
Solutions Stochastic Processes and Simulation II, June 1, 2020

Problem 1: Poisson Processes

To describe the spread of an infectious disease, such as Covid-19, mathematical modellers often
use SEIR models. In those models people can be Susceptible, Exposed (i.e. infected, but not
yet infectious), Infectious or Removed (which might mean recovered and eternally immune or
dead). At time t = 0 there is one infectious person, patient 0, who just turned Infectious (so just
before t = 0 patient 0 was exposed). All other individuals in the population are susceptible at
time t = 0. If an infectious person makes an �infectious contact� (more about this below) with a
susceptible person, the susceptible one immediately becomes exposed and stays so for a random
time, which is distributed asX: the exposed period. After the exposed period the infected person
becomes infectious and stays so for a random time distributed as Y : the infectious period. After
the infectious period the infected person is removed forever. The durations of the exposed and
infectious periods of di�erent people are independent.

An infectious individual makes �infectious contacts� during his or her infectious period according
to a homogeneous Poisson Process with rate λ.

Set
E[X] = µX , V ar(X) = σ2X , E[Y ] = µY and V ar(Y ) = σ2Y .

Let Y0 be the random infectious period of patient 0 (which is distributed as Y ) and let for given
Y0, the process {N0(t); t ∈ [0, Y0]} be the Poisson process describing the �infectious contacts�
made by patient 0.

a) Provide the mean and variance of the random number of �infectious contacts� made by patient
0. That is, provide the mean and variance of the random variable N0(Y0). (6pt)

Hint: �rst compute the mean and variance of N0(Y0), conditioned on Y0 and use this to compute
the unconditional mean and variance.

Solution: We follow the hint and we use that N0 is a Poisson process on the interval [0, Y0].
So conditioned on Y0 we know that N0(Y0) is Poisson distributed with expectation and variance
both equal to λY0. Using telescoping expectations:

E[N0(Y0)] = E[E(N0(Y0)|Y0)] = E[λY0] = λµY

While

V ar[N0(Y0)] = E[(N0(Y0))
2]− (E[N0(Y0)])

2

= E[(N0(Y0))
2]− (λµY )

2

= E[E[(N0(Y0))
2|Y0]]− (λµY )

2

= E[V ar(N0(Y0)|Y0) + (E[(N0(Y0))|Y0])2]− (λµY )
2

= E[λY0 + (λY0)
2]− (λµY )

2

= λµY + λ2(σ2Y + (µY )
2)− (λµY )

2

= λµY + λ2σ2Y .



For part b) assume that P(Y = 1) = 1, (so also P(Y0 = 1) = 1) and that P(X ≤ 1) = 1 and
assume that all infectious contacts made by patient 0 are with susceptible individuals (and thus
lead to infection).

b) Provide the distribution of the number of people infected by patient 0 which are still not
infectious at time 1 (i.e. who are still exposed at time 1). (6pt)

Solution: Denote the number we are interested in by the random variable K and the total
number of people infected by patient 0 by the random variable L. We �rst condition on L:

P(K = k) =

∞∑
`=0

P(K = k|L = `)P(L = `) =

∞∑
`=k

P(K = k|L = `)
λ`

`!
e−λ,

where we use that K ≤ L. The next step is to compute P(K = k|L = `). To use this we use
the order statistic property and notice that the ` times of infections in the interval (0,1) are
independent and uniformly distributed points on that interval. The probability that a person
infected at time x ∈ (0, 1) is still exposed at time 1 is given by P(X > 1−x). So the probability
that a person who is infected at a uniform time in (0, 1) is still exposed at time 1 is given by∫ 1

0
P(X > 1− x)dx =

∫ 1

0
P(X > x)dx = E[X] = µX .

So conditioned on L = ` the random variable K is binomially distributed with parameters ` and
µX and therefore,

P(K = k) =
∞∑
`=k

(
`

k

)
(µX)

k(1− µX)`−k
λ`

`!
e−λ

=
∞∑
`=k

`!

k!(`− k)!
(λµX)

k[λ(1− µX)]`−k
1

`!
e−λ

=
∞∑
`=k

(λµX)
k

k!

