
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

From Zero to One:
A Brief Summary of the Development of Homomorphic Encryption

av

Nick Andersson

2018 - No K15

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

From Zero to One:
A Brief Summary of the Development of Homomorphic

Encryption

Nick Andersson

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Jonas Bergstrom

2018

FROM ZERO TO ONE
A Brief Summary of the Development of Homomorphic Encryption

Nick Andersson

March 15, 2018

Abstract

Fully Homomorphic Encryption has been dubbed the Swiss Army knife of cryptography, as it o↵ers
a single tool that can be uniformly applied to many cryptographic applications. It allows one to
compute arbitrary functions over encrypted data without the decryption key.

This thesis traces the development of Homomorphic Encryption leading up to the first con-
struction of a Fully Homomorphic Scheme by Gentry in 2009. We begin by presenting the basics
mathematical foundation as well as a brief treatment of what constitutes a cryptosystem. We then
proceed to o↵er details of Partially Homomorphic Encryption and Somewhat Homomorphic En-
cryption, both of which are essential pillars of achieving Fully Homomorphic Encryption. Next,
we provide an in-depth exposition of Gentrys key result. We end with a treatment of practical
applications stemming from the advent of Homomorphic Encryption.

Contents

1 Background 3
1.1 Outlining Fully Homomorphic Encryption . 4

2 Preliminaries 5
2.1 Groups . 5
2.2 Rings . 7
2.3 Homomorphism . 8
2.4 Complexity Classes . 8

2.4.1 Deterministic Encryption . 10
2.4.2 Probabilistic Encryption . 10
2.4.3 Defining Public-Key Encryption . 11
2.4.4 Cryptosystems . 12
2.4.5 Circuits . 13

2.5 Background on Lattices . 13
2.6 Problem . 16

2.6.1 The Discrete Logarithm Problem and The Di�e-Hellman Problem 16
2.6.2 Lattice Problems . 17

3 The Road to Fully Homomorphic Encryption 17
3.1 Partial Homomorphic Encryption Schemes . 17

3.1.1 RSA-Encryption . 17
3.1.2 ElGamal Encryption . 20
3.1.3 Paillier Encryption . 22
3.1.4 Summary of PHE . 26

3.2 Somewhat Homomorphic Encryption . 27
3.2.1 Boneh-Goh-Nissim Encryption . 27

4 Fully Homomorphic Encryption 29
4.1 Gentry’s Fully Homomorphic Encryption Scheme . 30
4.2 Correctness of Somewhat Homomorphic Scheme . 32

4.2.1 Decryption . 32
4.2.2 Evaluation . 33

4.3 Squashing . 36
4.3.1 SplitKey . 36
4.3.2 ExpandCT . 37
4.3.3 Bootstrapping . 38

5 Applications 39
5.1 Outside storage . 39
5.2 Consumer Privacy . 39
5.3 Medical Applications . 40
5.4 Private Queries . 40

1

6 Limitations 40
6.1 Inputs are all encrypted by the same key . 41
6.2 The output is encrypted . 41
6.3 No guarantees of integrity . 41

7 Summary 42

References 42

2

1 Background

Homomorphism. Just trying to pronounce the word correctly might be a challenge the first time.
Even more perplexing might even be the meaning. What does it mean?

As with most terminology in mathematics, a certain degree of awareness of history may enlighten
our understanding. In ancient Greece the term oµo& (homo) denoted ”same” while µo⇢�⌘ (morph)
denoted ”shape”. The Greek mathematicians were fascinated by these two concepts and would go
on to develop a rich theory with regards to them.

Later on, as new mathematical concepts and notions were introduced, the concept homomor-
phism was coined. It defines a map preserving all the algebraic structures between the domain
and range of an algebraic set. This map may simply be a function, which is to say, an operation
that takes input from a set of domain and outputs an element in the range. Addition over the real
numbers R and multiplication over the integers Z are two examples of such operations. To put it
more formally:

Definition 1.1. Let Ga and Gb be groups and let f : Ga ! Gb be a function. We say f is a group
homomorphism if

f(a ⇤ b) = f(a) ⇤ f(b) (1.0.1)

for all a, b 2 Ga.

What we are concerned with in this text is Homomorphic Encryption (HE), which is a form of
encryption scheme where a third party is able to perform certain computations on encrypted data
while preserving the features of the function and format of the encrypted data. For instance, a
multiplicative homomorphic encryption scheme, for an encryption function E and the messages m

1

and m
2

, one is able to obtain E(m
1

·m
2

) by using E(m
1

) and E(m
2

) without knowing m
1

and
m

2

explicitly.
There are many practical applications that motivates the study of homomorphic encryption.

For instance, it o↵ers a solution to the problem inhibiting many organisations from using cloud
computation to analyse and mine data: it continues to pose too much of a security risk to o↵er a
public cloud provider, such as Amazon or Google, access to unencrypted data. Using homomorphic
encryption, a company could encrypt its entire database of files (say e-mails) and upload it to the
cloud. It could then apply the stored data as it see fit, such as searching the database to understand
how its workers collaborate. The results would be downloaded and decrypted without exposing
the details of a single e-mail.

We may conveniently categorise these various attempts under three main types of schemes,
which for the moment we may think of informally as follows:

1. Partially Homomorphic Encryption (PHE) allows only one type of operation with an
unlimited number of times.

2. Somewhat Homomorphic Encryption (SHE) permits some types of operations with a
limited number of times.

3. Fully Homomorphic Encryption (FHE) allows unlimited number of operations with an
unlimited number of times.

3

In the coming pages, we will look at the historical development of homomorphic encryption
schemes, from the advent of PHE, through the development of SHE, before examining in more
detail the first construction of FHE. We will then also explore various applications of FHE as
well as some of its shortcomings. In short, we will provide an overview that hopefully will satisfy
the reader’s demand for rigour while also stimulate further inquiry into this exciting new area in
cryptography.

1970

Pre-HE

1970 1977

PHE

1977 1999

1977

RSA

1982

Goldwasser & Micali

1985

ElGamal

1994

Benaloh

1999

Paillier

SHE

1999 2009

2005

BGN

FHE

2009 2017

2009

Gentry

Figure 1. Timeline over the evolution of Homomorphic Encryption systems.

1.1 Outlining Fully Homomorphic Encryption

In principle, a Fully Homomorphic Encryption (FHE) permits arbitrary computations on en-
crypted data. This is to say that if we have some input (plaintext) m

1

, . . . ,mn, a function f and
f(m

1

, . . . ,mn) it is then possible to compute on encryptions of these inputs c
1

, . . . , cn obtaining a
result which decrypts to f(m

1

, . . . ,mn). For instance, suppose we want to add the integers 24 and
42 in the cloud without revealing the result. What FHE allows is to encrypt 24! 37 and 42! 13,
sum these to 37 + 13 = 50, before then being decrypted to 66 = 24 + 42.

Most encryption systems have the plaintext (i.e. the input messages) be within some algebraic
structure, for instance, a group, ring etc. In those instances, the ciphertext will often also lie in
some related structure, possibly the same as that of the plaintext. In the next section, we will
provide examples of these ”pre-FHE” systems. What unites these schemes is that if the plaintext
space is a group G, then the ciphertext space is the product G⇥G, and f is restricted to the group
operation on G. Bearing this in mind, we may view the purpose of FHE to extend the choice of f
to be an arbitrary function.

Some might find even the possibility of FHE existing in principle surprising. It may be helpful
then to understand fully homomorphic encryption in terms of a physical analogy. Suppose the
owner of a toy store (Alice) wants her employees to assemble new toys from raw material yet she
fears theft. She seeks to solve this problem by constructing a transparent glove boxes for which only
she has the key, and she puts the necessary material inside. By putting on the gloves, an employee
can work on the items inside the box. Furthermore, an employee can deposit items into the box -
like wood material etc. - even though he/she cannot take anything out. To top it o↵, the box is
transparent, thus allowing the employee to see what he/she is doing. When the employee is done,
Alice (alone) is able to recover the now finished product using her own key.

