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1 Introduction

Dedukti is a LF based on the �⇧-calculus. It is similar to the Edinburgh LF
[9] but it has been enhanced with higher order rewriting. Higher order rewrit-
ing [12] lifts results from term rewriting to typed �-calculus. This enables
Dedukti to include user defined rewrite rules in its type checking algorithm.
To ensure subject reduction and uniqueness of types in Dedukti, the user
added rewrite rules needs to be confluent. If they also are terminating the
type checking becomes decidable [15]. The confluence and termination of the
user defined rewrite rules are delegated to external tools.

Logical Frameworks have a long history going back to the Automath
project in the 1960s. They are used to implement di↵erent kinds of logical
systems in a fairly simple way. In [2] a number of examples of implemented
logics can be found. This includes Heyting arithmetic, Hol Light proofs
and correctness proofs of programming languages. An implementation of
Calculus of Construction (CC) has been done in Dedukti, this can be seen as
an example of how to implement PTS [4] in a LF. There are also examples
of embedding logics in Logical Frameworks in [9] and [14].

Dedukti has no support for implicit arguments, tactics or user defined syn-
tax which is commonly supported in modern proof assistants like for example
Coq. To implement a logic in Dedukti a user can define typed constants and
rewrite rules. Logical statements are expressed as types and a proof of a
statement is a term with the corresponding type. This is the Curry-Howard
correspondence between propositions and types. Dedukti has only one acces-
sible universe of types, but it is possible to implement universe hierarchies in
similar manner as outlined in [13] and [8]. Since Dedukti is an implementa-
tion of �⇧ it can be used to express predicate logic without much e↵ort [4],
[2]. Dedukti’s �⇧ implementation is minimal so what can be expressed with-
out extra coding is universal quantification and implication. Computation is
expressed as rewrite rules which supports higher order patterns.
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2 Term rewriting

Term rewriting is a well studied model for computational processes. Maybe
the most well known rewriting system is �-calculus. It is a Higher Order
Rewrite System (HRS), since �-abstractions binds variables. A first order
rewriting system is normally introduced in two steps. First by defining the
notion of an Abstract Reduction System (ARS), then defining a signature ⌃
describing the set of terms which are reduced by the ARS. As an informal
example of a first order rewrite system consider the following.

Example 1 (Addition of unary numerals). Unary numerals are generated
by the constant Z and the function S. Addition is defined by the following
rewrite relations.

plus(Z, n) 7�! n

plus(S(n),m) 7�! S(plus(n,m))

The following reduction of 2 + 1 to the value 3 illustrates the above
mentioned rewrite relation.

1. plus(S(S(Z)), S(Z)) 7�! S(plus(S(Z), S(Z)))

2. S(plus(S(Z), S(Z))) 7�! S(S(plus(Z, S(Z))))

3. S(S(plus(Z, S(Z)))) 7�! S(S(S(Z)))

The terms of first order rewrite systems are simple, they consist of vari-
ables and constants. A constant can take zero or more arguments, if it takes
at least one argument then the constant is a function symbol. Since we are
mainly interested in defining some properties of the reduction relation 7�!,
we will not develop signatures any further. The following is taken from [3]
and [11].

Definition 2. An abstract reduction system is a pair (A, 7�!) where 7�! is
binary relation on a set A. Instead of (a, b) 27�! we write a 7�! b and call
b a one step reduct of a.

1. The reflexive transitive closure of 7�! is denoted
⇤!.

2. The reflexive transitive symmetric closure of 7�! is denoted
⇤$

3. 7�! is confluent if for all a, b, c 2 A there exists a d 2 A s.t. c
⇤ a

⇤! b

implies c
⇤! d

⇤ b
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4. a 2 A is a normal form if there are no b 2 A s.t. a 7�! b. If a has a
unique normal form it is denoted a #.

5.
⇤! is normalizing if every element has a normal form.

6. 7�! is strongly normalizing (SN) if every reduction sequence a1 7�!
a2 7�! . . . eventually terminates (also called terminating or Noethe-
rian).

If a reduction relation is confluent then for a given term a if the term
reduces to two di↵erent terms, say b and c, then there are reduction paths
from b and c to a common term d. One consequence of confluency is that
when searching for expressions to reduce, any search strategy will do. The
reason for this is that all reduction paths will sooner or later end up in a
common term.

Theorem 3 ([3, 2.1.9]). If 7�! is confluent and normalizing then a

⇤$ b ,
a #= b #

Proof. Omitted. A proof can be found in [3]

This means that if a rewrite system over a set A is confluent and nor-
malizing and if also the equality on A is decidable, then there is a procedure
to decide the induced equivalence. It’s simply to compute normal forms and
compare the resulting elements. If the relation is strongly normalizing we
also know that this procedure will always terminate.

3 �-calculus

�-calculus [4] is a theory of functions invented by Alonzo Church in the 1930s.
It has been very successful as a model for computable functions. It exists in
both typed and untyped variants.

Typed �-calculus can be grouped into two distinct variants depending on
how types are assigned. Today maybe the most common variant is where
types are inferred from untyped terms. This version exist in programming
languages like ML and Haskell. It turns out that for more advanced types of
�-calculi it is not possible to infer types without type annotations.

Named after the inventors, systems with type annotations are commonly
called Church systems and systems without annotations are called Curry
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systems. In this text type annotations will play a crucial role so we will only
consider Church systems. The following introduces simply typed �-calculus
with type annotations and is based on [4].

Definition 4. Let V denote an infinite set of variables and let x 2 V , then
the syntax of simply typed �-calculus is defined as follows.

types : ↵, �, ⌧ 2 T ::= ↵|(↵! ⌧)
terms : M,N,P,Q 2 ⇤T ::= x | (�x : ↵.M) | (MN)

The following conventions reduces the number of parentheses needed to
be written.

• Types associates to the right so (↵1 ! (↵2 ! · · · ! ↵n . . . )) is nor-
mally written ↵1 ! ↵2 ! · · ·! ↵n.

• Applications associates to the left so (. . . ((FM1)M2) . . .Mn) is nor-
mally written FM1M2 . . .Mn.

• Abstractions associates to the right and multiple variable bindings can
be expressed using one � so (�x1 : ↵1.(�x2 : ↵2 . . . (�xn : ↵n.M))) is
normally written �x1 : ↵1.x2 : ↵2 . . . xn : ↵n.M

• The outermost parentheses are not written if not needed.

Definition 5. Definition of context and the domain of a context.

1. A context � (called basis in [4]) is a set of declarations of distinct
variables with type annotations.

2. Let � = x1 : �1, . . . , xn : �n then dom(�) = {x1, . . . , xn}

Definition 6. Let M 2 ⇤T then M : ↵ is derivable from a context � if, M
can be produced using the following rules.