(λ(1− µX))`−k

(`− k)!
e−λ

=
∞∑
`=k

(λµX)
k

k!

(λ(1− µX))`−k

(`− k)!
e−λµxe−λ(1−µx)

=
(λµX)

k

k!
e−λµX

( ∞∑
`=k

(λ(1− µX))`−k

(`− k)!
e−λ(1−µx)

)

=
(λµX)

k

k!
e−λµX .
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Problem 2: Renewal Theory

Consider the following epidemic model describing the spread of an antibiotic resistant pathogen
in an in�nitely large intensive care unit (ICU). At time t = 0 there are no infectious people
in the ICU. Throughout the process, infectious people are admitted at the ICU according to a
homogeneous Poisson process with strictly positive rate α. As long as the number of infected
people is less than the strictly positive integer N , each infectious person infects other people
in the ICU independently at strictly positive constant rate λ. That is the total rate of going
from k to k + 1 infectious people is α + k × λ (k ∈ {0, 1, 2, · · · , N − 1}), where α is the rate
of importation of infectious people and k × λ the contribution of �within-ICU� transmissions.
Infectious people stay infectious until there is a �clearance�. As soon as there are N infectious
people in the ward �clearance� takes place and the entire ICU is cleared of the pathogen and the
number of infectious people goes instanteneously back to 0.

a) Argue that the expected time between two subsequent clearances of the ICU is

N−1∑
k=0

1

α+ kλ
.

(4pt)

Solution: for k ∈ {0, 1, · · ·N − 1} let Tk be the time to go from k to k + 1 patients in the
ICU. We know that Tk is exponententially distributed with expectation 1/(α+kλ) and that the
time from a clearance until the ICU �rst has again N infectious people (the next clearance) is∑N−1

k=0 Tk. The expectation of this random variable is given by

E[
N−1∑
k=0

Tk] =

N−1∑
k=0

E[Tk] =
N−1∑
k=0

1

α+ kλ
,

as desired.

b) What is the (almost sure) long-run average of the number of infectious people at the ICU?
Note that if ugly sums appear in your answer, you do not have to evaluate them. (4pt)

Solution: Use Renewal reward theory and �nd the sum of the durations of times patients are
infectious at the ward. A cycle is the period between �clearances�. for k ∈ {0, 1, · · ·N − 1} there
are k infectious patients in the system for duration Tk. So the cummulative time of infectious
patients in the ward during a cycle is

N−1∑
k=0

k

α+ λk
.

From part a) we know that the expected duration of a cycle is

N−1∑
k=0

1

α+ kλ
.

By renewal reward theory we then know that the long run average number of infectious patients
in the ICU is

N−1∑
k=0

k

α+ λk
/

N−1∑
k=0

1

α+ kλ
.
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c) In the long run, what is (almost surely) the fraction among all infectious people that have
been at the ICU, that has been infected outside the ICU (those are the people who were infected
when admitted at the ICU)? That is, if NA(t) is the number of people that are admitted while
infectious up to time t and NT (t) is the total number of people that has been infectious at the
ICU, then provide the almost sure limit of NA(t)/NT (t) as t→∞. (4pt)

Solution: Let A(t) be the number of patients who are admitted while infectious into the ICU
up to time t. And let B(t) be the total number of patients who have been infectious at the ICU
(either through infection or through being admitted infectious).

We know that A(t)/t→ α almost surely as t→∞, because infectious patients are admitted at
constant rate α no matter the state of the �system�. We also know by renewal reward theory
that B(t)/t converges almost surely to the expected number of infected patients per cycle (i.e.
N) divided by the expected duration of a cycle. So

A(t)

B(t)
=
A(t)/t

B(t)/t

converges almost surely to

α/[N/

N−1∑
k=0

1

α+ kλ
] =

α

N

N−1∑
k=0

1

α+ kλ
.

