Solutions Stochastic Processes and Simulation II, August 21, 2019
Problem 1: Poisson Processes

Let {Ng(t),t > 0} be a homogeneous Poisson Process of red points on (0, 00) with rate Ag > 0
and let {Np(t),t > 0} be a homogeneous Poisson Process of blue points on (0,00) with rate
A > 0. The two Poisson processes are independent of each other. Let

{N(t),t >0} = {Ng(t) + Ng(t),t > 0}
be the point process which contains the points of both {Ng(t),t > 0} and {Ng(t),t > 0}.
For i € Ny define
S; = min{t > 0; N(t) > i},
That is, Sp = 0 and the points of {N(t),¢ > 0} are denoted by {S;,7 € N}, satisfying

0=5< 851 <8y <8<+

a) Provide the distribution of S; and the probability that the point at S; is red? That is,
Compute
P(S; <1) fort >0

and
P (min{t > 0; Nr(t) = 1} < min{t > 0; Np(t) = 1}).

Solution: P(S; <t) =1—P(Ng(t) + Np(t) =0) =1 —-P(Ng(t) = 0,Ng(t) = 0), but Ng(t)
and Np(t) are independent. So, P(S; < t) = 1 — P(Ng(t) = 0)P(N ( ) = 0), which by the
definition of a Poisson process equals 1 — e *rte=Bt,

Similarly, let fr(t) = 1 — e *#* be the density of an exponential distribution with expectation

1/AR, which is also the density of the first red point by (one of) the definitions of a Pois-

son process We then obtain that P (min{t > 0; NR( ) =1} <min{t > 0; Ng(t) = 1}) equals
A

JoT FROP(NB(t) = 0)dt = [7°1 — e Arte Bldt = 31 — e = AR

The answer also directly follows by using that if one label the points of a Poisson process
independently (in this case red and blue) then for each label, the points of that label form a
Poisson process itself and the Poisson processes of different labels are independent. The density
of the Poisson process with label R is the density of the original Poisson process times ppr the
probability of assigning label R to a point. In our case we can see that if we have a (not labelled)
Poisson process with rate Agp + Ap and then make points red with probability pr = S yEn +/\R and
blue otherwise, we obtain a red Poisson process with rate Arp and an independent blue Poisson
process with intensity Ap. By the definition of a Poisson process it then follows that S; is
exponentially distributed with rate Ap + Ar and the first point is red with probability pg.



Let T" > 0 be a constant.

b) Assume that N(7T') = n, where n € N. What is the distribution of Nr(7')? That is, provide
P(Ng(T) = k|Nr(T) + Np(T) =n) for n € N.

Solution: Using the independent labeling argument of part a), we obtain that each of the n

points is independently red with probability pr = /\B’\%/\R and therefore Np(T) conditioned on
N(T') = n is binomially distributed with parameters n and pr. That is,

P(NR(T) = HNR(T) + NoT) =) = () (o (L~ pr"™

for 0 < k < n, while the probability is 0 otherwise.

c) Compute E [Ef\;(lT) 5’2}. Recall 39, S; = 0 by definition.
Solution:

Use the order statistic property we obtain

N(T) N(T) N(T)
E|Y Si|=E[E|) SINT||=E|E|> XJIND)||,
=1 =1 =1

where the X; are independent and identically distributed random variables which are uniform
on (0,T) (and therefore have expectation 7'/2). So,

N(T)
E| Y Si| =E[N(T)xT/2] = (A + Ap)T?/2.
=1



Problem 2: Renewal Theory

Let {N(t),t > 0} be a renewal process, with interarrival distribution function F(¢) and density
function 4 F(t) = f(t). Define m(t) = E[N(t)] for ¢ > 0.

a) Justify the renewal equation. That is, show that for ¢ > 0,

m(t) = F(t) + /0 m(t — ) f(zx)dz.

