Problem 1: Poisson Processes

Let $\left\{N_{R}(t), t \geq 0\right\}$ be a homogeneous Poisson Process of red points on $(0, \infty)$ with rate $\lambda_{R}>0$ and let $\left\{N_{B}(t), t \geq 0\right\}$ be a homogeneous Poisson Process of blue points on $(0, \infty)$ with rate $\lambda_{B}>0$. The two Poisson processes are independent of each other. Let

$$
\{N(t), t \geq 0\}=\left\{N_{R}(t)+N_{B}(t), t \geq 0\right\}
$$

be the point process which contains the points of both $\left\{N_{R}(t), t \geq 0\right\}$ and $\left\{N_{B}(t), t \geq 0\right\}$.
For $i \in \mathbb{N}_{0}$ define

$$
S_{i}=\min \{t \geq 0 ; N(t) \geq i\}
$$

That is, $S_{0}=0$ and the points of $\{N(t), t \geq 0\}$ are denoted by $\left\{S_{i}, i \in \mathbb{N}\right\}$, satisfying

$$
0=S_{0}<S_{1}<S_{2}<S_{3}<\cdots
$$

a) Provide the distribution of S_{1} and the probability that the point at S_{1} is red? That is, Compute

$$
\mathbb{P}\left(S_{1} \leq t\right) \quad \text { for } t \geq 0
$$

and

$$
\mathbb{P}\left(\min \left\{t \geq 0 ; N_{R}(t)=1\right\}<\min \left\{t \geq 0 ; N_{B}(t)=1\right\}\right)
$$

Solution: $\mathbb{P}\left(S_{1} \leq t\right)=1-\mathbb{P}\left(N_{R}(t)+N_{B}(t)=0\right)=1-\mathbb{P}\left(N_{R}(t)=0, N_{B}(t)=0\right)$, but $N_{R}(t)$ and $N_{B}(t)$ are independent. So, $\mathbb{P}\left(S_{1} \leq t\right)=1-\mathbb{P}\left(N_{R}(t)=0\right) \mathbb{P}\left(N_{B}(t)=0\right)$, which by the definition of a Poisson process equals $1-e^{-\lambda_{R} t} e^{-\lambda_{B} t}$.

Similarly, let $f_{R}(t)=1-e^{-\lambda_{R} t}$ be the density of an exponential distribution with expectation $1 / \lambda_{R}$, which is also the density of the first red point by (one of) the definitions of a Poisson process. We then obtain that $\mathbb{P}\left(\min \left\{t \geq 0 ; N_{R}(t)=1\right\}<\min \left\{t \geq 0 ; N_{B}(t)=1\right\}\right)$ equals $\int_{0}^{\infty} f_{R}(t) \mathbb{P}\left(N_{B}(t)=0\right) d t=\int_{0}^{\infty} 1-e^{-\lambda_{R} t} e^{-\lambda_{B} t} d t=\frac{1}{\lambda_{B}}-\frac{1}{\lambda_{B}+\lambda_{R}}=\frac{\lambda_{R}}{\lambda_{B}+\lambda_{R}}$.

The answer also directly follows by using that if one label the points of a Poisson process independently (in this case red and blue) then for each label, the points of that label form a Poisson process itself and the Poisson processes of different labels are independent. The density of the Poisson process with label R is the density of the original Poisson process times p_{R} the probability of assigning label R to a point. In our case we can see that if we have a (not labelled) Poisson process with rate $\lambda_{R}+\lambda_{B}$ and then make points red with probability $p_{R}=\frac{\lambda_{R}}{\lambda_{B}+\lambda_{R}}$ and blue otherwise, we obtain a red Poisson process with rate λ_{R} and an independent blue Poisson process with intensity λ_{B}. By the definition of a Poisson process it then follows that S_{1} is exponentially distributed with rate $\lambda_{B}+\lambda_{R}$ and the first point is red with probability p_{R}.