4

Commentary 1. Note that in our analogy encryption is represented as the employee being unable
to remove anything from the box, not that he/she isn’t able to see it.

Commentary 2. Evidently this analogy (as is most analogies anyways) inadequate as the glove box
might become quite cluttered, whereas in the FHE scheme only the final product need remain.

2 Preliminaries

In this section we will provide a review of the theoretical underpinnings for the homomorphic
encryption systems that we will cover later in this thesis. These definitions and result are all from
standard textbooks such as (Beachy & Blair, 2006), (Ho↵stein, Pipher, Silverman, & Silverman,
2014), (Goldwasser & Bellare, 1996) We will not spend much time on it.The confident reader may
skip this part and proceed to the next chapter.

2.1 Groups

Definition 2.1. A group (G, ?) is a nonempty set G together with a binary operation ? : G⇥G!
G, (a, b)! a ? b such that the following conditions hold:

1. Associativity: For all a, b 2 G there exists a c 2 Gsuch that:

a ? (b ? c) = (a ? b) ? c

2. Identity: There is an e 2 G such that:

e ? a = a ? e

for every a 2 G.

3. Inverse: For every a 2 G there exists a a�1 2 G satisfying:

a ? a�1 = a�1 ? a = e

Remark. If a?b = b?a for every a, b 2 G then the group is said to be commutative, or alternatively
abelian.

Example 2.2. Let

G =

⇢✓

a b
c d

◆

: a, b, c, d 2 R and ad� bc 6= 0

�

with operation ? as matrix multiplication. Then this e =

✓

1 0
0 1

◆

and the inverse is given by

the formula:

✓

a b
c d

◆�1

=

✓

d
ad�bc � b

ad�bc

� c
ad�bc

a
ad�bc

◆

Definition 2.3. Let G be a group, and let H be a subset of G. Then H is called a subgroup of
G if H is itself a group, under the operation induced by G.

5

Example 2.4. Let us consider subset of all multiples of a fixed positive integer n in the group Z.
In order for us to show that nZis a subgroup of Z we must check that each of the requirements of
the definition of a group are satisfied.

Let a, b 2 nZ. Then we have that a = n · q and b = n · kfor some q, kZ and adding gives us
a+ b = n · q + n · k = n(q + k). From this we see that the sum of two elements in nZ also belongs
to nZ and so it satisfy the closure requirement.

Next, we note that the associative law holds for all elements in Z, which in means that it in
particular also is valid for elements in nZ.

As for the identity element we observe that 0 can be expressed in the form 0 = n · 0, which
means that it also belong to nZ where it may also serve as identity.

Finally, we consider the inverse of nZ. We observe that x = n · k has the correct form �x =
n · (�k) to belong to nZ, and so it also serves as an inverse in nZ.

Definition 2.5. Let G be a group and a 2 G be an element of the group. Suppose there exists a
positive integer d such that ad = e. The smallest such d is called the order of a. If there is no such
d, we say that a is of infinite order.

Definition 2.6. Let G be a group, and a a random element of G. The set hai = {x 2 G : x =
an for some n 2 Z} is referred to as a cyclic subgroup generated by a.

Commentary 3. We say that the group G is a cyclic group should there be an element a 2 G
such that G = hai. Moreover, we will call this element a in such an instance the generator of G.

Theorem 2.7. Let G be a finite group. Let H be a subgroup of G. Then the order of H divides
the order of G.

Proof. We have that the left coset of H by g 2 G is gH = {gh : h 2 H}, while the right coset of
H by g is Hg. The collection of all left cosets of H forms a partition of G, which is to say every
element of G is in some left coset of H and all left cosets are pairwise disjoint. The first part of this
assertion is easy to show to be true as x = x · e 2 xH. Turning to the second assertion, suppose
xH \ yH = ; for x, y 2 G. Then there exists some h

1

, h
2

2 H with xh
1

= yh
2

. Thus if we multiply
both sides with h�1

2

we have:

(xh
1

)h�1

2

= (yh
2

)h�1

2

= y
�

h
2

h�1

2

�

= y · e = y

As H is a group itself h
1

h�1

2

2 H. Ten with h
1

h�1

2

= z

yH = {yh : h 2 H}
= {(xz)h : h 2 H}
= {x(zh) : h 2 H}

Thus, yH = xH, as the relationship between x and y is symmetrical. This means the left coset of
Hin Gform a partition of G.

Next, we need to show that the order of the left cosets are identical, by demonstrating a bijection
from H to xH for any x 2 G. Let us define the map:

6

f : H ! xH

g 7! xg

If f(g) = f(g0), then by definition xg = xg0, by multiplying both sides with x�1 gives us g = g0.
What is left to be shown is surjectivity. This is directly seen from the definition of f , as f(h) = xh.
Thus, all the left cosets of H have the same cardinality as H itself.

Because G is the disjoint union of the left cosets of H, |H| divides |G|.

2.2 Rings

Definition 2.8. Let R be a set on which two binary operations are defined, namely addition and
multiplication, which we denote by + : G⇥G! G, (a, b) 7! a+ b and · : G⇥G! G, (a, b) 7! a · b.
Then (R,+, ·) is called a commutative ring with respect to these operations, if the following
properties hold:

1. Associativity For all a, b, c 2 R we have:

a+ (b+ c) = (a+ b) + c

a · (b · c) = (a · b) · c
2. Commutative For all a, b 2 R we have:

a+ b = b+ a

a · b = b · a
3. Distributive For all a, b, c 2 R we have:

a · (b+ c) = = a · b+ a · c
(a+ b) · c = a · c+ b · c

Remark. We say that R is a commutative ring with identity if it contains an element 1, assumed
to be di↵erent from 0, such that a 2 R, and a · 1 = 1 · a = 1.

Definition 2.9. An integral domain is a commutative ring with identity such that for any two
elements a, b 2 R, a · b = 0 implies either a = b or b = 0.

Definition 2.10. A commutative ring in which every element has a multiplicative inverse is called
a field

Definition 2.11. For a ring (R,+, ·), let (R,+) be the underlying additive group. A subset I is
called an ideal of R, denoted I ER, if the following conditions are satisfied:

1. (I,+) is a subgroup of (R,+).

2. For all x 2 I and for all r 2 R, x · r and r · x are in I.

Example 2.12. The even integers form an ideal in the ring Z. To see why let a = 2m and b = 2n
for m,n 2 Z. Then we have that a± b = 2m± 2n = 2(m± n) which is even and so (1) is satisfied.
Furthermore we have that any r 2 Z that ra = 2rm which is also even and so (2) is also fulfilled.

We have that the sum as well as the product of two ideals I and J are defined as {i + j : i 2
I, j 2 J} and {i · j : i 2 I, j 2 J}.

7

2.3 Homomorphism

Definition 2.13. A function f : G ! Hfrom one group G to another H is said to be a (group)
homomorphism if the group operation is preserved in the sense

f (g
1

?G g
2

) = f(g
1

) ?H f(g
2

)

for all g
1

, g
2

2 G.

Now, let eG be the identity in G and eH the identity in H. We have that a group homomorphism
f maps eG to eH : f(eG) = f(eH).

Definition 2.14. The kernel of a group homomorphism f : G! H is the set of all elements of G
which are mapped to the identity element of H.

Example 2.15. Let f : Z2 ! Z be the group homomorphism defined by f(a, b) = a + b. Then
(a, b) 2 ker f if and only if f(a, b) = 0. That is, (a, b) 2 ker f if and only if a + b = 0. Hence
(a, b) 2 ker f if and only if b = �a. As such we have that ker f = {(a,�a) : a 2 Z}
Definition 2.16. The image of f is like the image of any function, namely:

im(f) = {h 2 H : 9g 2 G such that f(g) = h}
If a group homomorphism f : G ! H is surjective, that is every element in the co-domain is

mapped to at least one element in the domain, then H is said to be homomorphic image of G.
If the group homomorphism f : G ! H gas an inverse homomorphism, then f is said to be an
isomorphism, furthermore, G and H are said to be isomorphic, which we write:

G ⇠= H

2.4 Complexity Classes

When dealing with cryptosystems one is often interested in the e�ciency of solving that particular
system. This is defined as the number of steps that is required to solve an instance of the problem
using the most e�cient algorithm. To measure time e�ciency mathematicians employ a function
known as the Big-O Notation.