Solution: Condition on the first arrival (say Si) then observe
t 00
E[N ()] = E[E[N ()|$1] = / E[N()|S) = 2]P(S: € dz) + / E[N(D)|S: = 2]P(S: € da).
0 t

Observe that for = > t, we have that E[N(¢)|S1 = x] = 0, because the first arrival is after time
t. Furthermore for x < ¢ we have that E[N(¢)|S1 = z] = 1 + E[N (¢ — s)] because the system
“renews” at the time of the first arrival. So

E[N(t)] = /0 (1+E[N(t—2)))f(z)de = F(t) + /0 m(t — x)f(z)dz

as desired.



b) Assume that the interarrival times are uniformly distributed on (0, 1), i.e.

{1 for t € (0,1)

0 otherwise

ft) =

Show that for t € [0, 2], m(t) is given by

0 el —1 for t € (0,1]
m = .
el —1—(t—1)e!t forte(1,2]

Solution: For t € (0,1] fill in the proposed solution in the renewal equation. The Left Hand
Side is €' — 1, while the Right Hand Side is

t
t—l—/(et_x—l)xldx:et—l,
0

as desired. For ¢ € (0,2], the Right Hand Side of the renewal equation becomes

1+/01m(t—x)x1d$:1+/tt m(m)da::1+/:1m(:c)d1:+/ltm(x)dx.

-1

Filling in the suggestion for m(t) then gives that this equals

1 t ‘ .
1 [ (@ -vdot [ 1o @opetd =14 [ (e - do - [ @ Dela
t 1 ¢ )

-1 -1

The first integral is equal to
el — et 1,

while the second integral is (by partial integration)
t—1 t—1
/ zedr = xe®|i_t — / “dr = (t— et — (e = 1) = (t — 2)e! T + 1.
0 0
So the Right Hand Side of the renewal equation is given by

T4+ —e™—1) = (t—=2)e P +1)=¢t —1— (t 1),

as desired.

c) Let Uy, Us, - -- be independent random variables all uniformly distributed on (0,1). Define

N =min{n € N;ZUi > 2},

i=1

Compute E[N].

Solution: by definition N = N(2) +1s0 E[N] =m(2) +1=¢? —e.



Problem 3: Queueing Theory

Consider an M/G/1 queue in which customers arrive according to a Poisson Process with rate
A, and customers have independent workloads which are distributed as the random variable S.
Let mj = E[S] < co be the expected time a customer needs service and my = E[S?] < co be the
second moment of this workload.

a) Provide a necessary and sufficient condition on A for the queue length not to go to infinity?

Solution: It is enough that (in expectation) less than 1 customers arriving during a service. So
we require AE[S] < 1.

For part b) and c) assume that the condition of part a) is satisfied. For n € N, let Y}, be the
number of new customers arriving during the service period of the n-th customer and let X,, be
the number of customers that the n-th departing customer leaves behind in the system.

b) Argue that for n € N
Xn+1 - Xn -1 + KH—I +]1(Xn - 0)7 (1)
{1 if X, =0

where I(X,, = 0) = .
(Xn ) 0 otherwise

Solution: If the n-th departing customer leaves 0 customers behind, then the first customer to
arrive after the departure of the n-th departing customer is the n + 1-st customer to depart and
only the Y, 1 customers will be there when the n + 1-st customer departs. So if X, = 0, then
Xp+1 = Yny1, which is consisten with (77).

If X,, # 0, then the first customer in the queue at the departure of n-th departing customer
is the n + 1-st customer to depart. All X,, — 1 other customers will still be in the queue at
the n + 1-st departure and in addition the Y;, 41 customers which arrive between the n-th and
n + 1-st departure will add to X, +1. So in this case X, 11 = (X,, — 1) + Y}, as desired.



¢) Compute the long run fraction of customers that depart without leaving anybody in the system
and compute the expected number of customers that the n-th departing customers leaves behind
in the system for n — oo.