Let $T>0$ be a constant.
b) Assume that $N(T)=n$, where $n \in \mathbb{N}$. What is the distribution of $N_{R}(T)$? That is, provide

$$
\mathbb{P}\left(N_{R}(T)=k \mid N_{R}(T)+N_{B}(T)=n\right) \quad \text { for } n \in \mathbb{N}
$$

Solution: Using the independent labeling argument of part a), we obtain that each of the n points is independently red with probability $p_{R}=\frac{\lambda_{R}}{\lambda_{B}+\lambda_{R}}$ and therefore $N_{R}(T)$ conditioned on $N(T)=n$ is binomially distributed with parameters n and p_{R}. That is,

$$
\mathbb{P}\left(N_{R}(T)=k \mid N_{R}(T)+N_{B}(T)=n\right)=\binom{n}{k}\left(p_{R}\right)^{k}\left(1-p_{R}\right)^{n-k}
$$

for $0 \leq k \leq n$, while the probability is 0 otherwise.
c) Compute $\mathbb{E}\left[\sum_{i=1}^{N(T)} S_{i}\right]$. Recall $\sum_{i=1}^{0} S_{i}=0$ by definition.

Solution:

Use the order statistic property we obtain

$$
\mathbb{E}\left[\sum_{i=1}^{N(T)} S_{i}\right]=\mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{N(T)} S_{i} \mid N(T)\right]\right]=\mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{N(T)} X_{i} \mid N(T)\right]\right]
$$

where the X_{i} are independent and identically distributed random variables which are uniform on $(0, T)$ (and therefore have expectation $T / 2)$. So,

$$
\mathbb{E}\left[\sum_{i=1}^{N(T)} S_{i}\right]=\mathbb{E}[N(T) \times T / 2]=\left(\lambda_{R}+\lambda_{B}\right) T^{2} / 2
$$

Problem 2: Renewal Theory

Let $\{N(t), t \geq 0\}$ be a renewal process, with interarrival distribution function $F(t)$ and density function $\frac{d}{d t} F(t)=f(t)$. Define $m(t)=\mathbb{E}[N(t)]$ for $t \geq 0$.
a) Justify the renewal equation. That is, show that for $t \geq 0$,

$$
m(t)=F(t)+\int_{0}^{t} m(t-x) f(x) d x
$$

Solution: Condition on the first arrival (say S_{1}) then observe

$$
\mathbb{E}[N(t)]=\mathbb{E}\left[\mathbb{E}\left[N(t) \mid S_{1}\right]\right]=\int_{0}^{t} \mathbb{E}\left[N(t) \mid S_{1}=x\right] \mathbb{P}\left(S_{1} \in d x\right)+\int_{t}^{\infty} \mathbb{E}\left[N(t) \mid S_{1}=x\right] \mathbb{P}\left(S_{1} \in d x\right)
$$

Observe that for $x>t$, we have that $\mathbb{E}\left[N(t) \mid S_{1}=x\right]=0$, because the first arrival is after time t. Furthermore for $x<t$ we have that $\mathbb{E}\left[N(t) \mid S_{1}=x\right]=1+\mathbb{E}[N(t-s)]$ because the system "renews" at the time of the first arrival. So

$$
\mathbb{E}[N(t)]=\int_{0}^{t}(1+\mathbb{E}[N(t-x)]) f(x) d x=F(t)+\int_{0}^{t} m(t-x) f(x) d x
$$

as desired.
b) Assume that the interarrival times are uniformly distributed on $(0,1)$, i.e.

$$
f(t)= \begin{cases}1 & \text { for } t \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

Show that for $t \in[0,2], m(t)$ is given by

$$
m(t)= \begin{cases}e^{t}-1 & \text { for } t \in(0,1] \\ e^{t}-1-(t-1) e^{t-1} & \text { for } t \in(1,2]\end{cases}
$$

Solution: For $t \in(0,1]$ fill in the proposed solution in the renewal equation. The Left Hand Side is $e^{t}-1$, while the Right Hand Side is

$$
t+\int_{0}^{t}\left(e^{t-x}-1\right) \times 1 d x=e^{t}-1
$$

as desired. For $t \in(0,2]$, the Right Hand Side of the renewal equation becomes

$$
1+\int_{0}^{1} m(t-x) \times 1 d x=1+\int_{t-1}^{t} m(x) d x=1+\int_{t-1}^{1} m(x) d x+\int_{1}^{t} m(x) d x
$$