Definition 2.17. Suppose f(x) and g(x) are two functions defined on some subset M of the real
numbers R. Then

f(x) = O(g(x))

as x ! 1 if and only if there exist a real number x
0

and a positive real number k such that
|f(x)|  k · |g(x)| for x � x

0

.

The Big-O Notation is employed to describe an asymptotic upper bound for a magnitude of
a function in terms of another. The next proposition provides a method that one can sometimes
use to determine the complexity order of a particular algorithm.

Proposition 2.18. If the limit

lim
x!1

f(x)

g(x)

exists (and is finite), then f(x) = O(g(x)).

8

Proof. Let L be the limit. By definition of limit, for any ✏ > 0 there is a constant K, such that
�

�

�

�

f(x)

g(x)
�K

�

�

�

�

< ✏

for all x > K✏. In particular, setting ✏ = 1, we find that

f(x)

g(x)
< K + 1

for all x > K
1

. Thus, by definition, f(x) = O(g(x)) with k = K + 1 and x
0

> K
1

.

Definition 2.19. A polynomial-time algorithm is an algorithm which runs in polynomial time,
which is to say if the number of steps required to complete the algorithm for a given input is O(nk)

Definition 2.20. A negligible function is a function f : X ! Y , if for every positive polynomial
p(·) 2 Z[k] there exists an ✏ so that for all integers n > ✏ it holds that f(n) < 1

p(n)

Example 2.21. Let us consider the function f(n) = 2�n and let c 2 N be arbitrary. We may then

choose ✏ = c2. Now for any n > ✏, we have 2�n =
�

2log2

(n)
�� n

log

2

(n) = n� n
log

2

(n) . Now, as n > ✏ we

know that n
log

2

(n) >
✏

log

2

(✏) >
✏p
✏
=
p
✏ = c (as ✏ = c2). This implies that f(n) = 2�n = n� n

log

2

(n) <

n�c for any c 2 N. Thus, it follows that f(n) = 2�n is a negligible function.

Definition 2.22. A function f : {0, 1}n ! {0, 1}n is said to be a one-way function, if the
following two conditions hold:

1. Easy to compute: There exists a polynomial-time function algorithm A computing f , in
other words, A(x) = f(x) = y for all x.

2. Hard to invert: For every polynomial-time algorithm b, there is a negligible function vB(k)
so that for su�ciently large k:

P [B(f(x)) = x]  vB(k)

Our key takeaway from this is that an one-way function is easy to compute but hard to invert.
When we deal with a public key setting these one-way functions are called trapdoor functions.
This refers to the fact that the key holder has some trapdoor information, which enable him/her
to invert the function. As such (1) and (2) holds true for everyone but the key holder.

Remark. It remains an unsolved problem whether there exist any (true) one-way functions. So far,
no proofs have emerged that show the existence of such functions under reasonable definitions of
”easy” and ”computationally infeasible”.

Remark. Even though it remains unproved whether there exist any true one-way functions there
are a number of candidates, some of which we will encounter in this text including the discrete
logarithm problem, integer factorisation, and the RSA-problem.

The reader may at this point wonder what we mean when we say ”easy” and ”hard”. Isn’t
it a subjective judgement to say something is ”easy”? Well, th easy is when the function can be
computed by a probabilistic polynomial time algorithm, which is denoted as PPT. Hard, on the
other hand, means that any PPT attempting to invert the function will succeed with negligible
probability.

9

2.4.1 Deterministic Encryption

A deterministic algorithm will, given a specified input, always return the same output as well as
always proceeding in the same manner. It was first introduced into the literature by (Bellare,
Boldyreva, & ONeill, 2007).

(Goldwasser & Bellare, 1996) brings up three cases of where deterministic encryption is vulner-
able:

1. Special Message Spaces The fact that f is a deterministic function does not imply that invert-
ing f(m), when m is special, is hard. Suppose that the set of messages that one would like to
send is drawn from a highly structured message space such as the English language, or more
simply M = {0, 1}, it may be easy to invert f(m). In fact, it is always easy to distinguish
f(0) from f(1).

2. Partial Information The fact that f is a one-way or trapdoor function does not necessarily
imply that f(m) hides all information about m. Even a bit of leakage may be too much for
some applications. Moreover, in fact, for any oneway function f , information such as ”the
parity of f(m)” about m is always easy to compute from f(m).

3. Relationship between Encrypted Messages Clearly, one may be sending messages which are
related to each other in the course of a communication. It is thus desirable and sometimes
essential that such dependencies remain secret. In the deterministic encryption model, it is
trivial to see that sending the same message twice is always detectable.

2.4.2 Probabilistic Encryption

(Goldwasser & Micali, 1984) were first to introduce probabilistic encryption algorithms. The un-
derlying idea is to give an algorithm the ability to generate random numbers 1. We just saw that
there exist certain drawbacks with using deterministic encryption, which fundamentally stems from
the fact that a particular plaintext m is paired with a specific cyphertext cm.

1
We will not pursue the origins of random numbers as that would take up more space than the entire article

10

Probabilistic encryption scheme avoid this by employing randomness within the encryption
process itself. As a result, there are many possible ciphertexts (say c

1

, . . . , cr) for one specific
plaintext m. What is remarkable is that if one possesses the right private key, sk, then every
possible ciphertext (c

1

, . . . , cr) of a message will be decoded to the original message m.

2.4.3 Defining Public-Key Encryption

Whether we measure the running time of the encryption, decryption, or the adversary algorithms
we always use a function of a security parameter k as measurement. This parameter remains fixed
from the time the cryptosystem is determined.

We are finally in a position to provide a formal definition of a public-key encryption scheme
(Katz & Lindell, 2014).

Definition 2.23. A public-key encryption scheme E is a tuple, (KeyGen,Enc,Dec) of proba-
blistic polynomial-time algorithms:

1. The key generation algorithm (KeyGen) takes the security parameter k as input and
outputs a pair of keys (pk, sk). We refer to these as public key (pk) and private key (sk).

2. The encryption elgorithm (Enc) takes a public-key pk and a string m called the message
from some underlying message spaceM as input. It produces a ciphertext c from an underlying
ciphertext space C, which we denote as Enc(m).

3. The decryption algorithm (Dec) takes a private-key sk and a ciphertext c as input, and
outputs message m.

Remark. In the definition above it is stated that the encryption algorithm is probabilistic. This is
not necessarily always the case. Some schemes, mostly those that are a bit older, use encryption
algorithms that are deterministic. One such example is the RSA-encryption scheme, which we will
encounter later in this text.

11

2.4.4 Cryptosystems

Definition 2.24. A cryptosystem consists of two finite sets M
1

and M
2

together with two
functions E : M

1

!M
2

and D : M
2

!M
1

such that:

D(E(x)) = x and E(D(y)) = y

for all x 2M
1

and all y 2M
2

.

Example 2.25. We begin by providing a very simple example. Let M
1

= M
2

= Z
2

and set
E(x) = R

2

(x+ 1) and D(y) = R
2

(y + 1). We are now in a position to send two distinct messages:
0 (”no”) and 1 (”yes”). Let us assume we want to reply ”yes” to a secret question. We encrypt our
answer and obtain:

E(1) = R
2

(1 + 1) = 0

Thus, if someone unwarranted received our reply, he/she would obtain 0, which is to say ”no”. For
a person who knows our system would decrypt our message:

D(E(1)) = R
2

(0 + 1) = 1

and so this person interprets our message correctly as meaning ”yes”.