(axiom) � ` x : ↵, if(x : ↵) 2 �

� ` M : (↵! ⌧) � ` N : ↵
(! �elimination)

� ` (MN) : ⌧

�, x : ↵ ` M : ⌧
(! �introduction)

� ` (�x : ↵.M) : (↵! ⌧)
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Using the rules defined in Definition 6 we can now derive well typed
�-terms. The following is an example.

x : ↵, y : ⌧ ` x : ↵
x : ↵ ` (�y : ⌧.x) : (⌧ ! ↵)

` (�x : ↵.�y : ⌧.x) : (↵! ⌧ ! ↵)

Function types have the same visual appearance as logical implication and
it is well known that there is a correspondence between types and proposi-
tions. The above is actually the derivation of the propositional tautology
normally written A! B ! A, and the �-term is regarded as a proof of it.

Next we introduce the equational theory induced by the � axiom schema,
the definition of the schema uses the concept of a substitution. If names
of bound variables are chosen so that they di↵er from the free variables
then substitution can be defined without side conditions on free and bound
variable.

Definition 7 (Free variables and variable substitution [4, 2.1.5]).

1. The set of free variables of M, (notation FV(M)), is defined inductively
as follows.

FV (x) = {x}
FV (MN) = FV (M) [ FV (N)

FV (�x : ↵.M) = FV (M)� {x}

2. The result of substituting N for x in M (notation M[x := N]) is induc-
tively defined as follows (Below x 6⌘ y).

x[x := N ] ⌘ N

y[x := N ] ⌘ y

PQ[x := N ] ⌘ (P [x := N ])(Q[x := N ])

(�y : ↵.P )[x := N ] ⌘ �y : ↵.(P [x := N ])

(�x : ↵.P )[x := N ] ⌘ �x : ↵.P (Note that x 62 FV (�x : ↵.P ))

Also worth noting is that �-terms are identical modulo renaming of bound
variables, i.e. (�x : ↵.x) : ↵ ! ↵ ⌘ (�y : ↵.y) : ↵ ! ↵. The process of
renaming variables of �-terms is called ↵-conversion, it will not be used in this
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document since it is somewhat redundant when using the above mentioned
variable convention.

The following introduces an equational theory induced by the �-axiom
schema and is based on the untyped version presented in [5]. It is defined
using the standard equality axioms and rules, i.e reflexivity, symmetry, tran-
sitivity and congruence.

Definition 8. Assume M,N,P,Q 2 ⇤T and N : ↵ then �-rule is defined by
the axiom schema (1). The congruence induced by �-rule include congruence
with respect to �-abstraction as defined by (2). It is also well known that the
equational theory induced by the �-rule can be seen as a reduction relation as
in (3).

(�x : ↵.M)N = M [x := N ] (1)

P = Q) �x : ↵.P = �x : ↵.Q (2)

(�x : ↵.M)N 7�!� M [x := N ] (3)

The following is a simple example of �-reduction which also illustrates
how multiple arguments to a function is handled.

Example 9. Assume that there exists a base type “int”, with constants 1, 3
of type “int” and also the �-expression �x : int.y : int.x, then the following
is a sequence of one step reducts resulting in a � normal form.

1. �x : int.y : int.x 1 3

2. �y : int.1 3

3. 1

If M 2 ⇤T and M : ⌧ then the property that M still has type ⌧ after the
term has been completely reduced is stated in the following theorem. The
theorem is called subject reduction and gets its name from the convention
that in an expression of the form M : ⌧ , M is called subject (⌧ is called
predicate).

6



Proposition 10 (Subject reduction [4, 3.2.11]). Let M,M

0 2 ⇤T and M

⇤!�

M

0 then.
� `M : ↵) � `M

0 : ↵

Proof. Omitted. A proof for the Curry system can be found in [4]

The uniqueness of types property states that for a given term all its types
are convertible.

Proposition 11 (Uniqueness of types [4, 3.2.12]). Let M,M

0 2 ⇤T then.

1. Assume � `M : ↵ and � `M : ↵0 then ↵ ⌘ ↵

0

2. Assume � `M : ↵, � `M

0 : ↵0 and M

⇤!� M

0 then ↵ ⌘ ↵

0

Proof. Omitted. A proof for Curry system can be found in [4]

It is also worth noting that simply typed �-calculus is strongly normaliz-
ing, in fact this is a property of all systems of the �-cube [4] (see below).

4 Higher Order Rewrite Systems

HRS are a generalization of first order rewrite systems where the set of terms
includes �-terms as well as constants and variables. Properties like confluence
and strong normalization applies to these types of rewrite systems too. The
following example taken from [3] illustrates HRS.

Example 12. Logical expressions including quantifiers can be encoded using
higher order functions where �-terms are used to bind variables. The higher
order rewrite relation in (4) can be seen as a computational form of the logical
expression in (5).

all(�x.(P (x) ^Q(x))) 7�! all(�x.P (x)) ^ all(�x.Q(x)) (4)

8x.(P (x) ^Q(x))! 8x.P (x) ^ 8x.Q(x) (5)

In general higher order rewriting is undecidable but restricting �-terms
to higher order patterns makes higher order rewriting tractable [12].

We will now define the notion of a higher order pattern and it uses the
concept of ⌘-equivalent terms. This concept can be defined on typed lambda
calculus but since it is not used by Dedukti or in [4], which defines properties
of �-cube, it is defined here for untyped terms and it will only be used in this
section of the document.
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Definition 13 (⌘-rule [5]). Assume M,N , are untyped �-terms where x 62
FV (M) then the ⌘-rule is defined by the following axiom schema.

�x.(Mx) = M

Definition 14 (⌘-equivalence [12]). If two untyped �-terms s, t are equivalent
according to the ⌘-rule we say that s and t are ⌘-equivalent.

Definition 15 (Higher order pattern [12, 3.1]). A �-term t in �-normal form
is a higher order pattern if every free variable F occurs in a subterm F

�!
u of

t, s.t. �!u is a possibly empty ⌘-equivalent list of distinct bound variables.

The following example taken from [12] might help to interpret Definition
15.

Example 16. Let c be a constant and F,G and H be free variables then the
following are valid patterns.

1. �x.(cx), it contains no free variables so it is trivially a pattern.

2. F , it is a pattern since the list of bound variables are allowed to be
empty.

3. �x.(F�z.(xz)), in this case F is applied to the term �z.(xz) which is
⌘-equivalent to x, i.e. F is applied to a list of distinct bound variables.

4. �x.�y.(Fyx), F is applied to the distinct bound variables {x, y}.

The following are not patterns.

1. (Fc), F is applied to c which is not a bound variable, its a constant.

2. �x.(Fxx), in this case the there are two instances of x which makes it
a non pattern.

3. �x.�y.(Fyc), F is applied to the constant c as well as the bound variable
y.

4. �x.(G(Fx)), in this case G is applied to an application of a free variable
which is not allowed.
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5 Dedukti — a Logical Framework.

�⇧ is one of the potential extensions of simply typed �-calculus. It introduces
the concept of types that depends on terms, which is one of the possible type
dependencies. When type dependencies are introduced in a calculi there is a
need for the concept Kind, which is the type of Types.

Definition 17. Let S = {⇤,2} denote the set of sorts, ⇤ is pronounced
“Type” and 2 is pronounced “Kind”.