Filling in the suggestion for $m(t)$ then gives that this equals

$$
1+\int_{t-1}^{1}\left(e^{x}-1\right) d x+\int_{1}^{t} e^{x}-1-(x-1) e^{x-1} d x=1+\int_{t-1}^{t}\left(e^{x}-1\right) d x-\int_{1}^{t}(x-1) e^{x-1} d x
$$

The first integral is equal to

$$
e^{t}-e^{t-1}-1
$$

while the second integral is (by partial integration)

$$
\int_{0}^{t-1} x e^{x} d x=\left.x e^{x}\right|_{x=0} ^{t-1}-\int_{0}^{t-1} e^{x} d x=(t-1) e^{t-1}-\left(e^{t-1}-1\right)=(t-2) e^{t-1}+1
$$

So the Right Hand Side of the renewal equation is given by

$$
1+\left(e^{t}-e^{t-1}-1\right)-\left((t-2) e^{t-1}+1\right)=e^{t}-1-(t-1) e^{t-1}
$$

as desired.
c) Let U_{1}, U_{2}, \cdots be independent random variables all uniformly distributed on $(0,1)$. Define

$$
N=\min \left\{n \in \mathbb{N} ; \sum_{i=1}^{n} U_{i} \geq 2\right\}
$$

Compute $\mathbb{E}[N]$.
Solution: by definition $N=N(2)+1$ so $E[N]=m(2)+1=e^{2}-e$.

Problem 3: Queueing Theory

Consider an $M / G / 1$ queue in which customers arrive according to a Poisson Process with rate λ, and customers have independent workloads which are distributed as the random variable S. Let $m_{1}=\mathbb{E}[S]<\infty$ be the expected time a customer needs service and $m_{2}=\mathbb{E}\left[S^{2}\right]<\infty$ be the second moment of this workload.
a) Provide a necessary and sufficient condition on λ for the queue length not to go to infinity?

Solution: It is enough that (in expectation) less than 1 customers arriving during a service. So we require $\lambda \mathbb{E}[S]<1$.

For part b) and c) assume that the condition of part a) is satisfied. For $n \in \mathbb{N}$, let Y_{n} be the number of new customers arriving during the service period of the n-th customer and let X_{n} be the number of customers that the n-th departing customer leaves behind in the system.
b) Argue that for $n \in \mathbb{N}$

$$
\begin{equation*}
X_{n+1}=X_{n}-1+Y_{n+1}+\mathbb{1}\left(X_{n}=0\right) \tag{1}
\end{equation*}
$$

where $\mathbb{1}\left(X_{n}=0\right)=\left\{\begin{array}{ll}1 & \text { if } X_{n}=0 \\ 0 & \text { otherwise }\end{array}\right.$.
Solution: If the n-th departing customer leaves 0 customers behind, then the first customer to arrive after the departure of the n-th departing customer is the $n+1$-st customer to depart and only the Y_{n+1} customers will be there when the $n+1$-st customer departs. So if $X_{n}=0$, then $X_{n+1}=Y_{n+1}$, which is consisten with (??).

If $X_{n} \neq 0$, then the first customer in the queue at the departure of n-th departing customer is the $n+1$-st customer to depart. All $X_{n}-1$ other customers will still be in the queue at the $n+1$-st departure and in addition the Y_{n+1} customers which arrive between the n-th and $n+1$-st departure will add to X_{n+1}. So in this case $X_{n+1}=\left(X_{n}-1\right)+Y_{n}$, as desired.
c) Compute the long run fraction of customers that depart without leaving anybody in the system and compute the expected number of customers that the n-th departing customers leaves behind in the system for $n \rightarrow \infty$.

Hint: As intermediate steps, compute

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=0\right)=\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]
$$

by taking the expectations on both sides of equation (??) and compute $\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]$ by taking expectations of the squares of both sides of equation (??).

