
Solutions Stochastic Processes and Simulation II, August 19, 2020

Problem 1: Poisson Processes

Consider a homogeneous Poisson process {N(t); t ≥ 0} with intensity λ > 0. Let c > 0 be a

positive constant. Now color the point in the Poisson process independently red or blue where

for t > 0 a point at position t is red with probability e−ct, otherwise the point is blue.

a) What is the probability that the �rst point is red? (4pt)

Solution: The position of the �rst point has density f(t) = λe−λt. So the probability that the

�rst point is red is
∫∞
0 f(t)e−ctdt =

∫∞
0 λe−(c+λ)tdt = λ/(λ+ c).

b) What is the distribution of the number of red points in (0,∞)? (4pt)

Solution: Because the coloring of points is independent the red points themselves constitute

a (non-homogeneous) Poisson Process with intensity λe−ct (e.g. page 324 of Ross). So, the

distribution of the number of points is Poisson distributed with expecation
∫∞
0 λe−ctdtIλ/c.

Denote the positions of the red points by R1 < R2 < · · · , where Rk =∞ if the total number of

red points is less than k.

c) Let s < t <∞. Compute P(R1 < s|R3 = t). (4pt)

Solution: Use the order statistic property for non-homogeneous Poisson processes (e.g. Ross

page 675) And note that the number of points in (0, t) is 2. The positions of those points are

distributed as two independent random variables with density

g(s) =
λe−cs

m(t)
=

λe−cs∫ t
0 λe

−cudu
=

ce−cs

1− e−ct
.

So, for s < t, noting that R1 > s means that there are no points in (0, s).

P(R1 < s|R3 = t) = 1− P(R1 > s|R3 = t) = 1− (1−
∫ s

0
g(u)du)2

= 1−
(
1−

∫ s
0 ce

−cudu

1− e−ct

)2

= 1−
(
1− 1− e−cs

1− e−ct

)2



Problem 2: Renewal Theory

A quiz show candidate is asked a series of questions. Each answer can be evaluated to be either

C (for correct) or F (for false). The sequence of answers can be described by a Markov chain.

The �rst answer is correct with probability p1. A correct answer is directly followed by another

correct answer with probability pC , while a false answer is directly followed by a correct answer

with probability pF . Let C(n) be the number of correct answers among the �rst n answers.

a) What is the expected number of questions needed to obtain the �rst correct answer? (4pt)

Solution: Let Z be the positition of the �rst correct answer. Then P(Z = 1) = p1 and for

k > 1 we have P(Z = k) = (1− p1)(1− pF )k−2pF So,

E[Z] =
∞∑
k=1

kP(X = k) = p1 +
1− p1
1− pF

∞∑
k=2

k(1− pF )k−1pF

= p1 +
1− p1
1− pF

∞∑
k=1

k(1− pF )k−1pF −
1− p1
1− pF

pF = p1 +
1− p1
1− pF

1

pF
− 1− p1

1− pF
pF

=
pF (p1 − pF ) + (1− p1)

(1− pF )pF
=

1− p1 + pF
PF

.

b) What is the (almost sure) long-run fraction of answers that is correct? That is, what is the

almost sure limit of C(n)/n? (4pt)

Hint: Note that p1, pC and pF are not necessarily equal.

Solution: Life would be easier if �rst answer would be correct with probability pC , because
then we can say that there is a renewal every time a correct answer is given. However, for the

long run the probability that the �rst answer is correct does not matter. So let us assume that

p1 = pC and the expected number of questions after a renewal until a new renewal is 1−pC+pF
pF

,

and the (almost sure) long-run fraction of answers that is correct is one divided by this number:
pF

1−pC+pF
.
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c) Let X(n) be the number of subsequent correct answers given at time n. So, if the sequence
starts

C,C, F,C, F, · · · ,

then

X(1) = 1, X(2) = 2, X(3) = 0, X(4) = 1 and X(5) = 0.

For all n ∈ {1, 2, · · · }, assume that at time n the candidate receives a reward of X(n). What is

the expected long run income of the candidate per time unit? That is what is

lim
n→∞

1

n

n∑
j=1

X(j) ?

(4pt)

Solution: Use Renewal reward theory, but now with a renewal every time an incorrect answer

is given and the answer of an incorrect answer at the �rst question is 1 − pF . Let Y be the

position of the �rst incorrect answer. As for Z we obtain P(Y = 1) = 1− pF and for k > 1 we

have P(Y = k) = pF p
k−2
C (1 − pC). Then according to renewal reward theory we are interested

in

1

E[Y ]
E[
Y−1∑
j=1

X(j)] =
E[Y (Y − 1)]

2E[Y ]

We otbain by changing the role of pF and 1− pC .