4



Problem 3: Queueing Theory Consider the following queueing system with a fast server
(Alice) and a slow server (Barbara). If a customer is served by Alice, the time needed for the
service is exponentially distributed with parameter µA (i.e. with expectation 1/µA), while if a
customer is serverd by Barbara, then the time needed for the service is exponentially distributed
with parameter µB.

Customers arrive at the system according to a homogeneous Poisson Process with rate λ. If upon
arrival of a new customer both Alice and Barbara are idle, the new customer will be served by
Alice.

a) Provide a necessary and su�cient relationship between λ, µA and µB for the queue length
not to go to in�nity? (2pt)

Solution: For all but possibly a �nite number of customers in the queue the arrival rate should
be less than the departure rate. That is µA+µB > λ. Assume for the remainder of the problem
that the condition of part a) is satis�ed.

b) Provide an appropriate state space S in order to describe the queueing process as a Contin-
uous Time Markov Chain. This Markov chain should contain (among other things) how many
customers are in the system. (2pt)

Solution: A state space could have the following states.
State 0: 0 customers in the system,
State 1A: 1 customer in the system served by Alice
State 1B: 1 customer in the system served by Barbara
For k ∈ {2, 3, · · · }, State k: k customers in the system.

c) Let {Ps}s∈S be the stationary distribution of the Queueing system described in this problem.
Provide the �balance equations� characterizing this stationary distribution. That is, provide
relations beween the Ps (s ∈ S), which are in theory enough to compute them all. Note you do
not have to solve the balance equations. (4pt)

Solution: We get the following balance equations, where the left hand side is the rate of leaving
a state, and the right hand side the rate of entering it.
(0) λP0 = µAP1A + µBP1B

(1A) (λ+ µA)P1A = λP0 + µBP2

(1B) (λ+ µB)P1B = µAP2

(2) (λ+ µA + µB)P2 = (µA + µB)P3 + λ(P1A + P1B)
(k) (λ+ µA + µB)Pk = (µA + µB)Pk+1 + λPk−1 for k ∈ {3, · · · }
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d) What is the long run fraction of customers that is served by Alice? Express your answer in
terms of {Ps}s∈S . (4pt)

Solution: If a customer arrives when the system is in state 0 or 1B then he or she will be
served by Alice. While if a customer arrives while the system is in state k for k ≥ 2 then he
or she is served by Alice if, when the customer gets to the �rst place in the queue, Alice is
the �rst to �nish her job which by the Markov property of the system occurs with probability
µA/(µA + µB). Using the PASTA principle the probability that an arriving customer is served
by Alice is given by

P0 + P1B +
µA

µA + µB

∞∑
k=2

Pk.

An alternative is to assume that there is a clock which rings according to a Poisson Process with
intensity µA. If Alice is working just before the clock rings she �nishes her job at the ringing.
This gives that Alices �nishes jobs at rate µA(1−P0−P1B), while (because the system does not
explode jobs �nish at total rate λ). So the fraction served by Alice is µA

λ (1 − P0 − P1B). One
can deduce from the balance equations that those numbers are indeed the same.
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Problem 4: Brownian Motion and Stationary Processes

Let {X1(t); t ≥ 0} and {X2(t); t ≥ 0} be independent standard Brownian motions satisfying
X1(0) = X2(0) = 0 and both having variance parameter 1. Consider the 2 dimension Brownian
motion

{X(t); t ≥ 0} = {(1 +X1(t), 1 +X2(t)); t ≥ 0}.

Note that this process starts in (1, 1), i.e. X(0) = (1, 1).

De�ne for i ∈ {1, 2} the random time Ti = inf{t ≥ 0; 1 +Xi(t) ≤ 0}.

a) Show that the density functions of T1 and T2 are given by

fT1(t) = fT2(t) =
1√
2πt3

e−1/(2t) for t ≥ 0.