Solution: Follow the hint

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n+1}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]-1+\lim _{n \rightarrow \infty} \mathbb{E}\left[Y_{n+1}\right]+\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]
$$

Now observe that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n+1}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right] \quad \text { and } \quad \mathbb{E}\left[Y_{n+1}\right]=\lambda m_{1} \quad \text { for all } n
$$

So, we obtain $\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]=1-\lambda m_{1}$. This implies that the long run fraction of customers that depart without leaving anybody in the system is $1-\lambda m_{1}$

Taking the square of equation (??). we obtain

$$
\begin{aligned}
& \left.\mathbb{E}\left[X_{n+1}\right]\right)^{2}=\mathbb{E}\left[\left(X_{n}\right)^{2}\right]+1+\mathbb{E}\left[\left(Y_{n+1}\right)^{2}\right]+\mathbb{E}\left[\left(\mathbb{1}\left(X_{n}=0\right)\right)^{2}\right] \\
& \quad-2 \mathbb{E}\left[X_{n}\right]+2 \mathbb{E}\left[X_{n} Y_{n}\right]+2 \mathbb{E}\left[X_{n} \mathbb{1}\left(X_{n}=0\right)\right]-2 \mathbb{E}\left[Y_{n}\right]-2 \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]+2 \mathbb{E}\left[Y_{n} \mathbb{1}\left(X_{n}=0\right)\right]
\end{aligned}
$$

Now observe that $\left.\mathbb{E}\left[\left(\mathbb{1}\left(X_{n}=0\right)\right)^{2}\right]=\mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right)\right]$ and that Y_{n} is independent of X_{n}. Also, $\mathbb{E}\left[Y_{n}\right]=\lambda m_{1}$ and for S_{n+1} the workload of the $n+1$-st customer,

$$
\left.\mathbb{E}\left[\left(Y_{n}\right)^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left(Y_{n}\right)^{2} \mid S_{n}\right]\right]=\mathbb{E}\left[\lambda S_{n}+\left(\lambda S_{n}\right)^{2}\right)\right]=\lambda m_{1}+\lambda^{2} m_{2}
$$

Furthermore, $\mathbb{E}\left[X_{n} \mathbb{1}\left(X_{n}=0\right)\right]=0$ and we obtain

$$
\begin{aligned}
\left.\mathbb{E}\left[X_{n+1}\right]\right)^{2}=\mathbb{E}\left[\left(X_{n}\right)^{2}\right] & +1+\lambda m_{1}+\lambda^{2} m_{2}+\mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right] \\
& -2 \mathbb{E}\left[X_{n}\right]+2 \mathbb{E}\left[X_{n}\right] \lambda m_{1}-2 \lambda m_{1}-2 \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]+2 \lambda m_{1} \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]
\end{aligned}
$$

taking limits, substracting $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(X_{n}\right)^{2}\right]$ from both sides and filling in

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{1}\left(X_{n}=0\right)\right]=1-\lambda m_{1}
$$

we then obtain

$$
\begin{aligned}
& 0=1-\lambda m_{1}+\lambda^{2} m_{2}-\left(1-\lambda m_{1}\right)-2\left(1-\lambda m_{1}\right) \lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]+2 \lambda m_{1}\left(1-\lambda m_{1}\right) \\
&=\lambda^{2} m_{2}+2 \lambda m_{1}\left(1-\lambda m_{1}\right)-2\left(1-\lambda m_{1}\right) \lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]
\end{aligned}
$$

So,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]=\frac{\lambda^{2} m_{2}}{2\left(1-\lambda m_{1}\right)}+\lambda m_{1}
$$

Problem 4: Brownian Motion and Stationary Processes

Let $\{B(t), t \geq 0\}$ be a standard Brownian motion and for $t>0$, let

$$
M(t):=\max _{0 \leq s \leq t} B(s),
$$

be the maximum of the Brownian motion up to time t. Here we assume that $B(0)=0$ and that the variance parameter $\sigma^{2}=1$ is part of the definition of a standard Brownian motion.