While this example illustrates the principle behind cryptosystem, it is too simple to be of any real
usage. At best one maybe might be able to use it a couple of times, but then it will almost certainly
be broken as the person who tries to listen in will notice the pattern where the counterpart always
acts contrary to what our message to him/her is. Let us instead consider another cryptosystem
known as the Caesar cipher, named after the famed Field Marshall Julius Caesar, who allegedly
used it to communicate with his senior o�cers during battles.

Example 2.26. As the (English) alphabet consists of 26 letters let M
1

= M
2

= Z
26

, where we
have 0 denote ”a”, 1 ”b” etc. Then we fix an integer t 2 Z and introduce Et : Z26

! Z
26

as

E(x) = R
26

(x+ t)

That is to say we transpose each letter by t positions in modulo 26. For instance, if we let t = 2
then we have that ”yes” becomes ”agu” and ”no” becomes ”pq”. To decrypt a message we have
that decryption function is Dt : Z26

! Z
26

D(y) = R
26

(y � t)

While the latter example is more refined compared to the first, it continues to su↵er the same
weaknesses. One such problem is that should one be in possession of the encryption key then one can
also determine the decryption key. This is far from satisfactory: We would like to receive messages
from many di↵erent users without making it possible for them to read each other’s messages. To
achieve this, we would need to create di↵erent decryption keys for each person, which is very
inconvenient.

The Caesar cipher is also easy to break using what is known as frequency analysis. That
is one observe which letters are used most frequently and substitute those with the most frequent
letters in the English (or whatever languages one suspects the text might be written in).

12

2.4.5 Circuits

Circuits are directed, acyclic graphs. That is to say, it is composed of finitely many vertices and
edges, where each edge is directed from vertice to another. As such there is no way to start at
any vertex v and move along a directed sequence of edges that will return back to v again. The
input values could be integers, boolean values etc. depending on the nature of the circuit. The
corresponding gates are set operations and arithmetic operations or logic gates (OR, NOR, AND,
NAND,Add, Mult,..).

An example of a circuit representation where the function f outputs the expression
AḂ +BĊ (̇B + C) on input (A,B,C).

We need to define to critical measurements used often in complexity theory, namely size and
depth.

Definition 2.27. The size of a circuit C denotes the number of its no-input gates. The depth of
a circuit C represents the length of its longest path, from an input gate to the output gate, of its
underlying directed graph

2.5 Background on Lattices

All of the public key cryptosystems that we have explored so far have either directly or indirectly
relied on the di�culty of factoring large numbers or the di�culty of finding discrete logarithms
in a finite group. What sets (Gentry et al., 2009) apart is that he relies on a new type of hard
problem arising from the study of lattices. A lattice is similar to a vector space, except that instead
of being generated by arbitrary real coe�cients, all linear combinations of its basis vectors have
integer coe�cients. While this may appear to be a minor restriction, it actually produces many
interesting and subtle questions.

Basing a cryptosystem on lattices o↵ers several benefits over earlier systems, such as faster
encryption/decryption and what researchers call quantum resistances. That is to say that there are
currently no known quantum algorithms that can swiftly solve hard lattice problems.

Definition 2.28. Let ~v
1

, . . . ,~vn 2 Rn be a set of linearly independent vectors. The lattice L
generated by ~v

1

, . . . ,~vn is the set of linear combinations ~v
1

, . . . ,~vn with coe�cients in Z, namely

L = {a
1

~v
1

+ · · ·+ an~vn|an 2 Z}

13

Definition 2.29. A basis for L is any set of independent vectors that generates L

Theorem 2.30. Let L(B), L(B⇤) be two lattices with B,B⇤ 2 Rn⇥n as bases. Then:

1. If U is unimodular matrix, then U�1 is unimodular.

2. L(B) = L(B⇤) if and only if there exists a unimodular matrix U such that B⇤ = BU .

Proof. We have that:

1. Given U is unimodular, we have that U 2 Zn⇥n and det(U) = ±1. This means that U
is invertible and det(U�1 = det(U)�1 = ±1. From the identity U�1 = det(U)�1 · adj(U)
together with the fact that the entries of adj(U) are all integers, we deduce U�1 2 Zn⇥n.

2. (!). Assume L(B) = L(B⇤) and let B⇤ = [b⇤
1

, . . . , b⇤n]. Then b⇤
1

, . . . , b⇤n 2 L(B⇤) = L(B).
This means that there exists U 2 Zn⇥n such that B⇤ = BU . By the same argument, we
have there exists V 2 Zn⇥nsuch that B = B⇤V . Thus, we have B = BU = B⇤V U . Taking
determinants we get det(B⇤) = det(B⇤) · det(V U). Thus det(V U) = 1 and we have that
det(U) = ±1.

(). Suppose now instead that there exists a unimodular matrix Usuch that B⇤ = BU .
Writing B⇤ = [b⇤

1

, . . . , b⇤n] we have that b⇤
1

, . . . , b⇤n 2 L(B) as U is an integer matrix. Thus
L(B⇤) ✓ L(B). As B = B⇤U�1 and U�1is unimodular, by the same way we get L(B) ✓
L(B⇤). This gives us L(B) = L(B⇤).

Geometrically we can think of a lattice as an orderly arrangement of points in Rm, where a
point is put at the tip of each vector.

Given that a lattice L does not have a unique basis it worthwhile to ask whether or not there
is any qualitative di↵erence between two basis. That is to say are some basis ”better” than other
basis? Actually this turns out not only to be true, but also of fundamental importance in much of
the study of lattices as well as the method that Gentry employs to construct a fully homomorphic
encryption scheme.

Definition 2.31. A basis B = {~bi, . . . ,~bn} 2 Zn⇥n is said to be in Hermite Normal Form if

bi,j =

(

0 for i > j

0  bi,j  bi,i otherwise

Definition 2.32. Associated to n linearly independent lattice vectors C = [~c
1

, . . . ,~cn], ci 2 L(B) ⇢
Rm for all i = 1, . . . , n is the half open fundamental parallelpiped:

P(C) =

⇢

C~x : xi 2
✓

�1

2
,
1

2

��

Definition 2.33. The determinant of a lattice L is the n-dimensional volume of the fundamental
parallelpiped P(B)

Definition 2.34. The dual lattice of L, denoted L⇤, is defined as:

L⇤ := {~x 2 span(B) : 8~v 2 L, h~x,~vi 2 Z}
where h·, ·i denotes the inner product.

14

If we come to think about the basis vectors ~v
1

, . . . ,~vn as being vectors of a given length that
describe the sides the parallelepiped P, then for basis vectors of given length, the largest volume
is obtained when the vectors are pairwise orthogonal to one another. From this we arrive at an
important upper bound for the determinant of a lattice known as Hadamard’s inequality.

Proposition 2.35. Let L be a lattice, and take any basis v
1

, . . . , vn for L. Then

n
Y

i=1

||~bi|| � det(L)

We have that as the basis gets closer to be being orthogonal Hadamard’s inequality moving
closer to being an equality. When we base our cryptography on lattice theory there turns out to be
this notion of ”good” and ”bad” bases to a lattice. A basis B is said to be good, if the vectors ~bi
are short and close to orthogonal. Thus it is fair to conclude that a good basis makes Hadamard’s
inequality close to an equality.

Two di↵erent basis for the same lattice. We say that the first basis is ”good”, meaning that the
vectors are fairly orthogonal, whereas the second basis is ”bad” since the angle between the basis

vectors is small. The image is from (Ho↵stein et al., 2014).

Definition 2.36. The ith minimum Li(↵) is the radius of the smallest sphere centered in the origin
containing i linearly independent lattice vectors

Li(L) = inf
n

r : dim
h

span
⇣

L \ B
⇣

~0, r
⌘⌘i

� i
o

where B(~0, r) = {~x 2 Rm : ||~x|| < r} is the m-dimensional open vall of radius r centered in ~0.