Sorts corresponds to universes in Intuitionistic Type Theory (ITT), with
⇤ and 2 we have a two level hierarchy of universes. To illustrate term de-
pendent types consider the following example taken from [4].

Example 18. Assume A : ⇤, a : A, i.e. A is a type and a has type A.
Also assume f : (A ! ⇤) then (A ! ⇤) : 2 and (fa) : ⇤, which is a term
dependent type.

Dedukti is an implementation of �⇧ where the congruence relation on
types not only considers �-reduction, but also include the congruence relation
induced by user defined rewrite rules. This is indicated by subscripting the
⌘ symbol with a � as well as a �, i.e. ⌘��. Let �⇧R denote this variant of
the �⇧ calculus. The following presentation of the meta theory of �⇧R is
mainly taken form [1], but it is thoroughly investigated in [16]. The following
defines the syntax of �⇧R.

Definition 19 (Syntax). Let V denote an infinite set of variables and let
x 2 V then the syntax of �⇧R is defined as follows.

sorts: s 2 S ::= ⇤ | 2
terms: M,N,A,B 2 T ::= s | x | ⇧x : A.B | �x : A.M | MN

contexts: ⌃,�,�,2 G ::= ; | �, x : A | �, R
rewrite rules: R ::= ; | R,M 7�! N

Note that if in a type ⇧x : A.B, B does not depend on A, then its
customary to use the normal function type syntax, i.e. A! B.

In the following typing rules the condition that a rewrite rule needs to be
well formed is denoted by R WF. A rule is well formed if it is well typed and
and the if the relation ⌘�� is product compatible (see below for details).

Definition 20. Let s 2 {⇤,2}, then M : A is derivable from a context � if
M can be produced using the following rules.
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(empty context) ; `

� ` R WF(well formed rewrite rules)
�, R `

(axiom) � ` ⇤ : 2

� ` A : s(Start rule) (if x 62 dom(�))
�, x : A ` x : A

� ` A : ⇤ �, x : A ` B : s
(Product rule)

� ` ⇧x : A.B : s

�, x : A ` M : B � ` ⇧x : A.B : s
(Abstraction rule)

� ` (�x : A.M) : (⇧x : A.B)

� ` M : ⇧x : A.B � ` N : A(Application rule)
� ` MN : B[x := N ]

� ` M : A � ` B : s A ⌘�� B

(Conversion rule)
� ` M : B

Pure �⇧ without user defined rewrite rules, enjoys properties which in-
cludes subject reduction, uniqueness of types, strong normalization and de-
cidable type checking. For these properties to hold for �⇧R some specific
conditions must hold for the rewrite rules, they must be well formed. These
conditions are described below. Note that product compatibility follows triv-
ially from confluency of rewrite rules.

In the definitions below a context � is a global context. In the global
context there are definitions of typed constants and their associated rewrite
rules. A local context is a set of variable declarations where each variable
has an associated type [15]. The free variables of a pattern are declared in a
local context i.e. they are not visible globally.

Definition 21 (Product compatibility [1, 3.2.4]). The congruence relation
⌘�� is product compatible if ⇧x : A1.B1 ⌘�� ⇧x : A2.B2 implies A1 ⌘�� A2

and B1 ⌘�� B2.
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Definition 22 (Rule typing [1, 3.2.5]). A rewrite rule M 7�! N is well typed
in � if for any substitution � of variables free in � then � ` �(M) : A implies
� � ` �(N) : A.

Theorem 23 (Subject reduction [1, 3.2.9]). If M
⇤!�� M

0 and � ` M : A
then � `M

0 : A

Proof. Follows from Product compatibility and welltypedness of rewrite rules.
A detailed proof can be found in [16].

Theorem 24 (Uniqueness of type [1, 3.2.10]). If � `M : A and � `M : A0

then A ⌘�� A

0

Proof. Follows from Product compatibility and welltypedness of rewrite rules.
A detailed proof can be found in [16].

The completeness property decidable type checking depends on the re-
striction of HRS to a class of patterns where matching modulo �-reduction
is decidable. The following definition is essentially the same as Definition 15
but the Dedukti software does not implement the ⌘-rule so the definition is
slightly di↵erent.

Definition 25 (Pattern [1, 3.2.13]). A pattern is a term P = c

�!
N where

c 2 dom(�) and, for any variable x that is free in �, if x appears in P then
it only appears in the form x

�!
y where y is a list of distinct variables that are

bound in P . A rewrite rule is called a “pattern rule” in � if its left-hand side
is a pattern in �.

The following example illustrates higher order patterns in relation to a
context �.

Example 26 ([1, 3.2.14]). Assume a context � = {Real : Type, exp : Real!
Real,D : (Real ! Real) ! (Real ! Real)} then D(�x.exp(fx)) is a pat-
tern. The expression D(�x.g(fx)) is not a pattern, since g is a free variable
that is not applied to a list of distinct bound variables.

Theorem 27 (Welltypedness [1, 3.2.15]). A rewrite rule M 7�! N is well
typed in � if M is a pattern and there exist a local context � and a type A

s.t. dom(�) ✓ FV (M) and �,� `M : A and �,� ` N : A.

Proof. Omitted. A proof can be found in [16].
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Theorem 28 (Decidibility of type checking [1, 3.2.16]). If all rewrite rules
in � are pattern rules and 7�!�� is confluent and strongly normalizing then
type checking is decidable.

Proof. Omitted. A proof can be found in [16].

To prove that the pattern rules are both confluent and strong normalizing
is in general undecidable, but see [1] for a discussion. According to [1] rewrite
rules that are not confluent can result in false negatives and rewrite rules that
are not strongly normalizing can result in non terminating algorithms. In
practice the soundness of the system is not compromised as long as product
compatibility is maintained (see chapter 3.2 [1]).

6 The �-cube and Pure Type Systems

The �-cube [4] is framework for relating eight versions of typed �-calculi to
each other. Simply typed �-calculus, �⇧, System F and CC are examples
of calculi in the �-cube. In the �-cube all calculi are based on the same
abstract syntax, and �-axiom schema. The typing rules can be grouped in
two categories, general rules and a specific rule. The general rules applies to
all calculi and are essentially the rules for �⇧ minus the product rule. The
specific rule is a parametric introduction rule for the dependent product. The
following are the typing rules for the �-cube.

Definition 29. Let s, s1, s2 2 {⇤,2} then M : A is derivable from a context
� if, M can be produced using the following rules.

(axiom) � ` ⇤ : 2

� ` A : s(Start rule) (if x 62 �)
�, x : A ` x : A

� ` A : B � ` C : s(Weakening rule) (x 62 �)
�, x : C ` A : B

� ` A : s1 �, x : A ` B : s2(Product rule)
� ` ⇧x : A.B : s2
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�, x : A ` M : B � ` ⇧x : A.B : s
(Abstraction rule)

� ` (�x : A.M) : (⇧x : A.B)

� ` M : ⇧x : A.B � ` N : A(Application rule)
� ` MN : B[x := N ]

� ` M : A � ` B : s A ⌘� B

(Conversion rule)
� ` M : B

Example 30. The following is an example of sort combinations for some
well known systems.

