
Solutions Stochastic Processes and Simulation II, August 21, 2019

Problem 1: Poisson Processes

Let {NR(t), t ≥ 0} be a homogeneous Poisson Process of red points on (0,∞) with rate λR > 0
and let {NB(t), t ≥ 0} be a homogeneous Poisson Process of blue points on (0,∞) with rate

λB > 0. The two Poisson processes are independent of each other. Let

{N(t), t ≥ 0} = {NR(t) +NB(t), t ≥ 0}

be the point process which contains the points of both {NR(t), t ≥ 0} and {NB(t), t ≥ 0}.

For i ∈ N0 de�ne

Si = min{t ≥ 0;N(t) ≥ i},

That is, S0 = 0 and the points of {N(t), t ≥ 0} are denoted by {Si, i ∈ N}, satisfying

0 = S0 < S1 < S2 < S3 < · · · .

a) Provide the distribution of S1 and the probability that the point at S1 is red? That is,

Compute

P(S1 ≤ t) for t ≥ 0

and

P (min{t ≥ 0;NR(t) = 1} < min{t ≥ 0;NB(t) = 1}) .

Solution: P(S1 ≤ t) = 1 − P(NR(t) + NB(t) = 0) = 1 − P(NR(t) = 0, NB(t) = 0), but NR(t)
and NB(t) are independent. So, P(S1 ≤ t) = 1 − P(NR(t) = 0)P(NB(t) = 0), which by the

de�nition of a Poisson process equals 1− e−λRte−λBt.

Similarly, let fR(t) = 1 − e−λRt be the density of an exponential distribution with expectation

1/λR, which is also the density of the �rst red point by (one of) the de�nitions of a Pois-

son process. We then obtain that P (min{t ≥ 0;NR(t) = 1} < min{t ≥ 0;NB(t) = 1}) equals∫∞
0 fR(t)P(NB(t) = 0)dt =

∫∞
0 1− e−λRte−λBtdt = 1

λB
− 1

λB+λR
= λR

λB+λR
.

The answer also directly follows by using that if one label the points of a Poisson process

independently (in this case red and blue) then for each label, the points of that label form a

Poisson process itself and the Poisson processes of di�erent labels are independent. The density

of the Poisson process with label R is the density of the original Poisson process times pR the

probability of assigning label R to a point. In our case we can see that if we have a (not labelled)

Poisson process with rate λR + λB and then make points red with probability pR = λR
λB+λR

and

blue otherwise, we obtain a red Poisson process with rate λR and an independent blue Poisson

process with intensity λB. By the de�nition of a Poisson process it then follows that S1 is

exponentially distributed with rate λB + λR and the �rst point is red with probability pR.



Let T > 0 be a constant.

b) Assume that N(T ) = n, where n ∈ N. What is the distribution of NR(T )? That is, provide

P(NR(T ) = k|NR(T ) +NB(T ) = n) for n ∈ N.

Solution: Using the independent labeling argument of part a), we obtain that each of the n
points is independently red with probability pR = λR

λB+λR
and therefore NR(T ) conditioned on

N(T ) = n is binomially distributed with parameters n and pR. That is,

P(NR(T ) = k|NR(T ) +NB(T ) = n) =

(
n

k

)
(pR)

k(1− pR)n−k

for 0 ≤ k ≤ n, while the probability is 0 otherwise.

c) Compute E
[∑N(T )

i=1 Si

]
. Recall

∑0
i=1 Si = 0 by de�nition.

Solution:

Use the order statistic property we obtain

E

N(T )∑
i=1

Si

 = E

E
N(T )∑
i=1

Si|N(T )

 = E

E
N(T )∑
i=1

Xi|N(T )

 ,
where the Xi are independent and identically distributed random variables which are uniform

on (0, T ) (and therefore have expectation T/2). So,

E

N(T )∑
i=1

Si

 = E [N(T )× T/2] = (λR + λB)T
2/2.
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Problem 2: Renewal Theory

Let {N(t), t ≥ 0} be a renewal process, with interarrival distribution function F (t) and density

function d
dtF (t) = f(t). De�ne m(t) = E[N(t)] for t ≥ 0.

a) Justify the renewal equation. That is, show that for t ≥ 0,

m(t) = F (t) +

∫ t

0
m(t− x)f(x)dx.