Theorem 2.37. For any lattice L of rank n and any convex set S ⇢ span(L) symmetric about the
origin, if vol(S) > 2ndet(L), then S contains a non-zero lattice point ~v 2 S \ L{0}
Proof. Define bS = 1

2

S = {x : 2x 2 S}. Then vol(bS) = 2�nvol(S) > det(L). By the previous

result, there exist two points z
1

, z
2

2 bS such that z
1

� z
2

2 L is a non-zero lattice point. By
definition, 2z

1

, 2z
2

2 S and because S is centrally symmetric, also �2z
2

2 S. Finally as S is
convex, 2z

1

�2z
2

2

= z
1

� z
2

is in S.

Definition 2.38. An ideal lattice is an integer lattice L(B) ✓ Zn such that B = {g mod f : g 2
I} for some monic polynomial f of degree n and ideal I ✓ Z[x]/hfi.

15

2.6 Problem

2.6.1 The Discrete Logarithm Problem and The Di�e-Hellman Problem

One mathematical problem that arises in many di↵erent settings, in this text we will find it un-
derlying the security of ElGamal and Paillier, is the discrete logarithm problem. It can be
formulated as follows in its most general form.

Definition 2.39. Let G be a group whose group law here will be denoted ?. The Discrete
Logarithm Problem for G is to determine, for any two given elements g and h in G, an integer
x satisfying:

g ? g ? · · · ? g
| {z }

x times

= h

Consider the following issue. You and a friend want to share a private key for usage later,
but you only have insecure means of doing this. Each action you might want to take to exchange
information can be presumed to be observed by an adversary. How would you go about to share
a key without making it available to anyone but your friend? From the outset this would appear
to be an impossible task. Nevertheless, (Di�e & Hellman, 1976) managed through a great insight
find a way to resolve this problem. The solution is called the Di�e-Hellman Key Exchange
and works as follows:

1. A trusted party chooses and publishes a (large) prime p, and an integer g having large prime
order in F⇤

p.

2. Alice chooses a secret integer a and then computes A ⌘ ga (mod p), while Bob chooses
another secret integer b, which he then computes B ⌘ gb (mod p).

3. Alice sends A to Bob while he in return sends B to her.

4. Upon receiving B, Alice computes the number Ba (mod p) while Bob computes Ab (mod p).
This is now a shared secret key as:

Ba ⌘ �gb�a ⌘ aab ⌘ (ga)b ⌘ Ab (mod p)

The security of Alice’s and Bob’s newly created public key rests on the di�culty of the following
problem.

Definition 2.40. Let p be prime number and g an integer. The Di�e-Hellman Problem (DHP)
is the problem of computing the value of gab (mod p) from the known values of ga (mod p) and gb

(mod p).

Definition 2.41. Let k 2 Z+ and let (q
1

, q
2

, G,G
1

, e) be a tuple generated by G(k), where n = q
1

·q
2

.
Given (n,G,G

1

, e) and an element x 2 G, output ”1” if the order of x is q
1

and output ”0” otherwise.

Remark. We can rephrase this formulation as follows: Without knowing the factorisation of the
group order n, decide if an element x is in a subgroup of G.

Definition 2.42. A number z is said to be a nth if there exists a number y 2 Z⇤
n2

such that

z = yn (mod n2)

16

2.6.2 Lattice Problems

From a mathematical point of view, our main interest in studying is to determine short vectors in
random lattices. Many of the problems encountered in this field can be reduced to two fundamental
problems, the shortest vector problem or the closest vector problem.

Definition 2.43. The shortest vector problem (SVP) consists of determining a shortest nonzero
vector in a lattice L, which is to say find a nonzero vector v 2 L that minimises the Euclidean norm
kvk.
Commentary 4. It is worth noting that the shortest vector problem does not have a unique solution.
There are instances where there are more than one shortest nonzero vector in lattice. Consider
Z2 ⇢ R2 for example, here all four of the vectors (0,±1) and (±1, 0) are solutions to SVP. This is
why we use the X ”a” shortest vector and not ”the” shortest vector.

Definition 2.44. The closets vector problem (CVP) consists of given a vector w 2 Rn that is
not in L, find a vector v 2 L that minimises the Euclidean norm kw � vk.
Commentary 5. Similar to the note given above concerning the non-uniqueness of the solution for
the SVP, CVP also lacks a unique solution.

Both SVP and CVP are considered to be ”profound problems” (Ho↵stein et al., 2014, p. 395),
both becoming computationally di�cult as the dimension n of the lattice grows.

There is one problem that is related to CVP, called the �-bounded distance decoding prob-
lem that deserves special attention. As we shall see later it figures in (?, ?).

Definition 2.45. Given a basis B for a lattice L of dimension n and a vector ~t 2 Rn such that
disc(L,~t) · �  L

1

(L), find the non-zero vector ~v 2 L closests to ~t

It has been shown by XX that ��BDDP is NP-hard for any constant factor � > 1p
2

in general

lattice.

3 The Road to Fully Homomorphic Encryption

3.1 Partial Homomorphic Encryption Schemes

In this section we seek to articulate the details of PHE schemes. There are many important examples
of PHEs including (Rivest, Shamir, & Adleman, 1978), (Goldwasser & Micali, 1982), (ElGamal,
1985), (Benaloh, 1994), and (Paillier et al., 1999).We choose to focus on the PHE schemes that
often serves as basis for other PHE:s, namely RSA-, ElGamal-, and Paillier- encryption.

3.1.1 RSA-Encryption

Any introductory course to cryptography is bound to include extensive treatment of the RSA
encryption system (Rivest et al., 1978). Part of its charm is that it uses elements from elementary
number theory that are centuries old. To initiate RSA, we multiply two (very large) prime numbers
p, q and make their product npublic. Whereas n is part of the public key (pk), the factors of n
are kept secret, where they are part of the secret key (sk). The underlying idea behind is that the
factors of n cannot be obtained from n - which is to say the security depends on the di�culty of
factoring.

17

RSA-Procedure

1. Key Generation Alice chooses secret primes p and q as well as an encryption exponent
e with gcd(e, (p � 1)(q � 1)) = 1. In this process she also computes d satisfying ed ⌘ 1
(mod (p� 1)(q � 1)).This is her secret key sk = d. Alice finally publishes the public key
pk = {N = pq, e}.

2. Encryption Bob chooses a plaintext m. Then using Alice’s public key pk = (N, e) he
computes c ⌘ me (mod N) and sends it to Alice.

3. Decryption Upon receiving Bob’s encrypted message c, Alice uses her private key sk = d
to compute m0 ⌘ cd (mod N). This m0 is then equal to the plaintext m Bob sent.

Theorem 3.1. For all x, y 2 ZN we have D(E(x)) = x and E(D(y)) = y.

Proof. We wish to show that D(E(x)) = x which is to say:

(xe)d ⌘ xed ⌘ x (mod N)

We may rewrite this as:
xed � x ⌘ 0 (mod N)

Thus, for us to prove D(E(x)) = x we have to show n divides the di↵erence xed � x. Since

ed = 1 + k(p� 1)(q � 1) (3.1.1)

for some k 2 Z. Furthermore, Fermat’s little theorem tells us that

xp�1 ⌘ 1 (mod p) (3.1.2)

Now, we first use 3.1.1 before applying 3.1.2 to obtain:

xed ⌘p x1+k(p�1)(q�1)

⌘p x · �xp�1

�k(q�1)

⌘p x · 1k(q�1)

⌘p x

This shows p divides xed � x. By switching the p with q we have that q also divides xed � x. Thus
it follows that D(E(x)) = x.

We do not need to prove the other way, namely E(D(y)) = y, since the sets are finite of equal
size.

Example 3.2. Alice chooses p = 7 and q = 13. She then calculates N = 7 · 13 = 91 and
m = 6 · 12 = 72 before she selects e = 23 as lcm(e,m) = 1.

18

In choosing e = 23 Alice also computes d such that ed ⌘ 1 (mod (p � 1)(q � 1)) using the
Euclidean algorithm.

72 = 3 · 23 + 3

23 = 7 · 3 + 2

3 = 1 · 2 + 1

Reversing the process we have

1 = 3� 1 · 2
= 3� 1 · (23� 7 · 3)
= 8 · 3� 1 · 23
= 8 · (72� 3 · 23)� 1 · 23
= 8 · 72� 25 · 23

From this Alice can see that d = 47 ⌘ �25 (mod 72). She keeps this as her private key and
publish the public key pk = {N = 91, e = 23}.