1. �⇧ is specified with (s1, s2) 2 {(⇤, ⇤), (⇤,2)}.

2. System F with (s1, s2) 2 {(⇤, ⇤), (2, ⇤)}.

3. CC with (s1, s2) 2 {(⇤, ⇤), (2, ⇤), (⇤,2), (2,2)}.

The di↵erent combinations of sorts specifies what can be expressed in the
type system.

Example 31. The following shows some examples of the expressiveness of
sort combinations.

1. The tuple (⇤,2) makes term dependent types possible. Example: V ec :
N ! ⇤. Which is the type of vectors depending of its size.

2. The tuple (2, ⇤) makes polymorphism possible. Example: (�A : ⇤.x :
A.x) : ⇧A : ⇤.A! A. Which is the polymorphic identity function.

The �-cube is generalized to PTS [4], where the specification of a �-calculi
is done by using a triple (S,A,R).

1. S a set of sorts, e.g.: {⇤,2}

2. A a set of axioms, which relates sorts to each other, e.g.: {⇤ : 2}.

3. R a set of rules, which are of the form (s1, s2, s3) where si 2 S. The
�-cube is a restriction to the following tuple (s1, s2, s2).

For PTS the dependent product rule is as follows.
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� ` A : s1 �, x : A ` B : s2 (s1, s2, s3 2 R)
� ` ⇧x : A.B : s3

There are several reasons to introduce PTS [4]. Its easier to express subtle
di↵erences in �-calculi in PTS than using the �-cube framework. Also proving
properties of a �-calculus is easier in the PTS framework. It has already been
mentioned that all calculi in the �-cube are strongly normalizing. This is not
in general true for PTS.

Example 32. Let �⇤ denote the PTS with (S,A,R) = ({⇤}, {⇤ : ⇤}, {(⇤, ⇤, ⇤)}).
�⇤ is not strongly normalizing and all types are inhabited [4].

The �-cube and PTS also relates to something called the logical cube [4].
The logical cube is essentially a mapping from �-calculi to logical systems
using the proposition-as-types paradigm.

Example 33. The following exemplifies the mapping from the �-cube to the
logical cube.

1. �⇧ maps to predicate logic.

2. System F maps to second order propositional logic.

3. CC maps to higher order predicate logic.

7 Embeddings in Dedukti

The �-cube and PTS are defined with a two level hierarchy of universes. This
is a simplification compared to the standard way to avoid Girard’s paradox
[6], [4], which is to construct an infinite hierarchy of universes that are closed
under type forming operators. There are two styles of representing universes
[13], [1].

1. Russell style, in this style there is no distinction between types and
terms. An object (type or term) is simply declared to have a type. This
style is used by PTS and systems like Coq, Agda, etc.. For example in
Coq we have nat : Set, Set : Type0 and Type0 : Type1.

2. Tarski style, in this style there is a set of codes for types in a universe
Ui. There is also a decoding function Ti that takes a code and returns
a type.
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In [1], [7] it is shown how to embed PTS in Dedukti. The main problem
when doing the embedding is that in more advanced typed �-calculi, complex
types can be used as arguments to functions and this is not supported in �⇧.
In Dedukti’s �⇧ implementation only terms of type Type can be passed to
functions. This problem is solved by using mapping functions similar to the
decoding functions in Tarski style universe. This means that a type A will
have a term representation |A| as an element (code) in U and a type repre-
sentation kAk, and the decoding function maps from term representation to
type representation i.e. T (|A|) = kAk, see [7] for details.

The mapping function is implemented using rewriting and in [1], [7] cor-
rectness properties of the embedding is proved. The embedding can be spec-
ified with the following. For each sort s declare a variable as in (6) with its
associated decoding function (7). For each axiom implement a type as in (8)
and its associated rewrite rule (9).

Us : Type (6) Ts : Us ! Type (7)

us1 : Us2 (8) Ts2(us1)! Us1 (9)

For each rule there is also a need to declare a higher order abstract syntax
function as in (10) and its associated rewrite rule (11).

⇡s1,s2 : ⇧a : Us1 .(Ts1a! Us2)! Us3 (10)

Ts3(⇡s1,s2(a, b))! ⇧x : Ts1a.Ts2(bx) (11)

7.1 CC embedding code

In this chapter we will show how the above equations can be translated to
Dedukti code. To get an understanding of how logical constants can be
implemented we will also implement the prod, Id and id constants.

The implementation of ⇧-types are part of the Higher Order Abstract
Syntax (HOAS) implementation of the PTS rules. It is customary to dif-
ferentiate between concrete and abstract syntax. The concrete syntax is the
syntax of the actual language and the abstract syntax is the syntax generated
by the parsing software. I.e. the expression 1 + 2 could be parsed and the
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abstract syntax Plus(1, 2) could be generated. An abstract syntax is higher
order when it uses functions in the implementation language to implement
functions in the implemented language. As we will see the usage of HOAS
will a↵ect the readability of the Dedukti code.

We begin with implementing the sorts of the PTS. As already noted
there are two sorts, ⇤ and 2. As Type is a reserved keyword in Dedukti Set
is chosen as the the type of the small types i.e. bool, nat etc. The type of
Set is Kind so the Kind constant is defined too.

Dedukti di↵erentiates between static and dynamic constants. Dynamic
constants can have rewrite rules associated to them and since the constants
Set and Kind does not have any associated rewrite rules they are static.

Listing 1: Sorts

Set : Type.

Kind : Type.

With the definitions of Set and Kind above we get the following relation-
ship between the sorts and types in the system.

Kind

Set 

Kind

Typebool

Small types PTS Sorts Dedukti Sorts

Figure 1: Sorts and types

As we can see Dedukti has two sorts Type and Kind whereKind is internal
to Dedukti. The PTS sorts Set and Kind are implemented as elements of the
sort Type. The small types in the system will as we already have mentioned
be elements of the sort Set.

The sorts in the PTS need associated decoding functions. The decoding
functions are implemented using the def keyword. This tells us that they
are dynamic constants that can have rewrite rules associated to them. The
actual rewrite rules are defined in places where the constants are defined that
needs to be rewritten.
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Listing 2: Decoding functions

def T : Set -> Type.

def K : Kind -> Type.

The axiom of CC in PTS states that Set has type Kind. This is imple-
mented in the embedding as a constant set of type Kind and an associated
rewrite rule for the K decoding function. As we can see the constant set is
decoded to the constant Set. The brackets in the rewrite rule denotes the
local context (local variables) in this case it is empty. Note that the extra
long arrow in the second line is used to indicate rewriting.

Listing 3: Axiom

set : Kind.

[] K set --> Set.

The general rules of the PTS are implemented using HOAS. The types
below encodes the ⇧-type for CC. As we can see a is a value of either type
Set or Kind. Note also that Dedukti’s concrete syntax uses function type
syntax for dependent product types. This can be seen in the type of the
variable b. The type depends on a since it is a function from a to either
Set or Kind. There are also associated rewrite rules that maps the abstract
syntax to Dedukti’s �⇧R syntax.