Solution: Condition on the �rst arrival (say S1) then observe

E[N(t)] = E[E[N(t)|S1]] =
∫ t

0
E[N(t)|S1 = x]P(S1 ∈ dx) +

∫ ∞
t

E[N(t)|S1 = x]P(S1 ∈ dx).

Observe that for x > t, we have that E[N(t)|S1 = x] = 0, because the �rst arrival is after time

t. Furthermore for x < t we have that E[N(t)|S1 = x] = 1 + E[N(t − s)] because the system

�renews� at the time of the �rst arrival. So

E[N(t)] =

∫ t

0
(1 + E[N(t− x)])f(x)dx = F (t) +

∫ t

0
m(t− x)f(x)dx

as desired.
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b) Assume that the interarrival times are uniformly distributed on (0, 1), i.e.

f(t) =

{
1 for t ∈ (0, 1)

0 otherwise
.

Show that for t ∈ [0, 2], m(t) is given by

m(t) =

{
et − 1 for t ∈ (0, 1]

et − 1− (t− 1)et−1 for t ∈ (1, 2]
.

Solution: For t ∈ (0, 1] �ll in the proposed solution in the renewal equation. The Left Hand

Side is et − 1, while the Right Hand Side is

t+

∫ t

0
(et−x − 1)× 1dx = et − 1,

as desired. For t ∈ (0, 2], the Right Hand Side of the renewal equation becomes

1 +

∫ 1

0
m(t− x)× 1dx = 1 +

∫ t

t−1
m(x)dx = 1 +

∫ 1

t−1
m(x)dx+

∫ t

1
m(x)dx.

Filling in the suggestion for m(t) then gives that this equals

1 +

∫ 1

t−1
(ex − 1)dx+

∫ t

1
ex − 1− (x− 1)ex−1dx = 1 +

∫ t

t−1
(ex − 1)dx−

∫ t

1
(x− 1)ex−1dx.

The �rst integral is equal to

et − et−1 − 1,

while the second integral is (by partial integration)∫ t−1

0
xexdx = xex|t−1x=0 −

∫ t−1

0
exdx = (t− 1)et−1 − (et−1 − 1) = (t− 2)et−1 + 1.

So the Right Hand Side of the renewal equation is given by

1 + (et − et−1 − 1)− ((t− 2)et−1 + 1) = et − 1− (t− 1)et−1,

as desired.

c) Let U1, U2, · · · be independent random variables all uniformly distributed on (0, 1). De�ne

N = min{n ∈ N;
n∑
i=1

Ui ≥ 2}.

Compute E[N ].

Solution: by de�nition N = N(2) + 1 so E[N ] = m(2) + 1 = e2 − e.
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Problem 3: Queueing Theory

Consider an M/G/1 queue in which customers arrive according to a Poisson Process with rate

λ, and customers have independent workloads which are distributed as the random variable S.
Let m1 = E[S] <∞ be the expected time a customer needs service and m2 = E[S2] <∞ be the

second moment of this workload.

a) Provide a necessary and su�cient condition on λ for the queue length not to go to in�nity?

Solution: It is enough that (in expectation) less than 1 customers arriving during a service. So

we require λE[S] < 1.

For part b) and c) assume that the condition of part a) is satis�ed. For n ∈ N, let Yn be the

number of new customers arriving during the service period of the n-th customer and let Xn be

the number of customers that the n-th departing customer leaves behind in the system.

b) Argue that for n ∈ N
Xn+1 = Xn − 1 + Yn+1 + 11(Xn = 0), (1)

where 11(Xn = 0) =

{
1 if Xn = 0

0 otherwise
.

Solution: If the n-th departing customer leaves 0 customers behind, then the �rst customer to

arrive after the departure of the n-th departing customer is the n+1-st customer to depart and

only the Yn+1 customers will be there when the n+ 1-st customer departs. So if Xn = 0, then
Xn+1 = Yn+1, which is consisten with (??).

If Xn 6= 0, then the �rst customer in the queue at the departure of n-th departing customer

is the n + 1-st customer to depart. All Xn − 1 other customers will still be in the queue at

the n + 1-st departure and in addition the Yn+1 customers which arrive between the n-th and

n+ 1-st departure will add to Xn+1. So in this case Xn+1 = (Xn − 1) + Yn, as desired.
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c) Compute the long run fraction of customers that depart without leaving anybody in the system

and compute the expected number of customers that the n-th departing customers leaves behind

in the system for n→∞.