At this stage Bob chooses a plaintext m = 24. Using the public key pk = (91, 23) that Alice
published, he now calculates c ⌘ me (mod N), which in this case may be done by hand using
fast-forward algorithm

2423 = 2416+4+2+1

= 2416 · 244 · 242 · 24
and we

242 = 576 ⌘ 30 (mod 91)

244 = 302 = 900 ⌘ 81 (mod 91)

248 = 812 ⌘ 9 (mod 91)

2416 = 92 ⌘ 81 (mod 91)

Thus we have 2423 = 81 · 81 · 30 · 24 ⌘ 19 (mod 91). Bob thus sends the encrypted message 19 to
Alice.

Alice is now in a position to determine the message m sent by Bob by using her private key d
in computing m0 ⌘

91

1947. Again, this process is done using the fast-forward algorithm, where we
rewrite 47 = 24 + 16 + 4 + 2 + 1. For the sake of brevity we leave it to the reader to find out that
Alice indeed will (after some calculations) finds the correct answer, namely m = 24.

Homomorphic Property
This system possess an interesting multiplicativity property such that if Alice sends two ciphertexts
c
1

and c
2

to Bob where their plaintexts are denoted as m
1

and m
2

then the associated product
m

1

m
2

is the product of the ciphertexts c
1

c
2

since:

c
1

c
2

⌘ me
1

me
2

(mod N)

⌘ (m
1

m
2

)e (mod N)

19

Unfortunately, as (2 + 3)3 ⌘
7

6 6= 0 ⌘
7

23 + 33 demonstrates, this property does not (in general)
extend to addition, which is to say:

(m
1

+m
2

)e 6⌘ me
1

+me
2

(mod N)

Security

RSA’s security is closely tied to the Integer Factorisation Problem that can formally be defined
as follows:

Definition 3.3. Let N be a composite integer. The Integer Factorisation Problem is to find
integer p, where 1 < p < N , such that p divides N .

There are always various approaches an attacker might apply to break a scheme’s security. For
instance he/she might try to:

1. Decipher the ciphertext without possessing sk.

2. Compute the private key sk from the public key key pk only.

In the case of RSA, the first approach would be equivalent to the task of computing the eth roots
modulo N . This task goes by the name of the RSA Problem.

Definition 3.4. Given N , an integer e > 0 that is relative prime to �(n) and an element y 2 Z⇤
n.

Compute y
1

e (mod N).

Factoring N and compute the inverse of e remains the most promising approach at this point
in time. However, as this is an instance of the integer factorisation problem it is currently a
computationally hard problem. From the list above, this approach is in line with the second point:
to compute sk from pk.

3.1.2 ElGamal Encryption

While the Di�e-Hellman key exchange algorithm o↵ers a way of publicly sharing a random pri-
vate key, it is still not a public key cryptosystem since a cryptosystem allows exchange of specific
information, not merely a random string of bits. (Rivest et al., 1978) were the first to introduce
a public key system and it continues to be a momentous discovery. Nevertheless, even though
RSA was historically the first, it was by no means the most natural development of a public key
cryptosystem from (Di�e & Hellman, 1976). Instead, that title belongs to (ElGamal, 1985), which
we present now.

ElGamal Procedure

1. Key Generation Alice generates an e�cient description of a cyclic group Zn of order
p, with generator g. She then chooses a private key a 2 Zn randomly before computing
A = ga (mod p). Alice finally publishes A, along with the description of G, q, and g as
her public key pk = {Zn, p, g, A}.

20

2. Encryption Bob chooses a plaintext m and a random element k. Using Alice’s public
key A, he then proceeds to compute c

1

= gk (mod p) and c
2

= mAk (mod p). Bob
finally sends these two ciphertexts (c

1

, c
2

) to Alice.

3. Decryption Upon receiving Bob’s two ciphertexts, Alice computes c
2

· (ca
1

)�1 (mod p)
which then equals the message m Bob sent.

Theorem 3.5. For all x 2 Zn we have D(E(x)) = x.

Proof. We wish to show that D(E(x)) = x. As we by assumption already know a, we may compute
the quantity

x ⌘ (ca
1

)�1 (mod p)

Thus can be done by first computing c1
1

(mod p) using the fast power algorithm, before computing
the inverse using the extended Euclidean algorithm. We then multiply c

2

by x to obtain:

x · c
2

⌘ (ca
1

)�1 · c
2

(mod p)

⌘ �gak��1 · �mAk
�

(mod p)

⌘ �gak��1 ·
⇣

m (ga)k
⌘

(mod p)

⌘ m (mod p)

Remark. ElGamal, unlike RSA, is a probablistic encryption scheme. This means that a single
plaintext message m can be encrypted to many possible ciphertexts. It also means that for a given
message m, the likelihood of it being encrypted as the same twice is very small. This, as (ElGamal,
1985) notes ”prevents attacks like a probable text attack where if the intruder suspects that the
plaintext is, for example, m, then he tries to encipher m and finds out if it was really m.” The reason
as to why this attack, and those similar in nature, will not succeed is due to the fact the sender
(Alice) choses a random number a for enciphering. Di↵erent values of a will result in di↵erent
values of {c

1

, c
2

}.
Example 3.6. In our example Alice chooses a small prime modulo p = 457 and a group generator
g = 266. Next she selects a random integer a = 186, and calculates:

A ⌘ ga (mod p)

⌘ 266186 (mod 457)

⌘ 257 (mod 457)

This means that Alice’s secret key is sk = (457, 266, 186) and the public key is pk = (457, 266, 257).
Upon receiving Alice’s public key pk, Bob creates a message m = 163 and then selects a ran-
dom integer r = 89. He then calculates the ciphertext (c

1

, c
2

) where c
1

= gr (mod p) = 26689

(mod 457) = 443 (mod 457) and c
2

= m ·Ar (mod p) = 163 · 257347 (mod 457) = 421 (mod 457)

21

Finally Bob decrypts Alice’s message c
2

(cg
1

)
�1

(mod 457) = 421 · �443266��1

(mod 457) =
421 · 324�1 (mod 457) = 163 (mod 457) , which gives Bob the message m = 163, the same Alice
sent.

Homomorphic Property
Let p be a prime number, g 2 Z⇤

p, a 2 Zp�1

be a random exponent and A = ga mod p, and let
(pk, sk) be the ElGamal key pair with secret sk = (p, g, a) and public key pk = (p, g, A).

The ElGamal encryption system is homomorphic with respect to the multiplication of plaintexts
and ciphertexts. Namely we have that for two messages m

1

,m
2

that:

E(m
1

) · E(m
2

) = (ga1 ,m
1

· ha
1) (ga2 ,m

2

· ha
2)

= (ga1ga2 ,m
1

· ha
1m

2

· ga2)

=
�

ga1

+a
2 ,m

1

m
2

· ha
1

+a
2

�

= E(m
1

·m
2

)

Security
The security of ElGamal depends on the discrete logarithm problem that formally states:

Definition 3.7. Let g be a primitive root for Zp and let h be a nonzero element of Zp. The
Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that:

gx ⌘ h (mod p)

Anyone that can compute discrete logarithms is able to get everyone’s private key sk and thus
break the system. To determine an s such that gm = yrrs, on given inputs m and r, is equivalent
to the computation of discrete logarithm.

3.1.3 Paillier Encryption

Now that we have seen two examples of multiplicative homomorphic encryption schemes we end
this part with an example of an additive homomorphic encryption scheme. In 1999, Pascal Paillier
introduced a probablistic public-key algorithm that have come to be known as the Paillier encryption
scheme (Paillier et al., 1999). The underlying problem supporting the scheme is the notion that
computing nth residue classes is computationally di�cult.