To implement any non trivial examples these functions needs to be nested,
see below for examples. Also note that the ⇧-type corresponds to universal
quantification when the �-calculus is viewed as a logic.

Listing 4: ⇧-type

pi_ss : a : Set -> b : (T a -> Set) -> Set.

pi_sk : a : Set -> b : (T a -> Kind) -> Kind.

pi_ks : a : Kind -> b : (K a -> Set) -> Set.

pi_kk : a : Kind -> b : (K a -> Kind) -> Kind.

[a, b] T(pi_ss a b) --> x : T a -> T(b x).

[a, b] K(pi_sk a b) --> x : T a -> K(b x).

[a, b] T(pi_ks a b) --> x : K a -> T(b x).

[a, b] K(pi_kk a b) --> x : K a -> K(b x).
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7.2 Product type

The following is an implementation of the product type. The product type
can be viewed as the cartesian product of two sets. If it is viewed in a
logical context it is simply a conjunction between two propositions. The
prod constant has the following shape.

prod : Set ! Set ! Set. Since it is a construct from two instances of the
the type Set to Set we need nested uses of the ⇧-type HOAS with Kind as
both input and return type. We also need to use the axiom stating that Set
has type Kind. Note that in the expression below “=>” is Dedukti’s notation
of a �-function and that “ ” denotes a variable name that is not used.

Listing 5: Product type

prod : K (pi_kk set (__ : K set =>

(pi_kk set (__ : K set => set )))).

Since the ⇧-HOAS is an implementation of the general rule of the CC
PTS the above expression can be justified by the following derivation tree of
the prod constant’s type.

� ` ⇤ : 2

� ` ⇤ : 2
� ` ⇤ : 2 � ` ⇤ : 2 (1)

�, x : ⇤ ` ⇤ : 2
(2)

� ` (⇧x : ⇤.⇤) : 2 � ` ⇤ : 2
(3)

�, y : ⇤ ` (⇧x : ⇤.⇤) : 2
(4)

� ` (⇧y : ⇤.⇧x : ⇤.⇤) : 2

As we can see the inferences 2 and 4 are two uses of the general dependent
product rule using the tuple (2,2). The left premises of 1, 2 and 4 are three
uses of the axiom � ` ⇤ : 2. The inference rules 1 and 3 are instances of the
weakening rule which are used to add a variable to the context �.

7.3 Rewriting the id type

To get some understanding of how rewriting of HOAS works in Dedukti we
will use an expression involving the reflexivity axiom for the identity type
and boolean values. Small types can be defined in a similar way as inductive
types are defined in Agda or Coq. In Dedukti you first define the actual
type, in this case its bool, then you define the constructors. The following is
its implementation.
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Listing 6: Boolean type

bool : Set.

true : T bool.

false : T bool.

Next we implement the Id constant. It can be used to express that two values
of a small type are equal. It has the following shape.

Id : A : Set ! A ! A ! Set. The first argument is a small type A and
the second and third arguments are values of the type A. The following is
how it is implemented using HOAS.

Listing 7: Id and bool constants

Id : K (pi_kk set (A : K set =>

(pi_sk A (__ => pi_sk A (__ => set))))).

One way to prove that two objects are equal is by using the reflexivity
axiom. It has the following shape.

id : A : Set ! a : A ! Id A a a. Given a small type we can conclude
that an object a of that type is equal to itself. It is implemented using HOAS
as follows.

Listing 8: id constant

id : T (pi_ks set (A : K set =>

(pi_ss A (a : T A => Id A a a)))).

Now that we defined the needed constants we will simulate the rewriting
of the expression “id bool true”. It is an proposition stating that the
boolean value true is equal to itself. It expands to the following.

((T (pi_ks set (A : K set =>

(pi_ss A (a : T A => Id A a a))))

bool)

true)

To be able to apply the first argument we need to rewrite the first ⇧-
HOAS, it will be rewritten to the following.

((x : K set -> T ((A : K set =>

(pi_ss A (a : T A => Id A a a))) x)

bool)

true)
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Now “K set” will be rewritten to “Set”. Since bool is of type “Set” this
let us to conclude that the value “bool” is of the correct type. Substituting
“bool” for “x” results in the following.

(T ((A : K set => (pi_ss A (a : T A => Id A a a))) bool)

true)

To be able to be substitute “bool” for “A” we need first to rewrite “K
set” again and check the type. Doing the substitution results in the following
expression.

(T (pi_ss bool (a : T bool => Id bool a a)) true)

Rewriting the ⇧-HOAS will result in the following.

(x : T bool -> T ((a : T bool => Id bool a a) x) true)

Now we can substitute “true” for “x” and then “true” for “a” resulting
in.

T (Id bool true true)

As we can see the variable names “x” introduced by the rewrite rules
does not interfere with each other since they have di↵erent scope. Also the
variable names introduced in the HOAS are bound in lambda abstractions
so they do not interfere with variable names introduced by the rewrite rules.

7.4 Infinite hierarchies of universes

It turns out that the above embedding is not su�cient for our needs, since
it only has two sorts. In [8] and [13] formulations of infinite hierarchies of
universes are formalized using simultaneous inductive-recursive definitions.
The following will define external universe hierarchies as in [8] and it includes
definitions of U0, T0 and the introduction rule for ⇧-formation for U0 with
its associated equality rule.

U0 : Type (12)
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T0 : U0 ! Type (13)

⇡0 : ⇧u : U0.(T0u! U0)! U0 (14)

T0(⇡0(u, u
0)) = ⇧x : T0u.T0(u

0
x) (15)

The next universe U1 with its introduction rule for ⇧-formation is defined
in a similar way. We also need to relate U0 with U1, this is done in the
following familiar way. Note that the type defined in (18) “lifts” an object
of type U0 to U1.

u01 : U1 (16) T1(u01) = U0 (17) t01 : U0 ! U1 (18)

The above definitions are translated to Dedukti using rewriting to im-
plement the equality rules. There is also a identity function defined to get
a feel for how the HOAS works. Note how similar the code is to the PTS
embedding code. The following is the implementation.
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Listing 9: Inductive-recursive universes

U0 : Type.

def T0 : U0 -> Type.

pi0 : u : U0 -> u’ : (x : (T0 u) -> U0) -> U0.

[u, u’] T0 (pi0 u u’) --> x : T0 u -> T0 (u’ x).

U1 : Type.

def T1 : U1 -> Type.

u01 : U1.

[] T1 u01 --> U0.

t01 : U0 -> U1.

[b] T1 (t01 b) --> T0 b.

def pi1 : u : U1 -> u’ : (x : (T1 u) -> U1) -> U1.

[u, u’] T1 (pi1 u u’) --> x : T1 u -> T1 (u’ x).

def I : T1 (pi1 u01

(A : T1 u01 =>

(pi1 (t01 A)

(__ : T1 (t01 A) => (t01 A))))) :=

__ => x => x.

In [2] there is an embedding defined that is very similar to the code above.
The main di↵erence is that the number of universes are not hard coded.