Hint: As intermediate steps, compute

lim P(X, =0) = lim Efl(X, = 0)]

n—o0 n—00

by taking the expectations on both sides of equation (??) and compute lim E[X,] by taking

n—o0
expectations of the squares of both sides of equation (77).

Solution: Follow the hint

lim E[X,41] = lim E[X,] — 1+ lim E[Y, 4]+ lim E[(X, = 0)].
n—oo n—oo

n—o0 n—o0

Now observe that

lim E[X,41] = lim E[X,)] and E[Y,+1] = Amy  for all n.

n—oo n—oo

So, we obtain lim, o E[l(X,, = 0)] = 1 — Amy. This implies that the long run fraction of
customers that depart without leaving anybody in the system is 1 — Am;

Taking the square of equation (??7). we obtain
E[X,1))? = E[(X0)?] + 1+ E[(Ya41)?] + E[U(X,, = 0))?]
— 2E[X,,] + 2E[X,.Y,,] + 2E[ X, 1(X,, = 0)] — 2E[Y,,] — 2E[I(X,, = 0)] + 2E[Y,1(X,, = 0)].

Now observe that E[(I(X,, = 0))?] = E[l(X,, = 0))] and that Y,, is independent of X,,. Also,
E[Y,] = Am; and for S,4+1 the workload of the n + 1-st customer,

E[(Yn)?] = E[E[(Yn)?|Sn]] = E[ASy + (ASn)?)] = Amy + A*my.
Furthermore, E[X,1(X,, = 0)] = 0 and we obtain
E[Xn1])? = E[(X,)?] + 1+ Amy + XN2mg + E[I(X,, = 0)]
— 9E[X,] + 2E[ X, Ay — 2Amy — 2E[(X, = 0)] + 22 E[L(X,, = 0)].
taking limits, substracting lim, .o E[(X})?] from both sides and filling in

lim E(X, =0)] =1— Amq,

n—o0

we then obtain

0=1—Mmg+ Nmg— (1 —Amqg) —2(1 — Amy) lim E[X] + 2Xma (1 — Ama)
= Mg + 22y (1 — Mmy) — 2(1 — dimy) lim E[X,].

So,

2
lim E[X,,] AT

=+ Amy.
n—00 2(1—)\m1)+ m



Problem 4: Brownian Motion and Stationary Processes
Let {B(t),t > 0} be a standard Brownian motion and for ¢ > 0, let

M(t) = %?%33(5)’

be the maximum of the Brownian motion up to time ¢. Here we assume that B(0) = 0 and that
the variance parameter o2 = 1 is part of the definition of a standard Brownian motion.

Let o be a constant and define the Brownian motion with drift process

{Bu(t),t > 0} = {B(t) + put,t > 0}.

a) Provide the distribution of B (t) for ¢t > 0.

Solution: B,(t) = B(t) + ut We know from the definition of a Brownian motion that B(t)
is Normal distributed with mean 0 and variance t. Therefore, B, (t) = B(t) + ut is Normal
distributed with mean ut and variance t.

b) For 0 < s < t and constants a and b compute
P(B,.(s) < al B,(t) = b).
and show that this expression does not depend on pu.
Solution:
P(Bu(s) < alBu(t) = b) = P(B(s) + is < a| B(t) + ut = b) = P(B(s) < a — us| B(t) = b — put).
Using what we know about the Brownian Bridge (see cheat sheet) we obtain that conditioned

on B(t) = b — ut, B(s) is Normal distributed with mean (b — ut)(s/t) and variance s(t — s)/t.
So,

P(Bu(s) < a|Bu(t) = b) = B(B(s) < a — ps| B(t) = b — pu)

- /““Slexp [_(x—(b—ut)(S/t))z] o
oo \/2ms(t—s)/t 2s(t — )/t '

Making the change of variables y = x 4+ us, we then obtain

P(B,(s) = bs/t)2] dz.

a 1
< a|Bu(t) =b) = /OO Verst—s)t P {‘zs(t—s)/t

Which is to say that conditioned on B, (t) = b, B, (s) is Normal distributed with mean bs/t and
variance s(t — s)/t (which is independent of p).



