

(λT )k

k!
e−λT ,

Since U2 is uniformly distributed

c) Let Sn be the location of the n-th point of the process {N(t); t ≥ 0}. That is, Sn = min{t ≥
0;N(t) = n}. Describe how you would use the rejection method to simulate Sn, using the

density function g(x) = (λ/n)e−(λ/n)x as �trial density�. (4p)

Solution: The position of the n-th point has Gamma distribution with parameters λ and n.
That is, the density of the n-th point is f(x) = λn

(n−1)!x
n−1e−λx (see cheat-sheet). This gives

that f(x)/g(x) = nλn−1xn−1

(n−1)! e−λ(1−1/n)x. The derivative of this expression with respect to x is

given by

nλn−1xn−2

(n− 2)!
e−λ(1−1/n)x − λnxn−1

(n− 2)!
e−λ(1−1/n)x = (n− λx)λ

n−1xn−2

(n− 2)!
e−λ(1−1/n)x,

which has a 0 at x = n/λ. Note that f(0)/g(0) = 0 and f(x)/g(x) → 0 as n → ∞, while

f(n/λ)/g(n/λ) = nn

(n−1)!e
−(n−1). So f(x)/g(x) takes its maximum in n/λ and this maximum is

M = nn

(n−1)!e
−(n−1). Now simulate a value y from the distribution g()̇ (perhaps using part a))

and simulate a random variable U3. If U3 ≤ f(y)/(Mg(y)) then keep y, otherwise repeat the

procedure.
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