(3pt)

Solution: By de�nition fT1(t) = fT2(t), while by symmetry arguments, T1 is the �rst time a
standard Brownian motion hits 1. Taking the derrivative of (10.6) on page 611 of the book. We
obtain that

fT1(t) =
d

dt

2√
2π

∫ ∞
1/
√
t
e−y

2/2dy = −
(
d

dt
t−1/2

)
2√
2π

[
e−y

2/2
]
y=t−1/2

=
1√
2πt3

e1/(2t)

Let T be the exit time of the positive quadrant. i.e.

T = inf{t ≥ 0;min(1 +X1(t), 1 +X2(t)) ≤ 0}.

b) Provide the distribution function of T , i.e. compute P(T ≤ t) for t ≥ 0. (3pt)

Solution: De�ne T1 and T2 as above. Then T = min(T1, T2) and

P(T > t) = P(T1 > t)P(T2 > t).

By (10.7) on page 611 of the course book, this probability is equal to(
1− 2√

2π

∫ ∞
1/
√
t
e−y

2/2dy

)2

=

(
2√
2π

∫ 1/
√
t

0
e−y

2/2dy

)2

=
2

π

(∫ 1/
√
t

0
e−y

2/2dy

)2
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c) Compute P(1 +X1(T ) > x) for x > 0. (6pt)

Hint: Use that

P(1 +X1(T ) > x) =

∫ ∞
0

fT2(t2)

(∫ ∞
0

P(1 +X1(T ) > x|T1 = t1, T2 = t2)fT1(t1)dt1

)
dt2.

Further note that 1 +X1(T ) > x > 0 implies T = T2 < T1. One can then proceed to �rst show
that

P(1 +X1(T ) > x) =

∫ ∞
0

fT2(t2)P(1 +X1(t2) > x, T1 > t2)dt2

and then use this for further computations.

Solution: Start with

P(1 +X1(T ) > x) =

∫ ∞
0

fT2(t2)

(∫ ∞
0

P(1 +X1(T ) > x|T1 = t1, T2 = t2)fT1(t1)dt1

)
dt2.

Then using the hint that T = T2 < T1 we obtain that

P(1 +X1(T ) > x) =

∫ ∞
0

fT2(t2)

(∫ ∞
t2

P(1 +X1(t2) > x|T1 = t1, T2 = t2)fT1(t1)dt1

)
dt2.

We then note that X1(t2) is independent of the event T2 = t2. So, the above is equal to∫ ∞
0

fT2(t2)

(∫ ∞
t2

P(1 +X1(t2) > x|T1 = t1)fT1(t1)dt1

)
dt2.

Observe that∫ ∞
t2

P(1 +X1(t2) > x|T1 = t1)fT1(t1)dt1 = P(1 +X1(t2) > x, T1 > t2),

which is equal to

P(1 +X1(t2) > x)− P(1 +X1(t2) > x, T1 ≤ t2) = P(X1(t2) > x− 1)− P(X1(t2) > x+ 1),

where we have used the re�ection principle. This is equal to P(x− 1 < X1(t2) < x+ 1). So,

P(1 +X1(T ) > x) =

∫ ∞
0

1√
2π(t2)3

e−1/(2t2)
∫ x+1

x−1

1√
2πt2

e−y
2/(2t2)dydt2

=

∫ x+1

x−1

∫ ∞
0

1

2πt2
e−(y

2+1)/(2t2)dt2dy

Integrating with respect to t2 (noting that d
dte
−(y2+1)/(2t) = (y2+1)

2(t)2
e−(y

2+1)/(2t)) we obtain.