Hint: As intermediate steps, compute

lim
n→∞

P(Xn = 0) = lim
n→∞

E[11(Xn = 0)]

by taking the expectations on both sides of equation (??) and compute lim
n→∞

E[Xn] by taking

expectations of the squares of both sides of equation (??).

Solution: Follow the hint

lim
n→∞

E[Xn+1] = lim
n→∞

E[Xn]− 1 + lim
n→∞

E[Yn+1] + lim
n→∞

E[11(Xn = 0)].

Now observe that

lim
n→∞

E[Xn+1] = lim
n→∞

E[Xn] and E[Yn+1] = λm1 for all n.

So, we obtain limn→∞ E[11(Xn = 0)] = 1 − λm1. This implies that the long run fraction of

customers that depart without leaving anybody in the system is 1− λm1

Taking the square of equation (??). we obtain

E[Xn+1])
2 = E[(Xn)

2] + 1 + E[(Yn+1)
2] + E[(11(Xn = 0))2]

− 2E[Xn] + 2E[XnYn] + 2E[Xn11(Xn = 0)]− 2E[Yn]− 2E[11(Xn = 0)] + 2E[Yn11(Xn = 0)].

Now observe that E[(11(Xn = 0))2] = E[11(Xn = 0))] and that Yn is independent of Xn. Also,

E[Yn] = λm1 and for Sn+1 the workload of the n+ 1-st customer,

E[(Yn)2] = E[E[(Yn)2|Sn]] = E[λSn + (λSn)
2)] = λm1 + λ2m2.

Furthermore, E[Xn11(Xn = 0)] = 0 and we obtain

E[Xn+1])
2 = E[(Xn)

2] + 1 + λm1 + λ2m2 + E[11(Xn = 0)]

− 2E[Xn] + 2E[Xn]λm1 − 2λm1 − 2E[11(Xn = 0)] + 2λm1E[11(Xn = 0)].

taking limits, substracting limn→∞ E[(Xn)
2] from both sides and �lling in

lim
n→∞

E[11(Xn = 0)] = 1− λm1,

we then obtain

0 = 1− λm1 + λ2m2 − (1− λm1)− 2(1− λm1) lim
n→∞

E[Xn] + 2λm1(1− λm1)

= λ2m2 + 2λm1(1− λm1)− 2(1− λm1) lim
n→∞

E[Xn].

So,

lim
n→∞

E[Xn] =
λ2m2

2(1− λm1)
+ λm1.
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Problem 4: Brownian Motion and Stationary Processes

Let {B(t), t ≥ 0} be a standard Brownian motion and for t > 0, let

M(t) := max
0≤s≤t

B(s),

be the maximum of the Brownian motion up to time t. Here we assume that B(0) = 0 and that

the variance parameter σ2 = 1 is part of the de�nition of a standard Brownian motion.

Let µ be a constant and de�ne the Brownian motion with drift process

{Bµ(t), t ≥ 0} = {B(t) + µt, t ≥ 0}.

a) Provide the distribution of Bµ(t) for t > 0.

Solution: Bµ(t) = B(t) + µt We know from the de�nition of a Brownian motion that B(t)
is Normal distributed with mean 0 and variance t. Therefore, Bµ(t) = B(t) + µt is Normal

distributed with mean µt and variance t.

b) For 0 < s < t and constants a and b compute

P(Bµ(s) ≤ a|Bµ(t) = b),

and show that this expression does not depend on µ.

Solution:

P(Bµ(s) ≤ a|Bµ(t) = b) = P(B(s) + µs ≤ a|B(t) + µt = b) = P(B(s) ≤ a− µs|B(t) = b− µt).

Using what we know about the Brownian Bridge (see cheat sheet) we obtain that conditioned

on B(t) = b − µt, B(s) is Normal distributed with mean (b − µt)(s/t) and variance s(t − s)/t.
So,

P(Bµ(s) ≤ a|Bµ(t) = b) = P(B(s) ≤ a− µs|B(t) = b− µt)

=

∫ a−µs

−∞

1√
2πs(t− s)/t

exp

[
−(x− (b− µt)(s/t))2

2s(t− s)/t

]
dx.

Making the change of variables y = x+ µs, we then obtain

P(Bµ(s) ≤ a|Bµ(t) = b) =

∫ a

−∞

1√
2πs(t− s)/t

exp

[
−(y − bs/t)2

2s(t− s)/t

]
dx.