Paillier-Procedure

1. Key Generation

Select two large prime numbers p and q such that

gcd (pq, (p� 1)(q � 1)) = 1

Denote n = pq, and � = lcm(p�1, q�1). Now choose a random integer g where g 2 Z⇤
n2

.
Next check n divides the order of g by investigation the existence of .

µ = L
�

g� (mod n2)
��1

(mod n) (3.1.3)

22

where L is defined as:

L(u) :=
u� 1

n

where the notation u�1

n denotes the quotient, i.e. the largest integer value t � 0 to satisfy
the relation u� 1 � t ·n. The public key is pk = (n, g) and the private key is sk = (�, µ).

2. Encryption Select a plaintext m < n and a random r < n, then the ciphertext

c ⌘ gm · rn (mod n2) (3.1.4)

3. Decryption Use the private key sk = (�, µ) to retrieve the message m by computing:

m ⌘ L
�

c� (mod n2)
� · µ (mod n) (3.1.5)

Unlike the previous two examples, proving the correctness of Paillier require some lemmas whose
proofs we shall not provide here.

Lemma 3.8. For any x 2 Zn

(1 + n)x = 1 + xn (mod n2)

Proof. We will use induction to prove the lemma. For the base case m = 0 the result is evidently
clear. Now assume the result holds for m = x. We now show it implies that it also holds for
m = x+ 1. We have:

(1 + n)x+1 ⌘ (1 + xn)(1 + n) (mod n2)

⌘ 1 + xn+ n (mod n2)

⌘ 1 + (x+ 1)n (mod n2)

Definition 3.9. Let B = {y 2 Z⇤
n2

|ord(y) = kn, k 2 {1, . . . , L}}and g 2 B. The encryption
function Eg is defined as:

Eg : ZnZ⇤
n ! Z⇤

n2

(m, r)! gmrn (mod n2)

It can be shown that the encryption function Eg is a bijection but rather than spending time
proving this result, we note that as Eg is bijective, it follows that it has an inverse. This fact is of
usage for the next definition that we introduce.

Definition 3.10. For any g 2 B define the function [.]g as:

[.]g : Z⇤
n2

! Zn

c 7! E�1

g (c)[1]

where E�1

g (c)[1] denotes the first component of E�1

g (c).

23

Lemma 3.11. For any c 2 Z⇤
n2

and g
1

, g
2

2 B, we have:

[c]g
1

⌘ [c]g
2

[g
2

]g
1

(mod n)

[c]g
2

⌘ [c]g
1

[g
2

]�1

g
1

(mod n)

Proof. Any number c 2 Z⇤
n2

can be written in two distinct ways. On the one hand

c =

8

<

:

⇣

g
[g

2

]g
1

1

rn
3

⌘

[c]g
2

rn
2

(mod n2)

g
[c]g

2

[g
2

]g
1

1

⇣

r
2

r
[c]g

2

3

⌘n

At the same time we have
c = Eg

1

([c]g
1

, r
1

)

By bringing these equations together we have

Eg
1

([c]g
1

, r
1

) = Eg
1

⇣

[c]g
2

[g
2

]g
1

, r
2

r
[c]g

2

3

⌘

(3.1.6)

Now, as Eg is injective (remember that it is in fact bijective) we have that 3.1.6 implies

[c]g
1

⌘ [c]g
2

[g
2

]g
1

(mod n) (3.1.7)

With a similar argument one can show that the second part is true.

Lemma 3.12. For any x 2 Z⇤
n2

L
�

x� (mod n2)
� ⌘ �[x]n+1

(mod n)

Proof. According to lemma 3.8 we have that the order of n+1 in
�

Z⇤
n2

, ·� is n. Thus, we have that
n+ 1 2 B. The number w 2 Z⇤

n2

can be written as

w = En+1

([w]n+1

, y) = (n+ 1)[w]n+1yn (mod n2)

Which implies

wL ⌘ (n+ 1)�[w]n+1yn� (mod n2)

⌘ (n+ 1)�[w]n+1 (mod n2)

⌘ 1 + �[w]n+1

n (mod n2) (By Lemma 3.8)

Now applying function L we obtain:

L
�

wL (mod n2)
� ⌘ �[w]n+1

(mod n)

Theorem 3.13. For x 2 Z⇤
n2

we have D(E(x)) = x.

24

Proof. Given a ciphertext c 2 Z⇤
n2

for plaintext m 2 Z. Then we have that

L
�

c� (mod n2)
�

L (g� (mod n2))
⌘ L|c]n+1

L[g]n+1

(mod n) (By lemma 3.12)

⌘ [c]n+1

[g]n+1

(mod n)

⌘ [c]g (mod n) (By lemma 3.11)

⌘ m (mod n)

Example 3.14. We illustrate the Paillier encryption scheme with small parameters. Let p = 7
and q = 11. Then we have n = pq = 77. Next, we must select an integer g from Z⇤

n2

such that the
order of g is a multiple of n in Z⇤

n2

. By choosing the integer g = 5652 we achieve all the necessary
properties as the order of g is 2310 = 30 · 77 in Z

77

2 .Thus the public key f (n, g) = (77, 5652). The
message we wish to encrypt m = 42 (the answer to everything) and to do so we choose an integer
r = 23 such that r 2 Z

77

.
Next we compute the ciphertext:

c = gmrn (mod n2)

= 565242 · 2377 (mod 5929)

= 4624 (mod 5929)

Now if we wish to decrypt the ciphertext c we first need to compute � = lcm(6, 10) = 30. Define
L(u) = u�1

n . We have that k is

k = L
�

g� (mod n2)
�

= L
�

565230 (mod 5929)
�

= L(3928)

=
3928� 1

77
= 51

We obtain µ by computing the inverse of k in (mod n) which gives us:

µ ⌘ k�1 (mod n)

⌘ 51�1 (mod 77)

⌘ 74 (mod 77)

Finally we decrypt the message:

25

m ⌘ 74 · L �462430 (mod 5929)
�

(mod 77)

⌘ 74 · L(4852) (mod 77)

⌘ 74 · 63 (mod 77)

⌘ 42 (mod 77)

which is the same message that we saw encrypted.

Homomorphic Property Given two ciphertexts E(m
1

, pk) = gm1rn
1

(mod n2) and E(m
2

, pk) =
gm2rn

2

(mod n2), where r
1

, r
2

are randomly chosen from Z⇤
n, we have that:

E(m
1

, pk) · E(m
2

, pk) = (gm1rn
1

)(gm1rn
2

) (mod n2)

= gm1

+m
2(r

1

r
2

)n (mod n2)

= E(m
1

+m
2

, pk)

That is to say the product of two ciphertexts will decrypt to the sum of their corresponding
plaintexts, which we may formally express as:

D(E(m
1

, pk) · E(m
2

, pk) (mod n2)) = m
1

+m
2

(mod n)

Security

The security of the Paillier encryption scheme rests on the composite residuosity assumption,
which can be stated as follows:

Definition 3.15. Let z 2 Z⇤
n2

be a randomly chosen element. It follows from the lemmas presented
above that for fixed g, z has a unique representation z ⌘ gxrn, where x 2 Zn and r 2 Z⇤

n. The
composite residuosity assumption says that it is infeasible to compute x from z if the private
key sk is not known.

Remark. To compute x from z means to decrypt the Paillier ciphertext z.

This assumption ensures that Paillier encryption is a one-way function. The decisional com-
posite residuosity assumption, which is an even stronger assumption, says that it is infeasible
to determine whether a randomly chosen element z fro Z⇤

n2

is an nth residue.

3.1.4 Summary of PHE

We end this section by summarising the homomorphic properties possess by di↵erent PHE schemes.

Name Additive Multiplicative
(Rivest et al., 1978) ⇥

(Goldwasser & Micali, 1982) ⇥
(ElGamal, 1985) ⇥
(Benaloh, 1994) ⇥

(Paillier et al., 1999) ⇥
Table 1. Summary of the homomorphic properties possess by various PHE.