8 Proofs related to the Univalence Axiom in
Dedukti

As an example of embedding a logic in Dedukti the following chapter will
detail an implementation of some simple proofs related to the UA [17], [10].
The following can be regarded as a naive way to understand the UA.

Assume there are two types A,B in a universe U , then we can define the
following function.
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idtoeqv : (A =U B)! (A ' B) (19)

The function (19) states that if A and B are two types that are identical
then there is an equivalence relation between them. In this document we
will consider the following notion of equivalence. Assume f : A ! B and
g : B ! A then:

iso(A,B) := 9f.9g.(8a : A.f(ga) =A a) ^ (8b : B.g(fb) =B b) (20)

If we for types A and B can find functions f and g s.t. (20) holds then
we say that the types are are isomorphic.

The function (19) can be regarded as an elimination rule for A =U B the
corresponding introduction rule is the following.

ua : (A ' B)! (A =U B) (21)

Here ua stands for univalence axiom. The function (21) states that if
there is an equivalence between two types then they can be regarded as
identical. The actual univalence axiom is stated as follows.

Axiom 34 (Univalence). For any A,B 2 U the function (19) is an equiva-
lence. In particular we have (A =U B) ' (A ' B).

One of the reasons that the UA is interesting is that it could enable reuse
of proofs. To exemplify this consider the natural numbers. The natural
numbers can be implemented using unary notation, i.e. with a constant 0
and a successor function but a binary implementation is more commonly
used. If we can prove that these two structures are the same then properties
proved on one structure can be transported to the other.

Homotopy Type Theory (HOTT) which the UA is part of is a big subject
which this document can not possibly cover, for more information on HOTT
see [17]. HOTT is based on Martin-Löf’s Type Theory which corresponds
to Cumulative Type Systems (CTS) [1]. CTS is a generalization of PTS
where there is an infinite hierarchy of universes. Using a simple cumulative
embedding of ⇧-types found in [2] as a base, constants for product types,
⌃-types and identity types are implemented below.

To get a more or less complete system one should add the type for falsity
with no constructor, the type for the true proposition with one constructor
and the coproduct type with the two constructors inl and inr. Since the
proofs below does not use these types they are not treated in this text.
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8.1 Implementation of universes

We will now implement embedding code for an infinite hierarchy of universes.
To be able to do this we need an implementation of natural numbers. Also to
make the embedding code a bit more readable we define numeric constants
for some numeral values. Note that the symbol “:=” denotes association of
constants to terms. In this case the terms are values defined by an inductive
type, but the symbol is also used for associating �-functions with constants.

Listing 10: Natural numbers

nat : Type.

Z : nat.

S : nat -> nat.

def 0 := Z.

def 1 := (S 0).

def 2 := (S 1).

The following is the implementation of universes, axioms and ⇧-types
they are all implemented using natural numbers as indexes. The code follows
a now familiar pattern.

24



Listing 11: Universes

U : nat -> Type.

def T : i : nat -> U i -> Type.

u : i : nat -> U (S i).

[i] T _ (u i) --> U i.

def pi : i : nat -> a : U i -> b : (T i a -> U i) -> U i.

[i, a, b] T _ (pi i a b) --> x : T i a -> T i (b x).

The pi constant above is an implementation of the following dependent
product rule which ensures that types from di↵erent universes are not mixed
in an ad hoc fashion.

� ` A : Ui �, x : A ` B : Ui

� ` ⇧x : A.B : Ui

Since we want types in a lower universe to be accessible from a higher
level we need to be able to “lift” a type to a higher level. This is achieved
with the following constant and its associated rewrite rule.

Listing 12: Axiom

def L : i : nat -> U i -> U (S i).

[i, a] T _ (L i a) --> T i a.

In [1] it was noted that type uniqueness became an issue with a naive
implementation of an infinite universe hierarchy. The solution to this subtle
issue is the following rewrite rule. For more information see [1].

The rule is also a nice example of a higher order rewrite rule. It is higher
order since it includes a �-expression. Note that the free variables i, a and
b are defined in the local context. The identifiers pi and L have already
been defined so they are constants in the global context. Note also that the
variable x is bound by the �-abstraction. During rewriting the variables i, a
and b will be instantiated with values using higher order pattern matching.
The left hand side of the rewrite rule is a higher order pattern since its free
variables are applied to a possible empty list of distinct bound variables.

Listing 13: Rewrite rule

[i, a, b] pi _ (L i a) (x => L {i} (b x)) -->

L i (pi i a (x => b x)).
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8.2 Product type

We will now implement the product type in similar manner as was done for
PTS case. The main di↵erence is that we need an implementation for each
universe in our hierarchy, since we want the universes to be closed under set
forming operations. In our specific case it turns out that we only need the
product type for U0. It has the following shape.

prod0 : U0 ! U0 ! U0. and is implemented using HOAS as follows.

Listing 14: prod0 constant

prod0 : T 1 (pi 1 (u 0) (__ =>

pi 1 (u 0) (__ => (u 0)))).

The pair type is implemented using HOAS as below and has the following
shape.

pair0 : A : U0 ! B : U0 ! a : A ! b : B ! prod0 A B.

Listing 15: pair0 constant

pair0 :

T 1 (pi 1 (u 0) (A : T 1 (u 0) =>

pi 1 (u 0) (B : T 1 (u 0) =>

pi 1 (L 0 A) (a : T 1 (L 0 A) =>

pi 1 (L 0 B) (b : T 1 (L 0 B) =>

L 0 (prod0 A B)))))).

After a few moments of looking at these types and the uniformity of
the numbers, it might strike us that by using a natural number as an index
these constants could have one implementation for all universes. Due to time
constraints this is not investigated further.

8.3 Sigma type

The sigma type is a generalization of the product type where the second
component depends on the first. From a logical point of view it expresses
existential quantification in a constructive sense. Also in this case we only
need an implementation for the constant in U0. The sig0 constant has the
following shape.

sig0 : A : U0 ! (A ! U0) ! U0. This constant states that there exist
an element in the type specified by A that makes a property true. It is
implemented using HOAS as follows.
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Listing 16: sig0 constant

sig0 :

T 1 (pi 1 (u 0) (A : T 1 (u 0) =>

(pi 1

(pi 1

(L 0 A)

(__ : T 1 (L 0 A) => (u 0)))

(__ => (u 0))))).

The introduction rule for the sigma type is commonly called exist. It is
used to actually prove an existential statement. For U0 it has the following
shape.

exist0 : A : U0 ! B : (A ! U0) ! a : A ! (B a) ! sig0 A B. The
second element B is a dependent type. It depends on the type A. To prove
that sig0 A B holds we need to supply a witness a and a proof (B a) asserting
that B holds for the supplied witness.

It is interesting to note that the proof (B a) needs only to be convertible to
statement to prove when applied to the witness. The convertibility relation
takes into account the rewrite rules defined in the global context and �-
reduction. The following is its implementation using HOAS.