Which is to say that conditioned on Bµ(t) = b, Bµ(s) is Normal distributed with mean bs/t and
variance s(t− s)/t (which is independent of µ).
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c) Consider again the Brownian Motion without drift. For a constant a > 0 and given time

t > 0, compute

P(M(t) < a|B(t) < 0).

Solution: Use the re�ection principe and let Ta be the �rst hitting time of a.

P(M(t) < a|B(t) < 0) = 1− P(M(t) > a|B(t) < 0)

= 1− P(Ta < t,B(t) < 0)

P(B(t) < 0)

= 1− P(Ta < t,B(t) < 0)

1/2

= 1− 2P(Ta < t,B(t)−B(Ta) < −a)
= 1− 2P(Ta < t,B(t)−B(Ta) > a)

= 1− 2P(Ta < t,B(t) > 2a)

= 1− 2P(B(t) > 2a)
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Problem 5: Simulation

Let {N(t), t ≥ 0} be an nonhomogeneous Poisson Process with strictly positive and �nite inten-

sity function λ(t), t ≥ 0. De�ne

m(t) =

∫ t

0
λ(s)ds

and assume that m(∞) =∞.

Because the intensity function is strictly positive and �nite, m(t) is continuous and strictly

increasing to ∞ in t. This implies that the inverse function m−1(·) satisfying

m(m−1(t)) = m−1(m(t)) = t for all t ≥ 0,

is well de�ned.

De�ne

Xi := min{t ≥ 0;N(t) ≥ i} for i ∈ N.

That is, Xi is the position of the i-th point of the nonhomogeneous Poisson Process. For

completeness de�ne X0 = 0.

a) Provide the de�nition of an nonhomenous Poisson Process.

Solution: A non-decreasing non-negative integer valued process {N(t); t ≥ 0} is a nonhomoge-

neous Poisson Process with intensity function λ(t) ∈ [0,∞), t ≥ 0 if

• N(0) = 0

• The process has independent increments

• P(N(t+ h)−N(t) = 1) = λ(t)h+ o(h)

• P(N(t+ h)−N(t) > 1) = o(h)

The mean value function is de�ned by m(t) =
∫ t
0 λ(s)ds

b) Show that m(X1) is exponentially distributed with expectation 1. That is, show that

P(m(X1) > t) = e−t for t ≥ 0.

Solution: Note that P(m(X1) > t) = P(X1 > m−1(t)), which is the probability that the

nonhomogeneous Poisson process contains no points up to m−1(t), which by the de�nition of a

nonhomogeneous Poisson process is equal to

e−
∫m−1(t)
0 λ(s)ds = e−m(m−1(t)) = e−t

as desired.
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c) Show that for i ∈ N0 the random variables m(Xi+1)−m(Xi) are independent and identically

distributed all exponentially distributed with expectation 1.

Remark: The above result implies that we may simulate {N(t), t ≥ 0} by �rst simulating the

points Y1, Y2, · · · of a homogeneous Poisson Process with intensity 1 and then set Xi = m−1(Yi)
for i ∈ N.

Solution: Note that if we know m(Xi) then we know Xi and vice-versa, because m is a one-

to-one function. So, for every x > 0 and i ∈ N we have

P(m(Xi+1)−m(Xi) > x|m(Xj)−m(Xj−1), j = 1, · · · , i) = P(m(Xi+1)−m(Xi) > x|X1, · · · , Xi).

By the de�nition of a nonhomogeneous Poisson Process and because Xj < Xi for j < i, we
obtain that this is equal to P(m(Xi+1)−m(Xi) > x|Xi).

We now show that the above probability is exponentially distributed with expectation 1 and

independent of Xi.

P(m(Xi+1)−m(Xi) > x|Xi) = P(m(Xi+1) > x+m(Xi)|Xi) = P(Xi+1 > m−1(x+m(Xi))|Xi),

which is the probability that there is no point between Xi and m
−1(x +m(Xi)). which is by

the de�nition of a non-homogeneous Poisson Process given by

exp

[
−
∫ m−1(x+m(Xi))

Xi

λ(t)dt

]
= exp

[
−{m

(
m−1 (x+m(Xi))

)
−m(Xi)}

]
= e−{x+m(Xi)−m(Xi)} = e−x,

as desired.
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