E[Y ] =
1− pC + pF

1− pC

and

E[Y (Y − 1)] =
pF

2(1− pC)2
.
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Problem 3: Queueing Theory

Consider the following M/M/∞ queue with catastrophes: Customers arrive in the system ac-

cording to a homogeneous Poisson Process with intensity λ > 0. Upon entering the system, a

customer immediately receives service from one of the in�nitely many servers. Workloads are

independent and exponentially distributed with rate µ > 0 (So, with expectation 1/µ). A cus-

tomer who has been in the system for the duration of his or her workload, immediately leaves

the system. In addition catastrophes occur according to a Poisson process with intensity δ.
This Poisson process is independent of the arrival process of customers. At the moment of a

catastrophe, all customers present leave the system immediately. Workloads are independent of

both the arrival process and the times of catastrophes.

a) Provide the expected time a customer is in the system? (2pt)

Solution: Say that a customer has workload Y , which is exponentially distributed with mean

1/µ and that the time until next catastrophe from the moment of his or her arrival is X, which

is independent of Y and exponentially distributed with mean 1/δ. So the time until leaving is

min(X,Y ) which is exponentially distributed with parameter δ + µ and thus with expectation

W = 1/(δ + µ)

b) What is the long run average number of customers in the system? (3pt)

Solution: Using L = λW (Page 483 of Ross) and thus L = λ/(δ + µ).

c) For k ∈ {1, 2, · · · } Let Nk be the number of customers that leaves the system at the k-th
catastrophe. What is limn→∞ n

−1∑n
k=1Nk? (3pt)

Solution: Since catastrophes come as Poisson arrivals, we can use PASTA and the answer is L.

d) Let S = {0, 1, 2, · · · } be the �state space� of the process describing the number of customers

in the system. Let {Ps}s∈S be the stationary distribution of the Queueing system described in

this problem. Provide the �balance equations� characterizing this stationary distribution. That

is, provide relations beween the Ps (s ∈ S), which are in theory enough to compute them all.

(4pt)

Hint: Note you do not have to solve the balance equations.

Solution: The rate into state 0 is: µP1 + δ(1 − P0) and the rate out is λP0. In general for

k ≥ 1 the rate into state k is λPk−1 + µ(k+1)Pk+1 while the rate out is (δ+ λ+ kµ)Pk. So the

balance equations are:

µP1 + δ(1− P0) = λP0

and for k ≥ 1
λPk−1 + µ(k + 1)Pk+1 = (δ + λ+ kµ)Pk.
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Problem 4: Brownian Motion and Stationary Processes

Let {B(t); t ≥ 0} be a standard Brownian motion (So we assume B(0) = 0 and V ar(B(1)) = 1).
Let

m(t) = min
0≤s≤t

B(t).

a) Argue that for x, y > 0 we have

P(m(t) < −x,B(t) > y − x) = P(B(t) > y + x).

(4pt)

Solution: Use re�ection principle in −x. So at the �rst hitting time of −x (say T−x) the

probability of going from −x to above y−x (i.e. an increase of at least y) in t−T−x time units is

equal to going from −x to below −(y+x) (i.e. a decreas of at least y) in that time interval. Then

further use that the Brownian motion is symmetric so P(B(t) > y + x) = P(B(t) < −(y + x)).

b) Again for x, y > 0, compute P(B(t) > y − x|m(t) > −x). (4pt)

Hint: You may use a) to obtain P(m(t) > −x,B(t) > y − x).

Solution:

P(B(t) > y − x|m(t) > −x) = P(B(t) > y − x,m(t) > −x)
P(m(t) > −x)

=
P((B(t) > y − x)− P(B(t) > y − x,m(t) < −x)

P(m(t) > −x)

=
P(B(t) > y − x)− P(B(t) > y + x)

1− 2P(B(t) > x)
=

∫ y+x
y−x

1√
2πt
e−s

2/(2t)ds

2
∫ x
0

1√
2πt
e−s2/(2t)ds

c) Show that

lim
ε↘0

P(B(t) > y|m(t) > −ε) = e−y
2/(2t)

and compute

lim
ε↘0

E[B(t)|m(t) > −ε].