Let μ be a constant and define the Brownian motion with drift process

$$
\left\{B_{\mu}(t), t \geq 0\right\}=\{B(t)+\mu t, t \geq 0\} .
$$

a) Provide the distribution of $B_{\mu}(t)$ for $t>0$.

Solution: $B_{\mu}(t)=B(t)+\mu t$ We know from the definition of a Brownian motion that $B(t)$ is Normal distributed with mean 0 and variance t. Therefore, $B_{\mu}(t)=B(t)+\mu t$ is Normal distributed with mean μt and variance t.
b) For $0<s<t$ and constants a and b compute

$$
\mathbb{P}\left(B_{\mu}(s) \leq a \mid B_{\mu}(t)=b\right),
$$

and show that this expression does not depend on μ.

Solution:

$$
\mathbb{P}\left(B_{\mu}(s) \leq a \mid B_{\mu}(t)=b\right)=\mathbb{P}(B(s)+\mu s \leq a \mid B(t)+\mu t=b)=\mathbb{P}(B(s) \leq a-\mu s \mid B(t)=b-\mu t) .
$$

Using what we know about the Brownian Bridge (see cheat sheet) we obtain that conditioned on $B(t)=b-\mu t, B(s)$ is Normal distributed with mean $(b-\mu t)(s / t)$ and variance $s(t-s) / t$. So,

$$
\begin{aligned}
\mathbb{P}\left(B_{\mu}(s) \leq a \mid B_{\mu}(t)=b\right)=\mathbb{P}(B(s) & \leq a-\mu s \mid B(t)=b-\mu t) \\
& =\int_{-\infty}^{a-\mu s} \frac{1}{\sqrt{2 \pi s(t-s) / t}} \exp \left[-\frac{(x-(b-\mu t)(s / t))^{2}}{2 s(t-s) / t}\right] d x .
\end{aligned}
$$

Making the change of variables $y=x+\mu s$, we then obtain

$$
\mathbb{P}\left(B_{\mu}(s) \leq a \mid B_{\mu}(t)=b\right)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi s(t-s) / t}} \exp \left[-\frac{(y-b s / t)^{2}}{2 s(t-s) / t}\right] d x
$$

Which is to say that conditioned on $B_{\mu}(t)=b, B_{\mu}(s)$ is Normal distributed with mean $b s / t$ and variance $s(t-s) / t$ (which is independent of μ).
c) Consider again the Brownian Motion without drift. For a constant $a>0$ and given time $t>0$, compute

$$
\mathbb{P}(M(t)<a \mid B(t)<0) .
$$

Solution: Use the reflection principe and let T_{a} be the first hitting time of a.

$$
\begin{aligned}
\mathbb{P}(M(t)<a \mid B(t)<0) & =1-\mathbb{P}(M(t)>a \mid B(t)<0) \\
& =1-\frac{\mathbb{P}\left(T_{a}<t, B(t)<0\right)}{\mathbb{P}(B(t)<0)} \\
& =1-\frac{\mathbb{P}\left(T_{a}<t, B(t)<0\right)}{1 / 2} \\
& =1-2 \mathbb{P}\left(T_{a}<t, B(t)-B\left(T_{a}\right)<-a\right) \\
& =1-2 \mathbb{P}\left(T_{a}<t, B(t)-B\left(T_{a}\right)>a\right) \\
& =1-2 \mathbb{P}\left(T_{a}<t, B(t)>2 a\right) \\
& =1-2 \mathbb{P}(B(t)>2 a)
\end{aligned}
$$

Problem 5: Simulation

Let $\{N(t), t \geq 0\}$ be an nonhomogeneous Poisson Process with strictly positive and finite intensity function $\lambda(t), t \geq 0$. Define

$$
m(t)=\int_{0}^{t} \lambda(s) d s
$$

and assume that $m(\infty)=\infty$.
Because the intensity function is strictly positive and finite, $m(t)$ is continuous and strictly increasing to ∞ in t. This implies that the inverse function $m^{-1}(\cdot)$ satisfying

$$
m\left(m^{-1}(t)\right)=m^{-1}(m(t))=t \quad \text { for all } t \geq 0
$$

is well defined.