Listing 17: exist0 constant

exist0 : T 1

(pi 1 (u 0) (A : T 1 (u 0) =>

(pi 1

(pi 1 (L 0 A) (__ : T 1 (L 0 A) => (u 0)))

(B : T 1 (pi 1 (L 0 A) (__ : T 1 (L 0 A) => (u 0))) =>

(pi 1 (L 0 A) (a : T 1 (L 0 A) =>

pi 1 (L 0 (B a)) (__ => L 0 (sig0 A B)))))))).

8.4 Identity type

The constant Id0 is similar to the constant Id defined for the PTS embedding
it has the following shape

Id0 : A : U0 ! A ! A ! U0. It is implemented using HOAS as follows.
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Listing 18: Id0 constant

Id0 :

T 1 (pi 1 (u 0) (A : T 1 (u 0) =>

(pi 1 (L 0 A) (__ : T 1 (L 0 A) =>

(pi 1 (L 0 A) (__ : T 1 (L 0 A) => (u 0))))))).

The reflexivity axiom it has the following shape.
id0 : A : U0 ! a : A! Id0 A a a. The following is how it is implemented

using HOAS.

Listing 19: id0 constant

id0 :

T 1 (pi 1 (u 0) (A : T 1 (u 0) =>

(pi 1 (L 0 A) (x : T 1 (L 0 A) => L 0 (Id0 A x x))))).

In the proofs below we need to be able to state and prove that two small
types are equal. This leads us to introduce constants Id1 and id1 expressing
equality in the U1 universe. Their shape and implementation are the same
as for Id0 and id0 modulo some number renaming. The following are the
constants HOAS implementation.

Listing 20: Id1 and id1 constants

Id1 :

T 2 (pi 2 (u 1) (A : T 2 (u 1) =>

(pi 2 (L 1 A) (__ : T 2 (L 1 A) =>

(pi 2 (L 1 A) (__ : T 2 (L 1 A) => (u 1))))))).

id1 :

T 2 (pi 2 (u 1) (A : T 2 (u 1) =>

(pi 2 (L 1 A) (a : T 2 (L 1 A) => L 1 (Id1 A a a))))).
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8.5 Boolean type

The following is the definition of the inductive type bool representing boolean
values.

Listing 21: Boolean type

bool : U 0.

true : T 0 bool.

false : T 0 bool.

To prove properties of inductive types, but also to do computations, a
construct called an eliminator is commonly used. In Dedukti computations
can also be defined using rewriting rules. The eliminator for bool has the
following shape.

bool ind : P : (bool ! U0) ! P true ! P false ! x : bool ! P x.
And can be explained as follows: Given a property P over the type bool, to
conclude that it holds for all bool values it is enough to show that it holds for
the values true and false. The following is its implementation using HOAS.

Listing 22: Boolean eliminator

def bool_ind :

T 1

(pi 1 (pi 1 (L 0 bool) (__: T 1 (L 0 bool) => (u 0)))

(P: T 1 (pi 1 (L 0 bool) (__: T 1 (L 0 bool) => (u 0))) =>

(pi 1

(L 0 (P true))

(__ => (pi 1

(L 0 (P false))

(__ => L 0 (pi 0 bool P))))))).

[P, ct, cf] bool_ind P ct cf true --> ct.

[P, ct, cf] bool_ind P ct cf false --> cf.

8.6 Iso predicate

The terms ua and idtoeqv can be formulated using an isomorphism relation
between two small types A and B. It is implemented below as a parametric
function returning as a result a type.

The following is an explanation of the iso function as implemented below.
The function body starts with “(A => B => ...)” which tells us it takes
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the two types A and B as arguments. We can also see that it returns a type
starting with a sig0 constant. The first argument to the sig0 constant is the
HOAS definition of the type A! B. The second argument is a �-function of
the shape (f : A ! B ) . . . ). It states that there exist a function f s.t. ...
The next sig constant is similar but now the shape of the second argument
is (g : B ! A) (prod0 . . . ).

The prod0 constant has two arguments. The first is a pi constant with
three arguments. The first argument is the universe level, the second is
the type variable A and the third is the HOAS definition of a dependent
type expressing universal quantification over the type A. The body of the
universal quantification is the equality g(fa) = a. The second argument to
the prod0 constant is similar but states the equality in the other direction.
The constant iso has the following shape.

iso : A : U0 ! B : U0 ! U0 and is implemented using HOAS as follows.

Listing 23: Iso predicate

def iso :

T 1 (pi 1

(u 0)

(__ : T 1 (u 0) =>

(pi 1 (u 0) (__ : T 1 (u 0) => u 0)))) :=

(A => B =>

sig0 (pi 0 A (__ : T 0 A => B))

(f : T 0 (pi 0 A (__ : T 0 A => B)) =>

(sig0 (pi 0 B (__ : T 0 B => A))

(g : T 0 (pi 0 B (__ : T 0 B => A)) =>

(prod0

(pi 0 A (a : T 0 A => Id0 A (g (f a)) a))

(pi 0 B (b : T 0 B => Id0 B (f (g b)) b))))))).

8.7 Type two

As an example of the iso predicate we are going to prove that bool is isomor-
phic to the type two defined below. Actually it is not hard to see that any
types with two constructors that are constants (i.e. not functional types)
are isomorphic. Below are the definition of the type two with its associated
eliminator.
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Listing 24: Type two

two : U 0.

11 : T 0 two.

00 : T 0 two.

def two_ind :

T 1

(pi 1 (pi 1 (L 0 two) (__: T 1 (L 0 two) => (u 0)))

(P: T 1 (pi 1 (L 0 two) (__: T 1 (L 0 two) => (u 0))) =>

(pi 1

(L 0 (P 11))

(__ => (pi 1

(L 0 (P 00))

(__ => L 0 (pi 0 two P))))))).

[P, c1, c0] two_ind P c1 c0 11 --> c1.

[P, c1, c0] two_ind P c1 c0 00 --> c0.

We also need two functions mapping the types bool and two to each other.
They are easily defined using rewriting.

Listing 25: Bool two mappings

def b_to_t : b : T bool -> T two.

[] b_to_t true --> 11.

[] b_to_t false --> 00.

def t_to_b : s : T two -> T bool.

[] t_to_b 11 --> true.

[] t_to_b 00 --> false.

8.8 Bool is isomorphic to two

The lemma that the types two and bool are isomorphic can easily be stated.
The proof text is longer but this is mainly because there is a lot of repetition
of types. Also the use of ⇧-types implemented as HOAS makes the proof
hard to follow.

Anyway the following is an explanation of the Dedukti code. Remember
that proving statements involving sig0 types was done using the exist0 con-
stant. Since there are two nested sig0 constants in the statement to prove
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we need to use two nested instances of exist0. The following is the first exist0
constant’s four arguments:

1. The type of the function f which is the argument that should be in-
stantiated with a witness.

2. The actual statement to be proved.

3. The witness function that f will be instantiated with, its name is t to b.

4. The proof of the statement defined in 2. The proof consists of another
exist0.

The second exist0 is similar, but note that the second argument is a bit
di↵erent. In the statement that needs to be proved f has been instantiated
with t to b. Also the fourth argument, the proof, is a pair0 constant.