Here limε↘0 means the limit as ε decreases to 0. (4pt)

Solution: Using part b with x = ε we obtain

P(B(t) > y|m(t) > −ε) =

∫ y+2ε
y

1√
2πt
e−s

2/(2t)ds

2
∫ ε
0

1√
2πt
e−s2/(2t)ds

=
2ε 1√

2πt
e−y

2/(2t) + o(ε)

2ε 1√
2πt

+ o(ε)
→ e−y

2/(2t).

and because
∫∞
0

1√
2πt
e−y

2/(2t)dy = 1/2, we have

lim
ε↘0

E[B(t)|m(t) > −ε] =
∫ ∞
0

P(B(t) > y|m(t) > −ε)dy =

∫ ∞
0

e−y
2/(2t)dy =

1

2

√
2πt.
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Problem 5: Simulation

Let X and Y be random variables with density functions

fX(x) =

{√
2
πe
−x2/2 if x ≥ 0

0 if x < 0
and fY (x) =

{
λe−λx if x ≥ 0

0 if x < 0
.

Assume that it is easy to simulate a realisation of the random variable Y .

a) If you use the rejection method using fY (x) to simulate a random variable with density

function fX(x), which value of λ ∈ (0,∞) gives the lowest possible probability of rejection of a

proposed realisation of X? (6pt)

Remark: The rejection method above can be used (after an extra step) to simulate a realisation

of a standard normal random variable.

Solution: Using the theory on the rejection method we �rst need to �nd

Cλ = max
x>0

fX(x)

fY (x)
= max

x>0

√
2
πe
−x2/2eλx

λ
= max

x>0

√
2

πλ2
eλ

2/2e−(x−λ)
2/2 =

√
2

πλ2
eλ

2/2.

Since the rejection probability is Cλ we are interested in the value of λ for which Cλ is mini-

mal. That is the value of λ for which eλ
2/2/λ is minimal, which in turn is minimal (by taking

logarithms when g(λ) = λ2/2− log λ is minimal. Now g′(λ) = λ− 1/λ which is 0 only if λ = 1,
which is indeed where Cλ takes its minimum. So for λ = 1, Cλ is minimal and the rejection

method gives the lowest possible probability of rejection.
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Let N be the set of strictly positive integers and For every k ∈ N, de�ne [k] = N ∪ (0, k] as the
set of positive integers not exceeding k.

Consider the following construction of the random process {W (t); t ∈ [0, 1]}.
Only Steps 1, 2 and equation (1) are needed for solving part b). You can safely

ignore the other steps!

1. For all n ∈ N and j ∈ [2n−1], let N0 and Nn,j be independent standard normal distributed

random variables.

2. Set W (0) = 0 and W (1) = N0.

3. Assume that you know W (i2−(n−1)), for all i ∈ [2n−1] (which you do for n = 1). Then for

all j ∈ [2n−1] de�ne

W ((2j − 1)2−n) =
W ((j − 1)2−(n−1)) +W (j2−(n−1))

2
+ 2−(n+1)/2Nn,j .

In this way you can �nd W (x) for all x ∈ [0, 1] with �nite binary representation. In

particular, n = j = 1 gives

W (1/2) =
W (0) +W (1)

2
+ 2−1N1,1. (1)

4. For n ∈ N, De�ne {Wn(t); t ∈ [0, 1]} by connecting for i ∈ [2n], the points ((i−1)2−n,W ((i−
1)2−n)) and (i2−n,W (i2−n)) by straight line segments. That is, for i ∈ [2n] and t ∈ [0, 2−n]
de�ne

Wn((i− 1)2−n + t) =W ((i− 1)2−n) + 2nt[W (i2−n)−W ((i− 1)2−n)].

5. {W (t); t ∈ [0, 1]} is the pointwise limit of {Wn(t); t ∈ [0, 1]} as n→∞.

b) Deduce from the de�nition ofW (0),W (1) andW (1/2) thatW (1/2) has a normal distribution

with expectation 0 and variance 1/2. Show further that W (1/2) and W (1) − W (1/2) are

independent. (6pt)

Solution: Note

W (1/2) =
W (1) +N1,1

2
=
N0 +N1,1

2
and W (1)−W (1/2) =W (1)−W (1) +N1,1

2
=
N0 −N1,1

2
.

Since N0 and N1,1 are normal distributed and independent, and because the sum of two inde-

pendent random variables is normal as well, with expectation the sum of the expectations of

the summands and with variance the sum of the expectations of the summands. W (1/2) and
W (1)−W (1/2) are both normal distributed with expectation (0+0)/2 and variance (1+1)×1/4.

Two normal distributed random variables are independent if they have 0 covariance. That

W (1/2) and W (1)−W (1/2) have 0 covariance follows from

Cov

(
N0 +N1,1

2
,
N0 −N1,1

2

)
=

1

4
Cov(N0 +N1,1, N0 −N1,1)

=
1

4
(Cov(N0, N0)− Cov(N1,1, N1,1)− Cov(N0, N1,1) + Cov(N0, N1,1))

= V ar(N0)− V ar(N1,1) = 0
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