P(1 +X1(T ) > x) =

∫ x+1

x−1

1

π(y2 + 1)
dy.
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Problem 5: Simulation

Let {Z(t), t ≥ 0} be a linear birth and death process. That is, {Z(t), t ≥ 0} is a continuous time
Markov process on state space {0, 1, · · · } where the rate of going from k to k + 1 is λ × k and
the rate of going from k to k − 1 is µ× k. Assume Z(0) = 1.

a)Argue that one can simulate this process by using two sequences of independent and identically
distributed uniform random variables on (0, 1), say U1, U2, · · · and V1, V2, · · · as follows.

• De�ne the time of the �rst event S1 = − log(U1)
λ+µ . Let Z(t) = 1 for t ∈ [0, S1) and set

Z(S1) = 2 if V1 ≤ λ
λ+µ and Z(S1) = 0 otherwise.

• For k, n ∈ {1, 2, · · · }, if Z(Sn) = k, set Sn+1 = Sn + − log(Un+1)
(λ+µ)k . Let Z(t) = k for

t ∈ [Sn, Sn+1) and Z(Sn+1) = k + 1 if Vn+1 ≤ λ
λ+µ and Z(Sn+1) = k − 1 otherwise.

• If Z(t) = 0 then Z(s) = 0 for all s > t. (4pt)

Solution: From the theory of Markov processes we know that we can model the process by
having an exponential distribution of staying in state k with expectation 1/[k(λ+µ)]. So the time
of stay in state k is by the inverse distribution method also distributed as − log[U ]/[k(λ+ µ)].

The probability of going up is then λ
λ+µ and this event is independent of everything else in the

process. Note that the way we use V gives the same probability of increasing by 1. When the
state is 0 the rates of leaving are 0 and no further events will occur.

b) Argue that one can simulate the number of customers in the system in the �rst busy period of
an M/M/1 queueing process {Q(t); t ≥ 0} with arrival rate λ and departure rate µ, by de�ning
τ(t) =

∫ t
0 Z(s)ds and de�ning {Q(τ(t)); t ≥ 0} = {Z(t); t ≥ 0}. That is, the queueing process

and the the linear birth and death process are the same apart from a random time change. (4pt)

Solution: Many arguments are possible. E.g. Let {Z(t); t ≥ 0} be as in exercise a. By
the de�nition of τ and S1, S2, · · · , from part a we know that τ(S1) = S1, and if Z(Sk) > 0,
τ(Sk+1)− τ(Sk) = Z(Sk)(Sk+1 − Sk), which is exponentially distributed with parameter λ+ µ.
So if we de�ne {Q(τ(t)); t ≥ 0} as {Z(t); t ≥ 0} then {Q(τ(t)); t ≥ 0} leaves its current state
if the argument τ(t) has made an exponential(λ+ µ) increase (which will only be after a �nite
time if Z(t) = Q(τ(t)) > 0), as desired for an M/M/1 queue (in the �rst busy period), while
the probabilities of making up and down jumps are the same for the M/M/1 queue as for the
linear birth and death process.
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c) Argue that the expected number of births in a linear birth and death process (the expected
number of �+1 jumps� in {Z(t), t ≥ 0}) is equal to λE[duration of busy period in process {Q(t); t ≥ 0}].
(4pt)

Solution: From part b we know that the number of �+1 jumps� in the busy period of anM/M/1
queue is the same as the number of �+1 jumps� in a linear birth and death process.

If the busy period is in�nite, then in�nitely many customers arrive in the busy period and the
statement follows. If the expected busy period is �nite, we know from Renewal reward theory
that the expected number of arrivals during a cycle (idle period + busy period) divided by the
expected duration of a cycle converges to the long run arrival rate, which is λ.

The number of arrivals in a cycle is 1 plus the number of arrivals during the busy period (just
as we do not count the initial person in the birth and death process, we do not count the person
who starts the busy period), while the duration of the busy period is the duration of a cycle -
1/λ (the duration of an idle period. Combining the above we obtain that

λ =
1 + E[[number of arrivals during busy period]

1
λ + E[duration of busy period]

.

Which implies

1 + E[number of arrivals during busy period] = 1 + λE[duration of busy period].

as desired.
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