The pair0 constant is used to prove the prod0 statement. Its two first
arguments are the universal quantification statements showing that the types
are equal. Note that at this point f and g has been instantiated with the
witness functions. The two last arguments are the proofs by cases using
eliminators.

It is interesting to note that the proofs will require rewriting using the
rewrite rules of the witness functions. To illustrate this consider the following
example using the type two. The property P to prove is (t : T two ) Id0
two (b to t(t to b t)) t) and as the proof is by cases then one of the cases is
(P 1). Applying P to 1 you get Id0 two (b to t(t to b 1)) 1, and the proof of
this is id0 two 1 which is of type Id0 two 1 1.

Since the proof is done by type checking, the type checking algorithm
needs to conclude that Id0 two (b to t(t to b 1)) 1 and the type Id0 two 1 1
are convertible. This can be done using rewrite rules defined by b to t and
t to b.
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Listing 26: Bool two isomorphism

def iso_two_bool : T 0 (iso two bool) :=

exist0 (pi 0 two (__ : T 0 two => bool))

(f : T 0 (pi 0 two (__ : T 0 two => bool)) =>

(sig0 (pi 0 bool (__ : T 0 bool => two))

(g : T 0 (pi 0 bool (__ : T 0 bool => two)) =>

(prod0

(pi 0 two (t : T 0 two => Id0 two (g (f t)) t))

(pi 0 bool (b : T 0 bool => Id0 bool (f (g b)) b))))))

t_to_b

(exist0

(pi 0 bool (__ : T 0 bool => two))

(g : T 0 (pi 0 bool (__ : T 0 bool => two)) =>

(prod0

(pi 0 two (t : T 0 two =>

Id0 two (g (t_to_b t)) t))

(pi 0 bool (b : T 0 bool =>

Id0 bool (t_to_b (g b)) b))))

b_to_t

(pair0

(pi 0 two (t : T 0 two =>

Id0 two (b_to_t (t_to_b t)) t))

(pi 0 bool (b : T 0 bool =>

Id0 bool (t_to_b (b_to_t b)) b))

(two_ind (t : T 0 two =>

Id0 two (b_to_t(t_to_b t)) t)

(id0 two 11)

(id0 two 00))

(bool_ind (b : T 0 bool =>

Id0 bool (t_to_b(b_to_t b)) b)

(id0 bool true)

(id0 bool false)))).

8.9 Proof of idtoeqv

It turns out that our proof of idtoeqv needs an implementation of the identity
function for U0. It has the following shape. I0 : A : U0 ! A ! A. The
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following is the HOAS implementation of it.

Listing 27: Identity function

def I0 :

T 1 (pi 1

(u 0)

(A : T 1 (u 0) =>

(pi 1

(L 0 A)

(__ : T 1 (L 0 A) => (L 0 A))))) :=

__ => x => x.

The constant idtoeqv has the following shape.
idtoeqv : A : U0 ! B : U0 ! Id1 U0 A B ! iso A B. Below is the HOAS

implementation of the type and a proof using pattern matching. It can be
explained as follows.

When the types A, B are proved to be equal, then the witnesses for
the mapping functions f and g is the identity function for the type A, and
proving a statement of the form Id0 A (I0 A (I0 A a)) a can be done using
the reflexivity axiom id0 A a.
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Listing 28: Lemma idtoeqv

def idtoeqv :

T 1 (pi 1 (u 0) (A : T 1 (u 0) =>

(pi 1 (u 0) (B : T 1 (u 0) =>

pi 1 (Id1 (u 0) A B) (__ => L 0 (iso A B)))))).

[A] idtoeqv A {A} (id1 (u 0) {A}) -->

exist0 (pi 0 A (__ : T 0 A => A))

(f : T 0 (pi 0 A (__ : T 0 A => A)) =>

(sig0

(pi 0 A (__ : T 0 A => A))

(g : T 0 (pi 0 A (__ : T 0 A => A)) =>

(prod0

(pi 0 A (a : T 0 A => Id0 A (g (f a)) a))

(pi 0 A (a : T 0 A => Id0 A (f (g a)) a))))))

(I0 A)

(exist0

(pi 0 A (__ : T 0 A => A))

(g : T 0 (pi 0 A (__ : T 0 A => A)) =>

(prod0

(pi 0 A (a : T 0 A => Id0 A (g (I0 A a)) a))

(pi 0 A (a : T 0 A => Id0 A (I0 A (g a)) a))))

(I0 A)

(pair0

(pi 0 A (a : T 0 A => Id0 A (I0 A (I0 A a)) a))

(pi 0 A (a : T 0 A => Id0 A (I0 A (I0 A a)) a))

(a : T 0 A => id0 A a)

(a : T 0 A => id0 A a))).

To illustrate idtoeqv the following states and proves that bool is isomor-
phic to itself.

Listing 29: bool isomorphic to bool

def bool_iso_bool : T 0 (iso bool bool) :=

idtoeqv bool bool (id1 (u 0) bool).

8.10 ua constant

The constant ua has the following form in Dedukti syntax.
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ua : A : U0 ! B : U0 ! iso A B ! Id1 U0 A B, and is implemeted using
HOAS as follows.

Listing 30: ua constant

ua :

T 1 (pi 1 (u 0) (A : T 1 (u 0) =>

(pi 1 (u 0) (B : T 1 (u 0) =>

pi 1 (L 0 (iso A B)) (__ => (Id1 (u 0) A B)))))).

Using the ua type it is easy show that the types bool and two are equal.

Listing 31: two is equal to bool

def equal_two_bool : T 1 (Id1 (u 0) two bool) :=

ua two bool iso_two_bool.

Having introduced the ua constant we should now consider to open chap-
ter 2.1 in [17] and start to implement proofs in a more systematic man-
ner. The first thing to implement would be the Induction principle for
identity types. It can be used to prove that for every type A the type
(x =A y)! (y =A x) is inhabited.

Before doing more formalization we might want to try to prove that im-
plemented logical constants are adequate, i.e. correctly reflects their logical
meaning. But due to time constraints we will stop the work on the formal-
ization here and we will not prove any properties of the implemented logical
constants.

9 Conclusion

Dedukti has mainly been targeted as a proof checker for theorems developed
in other systems. This explains the lack of features like implicit arguments
and user defined syntax. Also the lack of tactics forces the user to derive
a �-term for a given type by hand. For complex types this can be quite
a challenge. The usage of HOAS when doing embeddings of logics does not
improve usability. In my opinion even with simple proofs readability becomes
an issue.

Having said that using Dedukti to prototype a specific variant of a logic
must be much faster than doing the implementation in a programming lan-
guage like for example Haskell. Also Dedukti’s usage of user defined rewrite
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rules during type checking seems to be a nice feature which is not commonly
implemented in proof assistants.

Another feature that is commonly found in proof assistants are some form
of Universe Polymorphism. With Universe Polymorphism universe levels can
be deduced, i.e. there is no need to explicitly specify them. Since Dedukti is
targeted as proof checker for many of the major proof assistants this feature
might be available in Dedukti in the future. Maybe an embedding implement-
ing Universe Polymorphism could make the Dedukti code more readable and
easier to develop.
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