Define

$$
X_{i}:=\min \{t \geq 0 ; N(t) \geq i\} \quad \text { for } i \in \mathbb{N}
$$

That is, X_{i} is the position of the i-th point of the nonhomogeneous Poisson Process. For completeness define $X_{0}=0$.
a) Provide the definition of an nonhomenous Poisson Process.

Solution: A non-decreasing non-negative integer valued process $\{N(t) ; t \geq 0\}$ is a nonhomogeneous Poisson Process with intensity function $\lambda(t) \in[0, \infty), t \geq 0$ if

- $N(0)=0$
- The process has independent increments
- $\mathbb{P}(N(t+h)-N(t)=1)=\lambda(t) h+o(h)$
- $\mathbb{P}(N(t+h)-N(t)>1)=o(h)$

The mean value function is defined by $m(t)=\int_{0}^{t} \lambda(s) d s$
b) Show that $m\left(X_{1}\right)$ is exponentially distributed with expectation 1 . That is, show that

$$
\mathbb{P}\left(m\left(X_{1}\right)>t\right)=e^{-t} \quad \text { for } t \geq 0
$$

Solution: Note that $\mathbb{P}\left(m\left(X_{1}\right)>t\right)=\mathbb{P}\left(X_{1}>m^{-1}(t)\right)$, which is the probability that the nonhomogeneous Poisson process contains no points up to $m^{-1}(t)$, which by the definition of a nonhomogeneous Poisson process is equal to

$$
e^{-\int_{0}^{m^{-1}(t)} \lambda(s) d s}=e^{-m\left(m^{-1}(t)\right)}=e^{-t}
$$

as desired.
c) Show that for $i \in \mathbb{N}_{0}$ the random variables $m\left(X_{i+1}\right)-m\left(X_{i}\right)$ are independent and identically distributed all exponentially distributed with expectation 1 .

Remark: The above result implies that we may simulate $\{N(t), t \geq 0\}$ by first simulating the points Y_{1}, Y_{2}, \cdots of a homogeneous Poisson Process with intensity 1 and then set $X_{i}=m^{-1}\left(Y_{i}\right)$ for $i \in \mathbb{N}$.

Solution: Note that if we know $m\left(X_{i}\right)$ then we know X_{i} and vice-versa, because m is a one-to-one function. So, for every $x>0$ and $i \in \mathbb{N}$ we have
$\mathbb{P}\left(m\left(X_{i+1}\right)-m\left(X_{i}\right)>x \mid m\left(X_{j}\right)-m\left(X_{j-1}\right), j=1, \cdots, i\right)=\mathbb{P}\left(m\left(X_{i+1}\right)-m\left(X_{i}\right)>x \mid X_{1}, \cdots, X_{i}\right)$.
By the definition of a nonhomogeneous Poisson Process and because $X_{j}<X_{i}$ for $j<i$, we obtain that this is equal to $\mathbb{P}\left(m\left(X_{i+1}\right)-m\left(X_{i}\right)>x \mid X_{i}\right)$.

We now show that the above probability is exponentially distributed with expectation 1 and independent of X_{i}.
$\mathbb{P}\left(m\left(X_{i+1}\right)-m\left(X_{i}\right)>x \mid X_{i}\right)=\mathbb{P}\left(m\left(X_{i+1}\right)>x+m\left(X_{i}\right) \mid X_{i}\right)=\mathbb{P}\left(X_{i+1}>m^{-1}\left(x+m\left(X_{i}\right)\right) \mid X_{i}\right)$, which is the probability that there is no point between X_{i} and $m^{-1}\left(x+m\left(X_{i}\right)\right)$. which is by the definition of a non-homogeneous Poisson Process given by
$\exp \left[-\int_{X_{i}}^{m^{-1}\left(x+m\left(X_{i}\right)\right)} \lambda(t) d t\right]=\exp \left[-\left\{m\left(m^{-1}\left(x+m\left(X_{i}\right)\right)\right)-m\left(X_{i}\right)\right\}\right]=e^{-\left\{x+m\left(X_{i}\right)-m\left(X_{i}\right)\right\}}=e^{-x}$,
as desired.