¢) Counsider again the Brownian Motion without drift. For a constant a > 0 and given time
t > 0, compute
P(M(t) < a|B(t) < 0).

Solution: Use the reflection principe and let T, be the first hitting time of a.

P(M(t) <alB(t) <0) = 1—-P(M(t)>a|B(t) <0)
_ | P(T.<tB()<0)
N P(B(t) < 0)
P(T, < t,B(t) <0)
= 1-
1/2
= 1-2P(T, < t,B(t) — B(T,) < —a)
= 1-2P(T, <t,B(t) — B(T,) > a)
= 1-2P(T, <t,B(t) > 2a)
= 1-2P(B(t) > 2a)



Problem 5: Simulation

Let {N(t),t > 0} be an nonhomogeneous Poisson Process with strictly positive and finite inten-
sity function A(¢), ¢t > 0. Define

and assume that m(co) = oo.

Because the intensity function is strictly positive and finite, m(t) is continuous and strictly
increasing to oo in t. This implies that the inverse function m~1(-) satisfying

m(m~(t)) =m (m(t)) =t  forallt>0,
is well defined.

Define
X; :=min{t > 0; N(t) > i} for i € N.

That is, X; is the position of the i-th point of the nonhomogeneous Poisson Process. For
completeness define Xg = 0.

a) Provide the definition of an nonhomenous Poisson Process.

Solution: A non-decreasing non-negative integer valued process {N(¢);¢ > 0} is a nonhomoge-
neous Poisson Process with intensity function A(t) € [0,00), ¢t > 0 if

e N(0)=0

e The process has independent increments
e P(N(t+h)—N(t)=1)=At)h+ o(h)
o P(N(t+h)—N(t) >1) = o(h)

The mean value function is defined by m(t) = [5 M(s)ds

b) Show that m(Xy) is exponentially distributed with expectation 1. That is, show that

P(m(X;) >t)=e? for t > 0.

Solution: Note that P(m(X1) > t) = P(X; > m~1(t)), which is the probability that the
nonhomogeneous Poisson process contains no points up to m~!(¢), which by the definition of a
nonhomogeneous Poisson process is equal to

o ST ONDds _ mmlm (1) _ ot

as desired.



c¢) Show that for ¢ € Ny the random variables m(X;4+1) — m(X;) are independent and identically
distributed all exponentially distributed with expectation 1.

Remark: The above result implies that we may simulate {N(t),t > 0} by first simulating the
points Y7, Ys, - - - of a homogeneous Poisson Process with intensity 1 and then set X; = m_l(Yi)
for i € N.

Solution: Note that if we know m(X;) then we know X; and vice-versa, because m is a one-
to-one function. So, for every z > 0 and ¢ € N we have

P(m(Xir1)—m(X;) > zlm(X;)—m(X;-1),7 =1, -+ i) = P(m(Xip1) —m(X;) > 2| Xy, -+, X5).

By the definition of a nonhomogeneous Poisson Process and because X; < X; for j < i, we
obtain that this is equal to P(m(X;+1) — m(X;) > z|X;).

We now show that the above probability is exponentially distributed with expectation 1 and
independent of Xj.

]P’(m(Xi_H) - m(XZ) > :C’XZ) = P(m(XH_l) >+ m(XZ)]XZ) = P(Xi—i-l > mfl(l’ + m(XZ))|Xz),

which is the probability that there is no point between X; and m~'(z + m(X;)). which is by
the definition of a non-homogeneous Poisson Process given by

m= (@ +m (X))
exp [_/ +m(X A(t)dt] = exp [_{m (m_l (1‘ + m(Xl))) — m(XZ)}] _ e_{x+m(Xi)—m(X¢)} _ e_x,

X

as desired.
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