26

3.2 Somewhat Homomorphic Encryption

Now that we have seen various examples of PHEs we proceed to examine more in detail somewhat
homomorphic encryption (SHE). We may recall our categorisation in the introduction (see
chapter 1, introduction) of SHE as: ”[A scheme that] permits some types of operations a limited
number of times”.

3.2.1 Boneh-Goh-Nissim Encryption

2005 marked an important turning point in the study of homomorphic encryption systems. Before
then, all cryptosystems’ homomorphic properties were restricted to either addition or multiplica-
tion. Enter (Boneh, Goh, & Nissim, 2005) who using a construct similar to what (Paillier et al.,
1999) produced, obtained a system with an additive homomorphism as well as one multiplication
on encrypted values. As such, BGN represented a signifiant advance towards a fully homomorphic
encryption scheme. As we shall see in a moment, Gentry would begin by improving on BGN before
using squashing and bootstrapping to construct the first FHE.

Let G define an algorithm that with a given security parameter k 2 Z+ produces a tuple
(q

1

, q
2

, G,G
1

, e) where G,G
1

are groups of order n = q
1

· q
2

and p e : G⇥G! G
1

is a bilinear map
2. On input k, the algorithm works as follows:

1. Generate two random k bit primes q
1

, q
2

and set n = q
1

· q
2

2 Z.

2. Generate a bilinear group G of order n. Let g be a generator of G and e : G ⇥ G ! G
1

be
the linear map.

3. Output (q
1

, q
2

, G,G
1

, e)

BGN Procedure

1. Key Generation Given a security parameter k 2 Z+, run G(k) (see above) to obtain
a tuple (q

1

, q
2

, G,G
1

, e). Let n = q
1

· q
2

. Pick two random generators g, u G and set
h = uq

2 . Then h is a random generator of the subgroup G of order q
1

. The public key
pk is generated as (n,G,G

1

, e, g, h), while the private key sk is q
1

.

Output the public key pk = (n,G,G
1

, e, g, h) and the private key sk = q
1

.

2. Encryption It is assumed that the message space consists of integers in the set
{0, 1 . . . , T} with T < q

2

. When encrypting in bits, T = 1. To encrypt a message m
first select a random number r 2 Zn and then compute

C = gmhr 2 G (3.2.1)

Output C as the ciphertext.

2
See (Boneh et al., 2005, p.3) for more about the construction of the bilinear map.

27

3. Decryption To decrypt a ciphertext E(m) is done using the private key sk = q
1

by
observing that

Cq
1 = (gmhr)q1 = (gq1)m

Set ĝ = gq1 . To recover m it is enough to compute logĝ (C
q
1).

Commentary 6. To recover m can be done using Pollard’s lambda method and as 0  m  T
the expected time for this is O(

p
T). As decryption in BOH-system takes polynomial time in the

size of the message space T it can only be used to encrypt short messages. Furthermore, as a
discrete logarithm cannot be computed quickly, the message should be small for decryption to work
e�ciently.

Commentary 7. The di�culty of this general discrete logarithm problem depends on the represen-
tation of the group. For example, consider G to be the cyclic group of order N . If G is represented
as the additive group of ZN , then computing discrete logarithms in G is equivalent to solving the
linear equation ax ⌘ b (mod N), where a, b given integers. This can be done rather straightfor-
ward using the extended Euclidean algorithm. If, however, G is represented as a subgroup of the
multiplicative group of say elements from Zm - where m may be composite or prime. then then
problem can be hard.

Homomorphic Properties

It is rather straightforward to see that the system is additively homomorphic. We have

E(m
1

) · E(m
2

) = (gm1hr
1) (gm2hr

2)hr

= gm1

+m
2hr

1

+r
2

+r

= gm1

+m
2hr0

where r0 = r
1

+ r
2

+ r and it can be seen how m
1

+m
2

can be recovered from the ciphertext c. As
for the homomorphism over multiplication, we need to use g

1

with order n and h
1

with order q
1

.
Then we also need to set g

1

= e(g, g), h
1

= e(g, h) and h = g↵q2 . Suppose now that we are provided
two ciphertexts c

1

= gm1hr
1 and c

2

= gm2hr
2 both of which are in G. To build an encryption of

the product m
1

·m
2

(mod n) we need to 1) Select a random r 2 Zn; 2) Set c = e(c
1

, c
2

)hr
1

2 G
1

.
Then:

c = e(c
1

, c
2

)hr
1

= e (gm1hr
1 , gm2hr

2)hr
1

= gm1

m
2

1

hm
1

r
2

+r
2

m
1

+↵q
2

r
1

r
2

+r
1

= gm1

m
2

1

gr
0

1

It is important to understand that c now is in the group G
1

, not G. As such, one cannot do another
homomorphic multiplication operation in G

1

. Why? Well, there are no pairing from the set G
1

(Boneh et al., 2005, p. 5).

28

Security

The hardness of the BGN rests on what is known as the subgroup decision problem, which
consist of deciding whether an element is a member of a subgroup Gp of group G of composite
order n = pq, where p and q are distinct primes. (Boneh et al., 2005, p.5-6) proves that system is
semantically secure assuming G satisfy the the subgroup decision assumption.

They go on to state that under this assumption semantic security also exists for ciphertexts in
G

1

.The reasoning for this is that if semantic security did not hold in G
1

, then, as ”one can always
translate a ciphertext in G to a ciphertext in G

1

by ’multiplying’ by the encryption of 1” (Boneh
et al., 2005, p. 6), it would not hold in G either.

4 Fully Homomorphic Encryption

The remarkable property of fully homomorphic encryption is that it allows us to run encrypted
programs on encrypted data to produce encrypted output, without ever getting exposed to any
third parties unencrypted material. Sounds like magic, does it not? Well, until 2009, it really was
magic. Then Gentry showed that it is possible to construct a fully homomorphic encryption system.

He first constructs a somewhat homomorphic encryption scheme, that he then uses something
he calls squashing before he finally uses a bootstrapping procedure to make it fully homomorphic.
To accomplish this Gentry used mathematics that previously had rarely been used in cryptography,
namely lattice theory.

As noted by (Gentry et al., 2009, p. 70), it is not su�cient for a scheme to possess a circuit of
low decryption complexity for it to be bootstrappable - it also must be able to evaluate that circuit.
The previous schemes all have the drawback that they achieve logarithmic depth by permitting the
ciphertext size to grow exponentially with the circuit depth. As the ciphertext grows, the decryption
circuit must also grow to handle the larger ciphertexts. In short, as one allows larger and larger
ciphertexts, the discrepancy between the evaluation depth and the decryption depth widens.

While general lattices possess an additive structure, ideal lattices also have a multiplicative
structure that enable them to evaluate deep circuits.

If, however, a lattice L ⇢ Rnhas a basis ~v
1

, . . . ,~vnconsisting of vector that are pairwise orthog-
onal, which is to say ~vi · ~vj = 0for i 6= j, then it is easy to solve both SVP and CVP. In the case of
SVP, we note that the length of any vector then in L is:

||
n
X

i=1

ai~vi||2 =
n
X

i=1

a2i ||~vi||2

Now, as a
1

, . . . , an 2 Z we conclude the shortest non-zero vector(s) in L are simply the shortest
vector(s) in the set {±~v

1

, . . . ,±~vn}.
Next, suppose we desire to determine the vector in L that is the closest to a given vector ~w 2 Rn.

We first write

~w =
n
X

i=1

tivi 2 Rn

29

Then for ~v =
Pn

i=1

aivi 2 L we have:

||~v � ~w||2 =
n
X

i=1

(ai � ti)
2||~vi||2

From this we can easily see that this equation is minimized by selecting the integer closest to the
corresponding ti - recall ai must be an integer.

One would be forgiven to think that applying this method on an arbitrary basis of L would
work as well. In the case that the vectors in the basis are fairly orthogonal to one another, then
the chance are good we might successfully solving CVP. Nevertheless, if the basis vectors are highly
non-orthogonal then we are unlikely to solve it using this method.

In explaining why lattices were chosen, Gentry begins by setting up a question, namely: ”where
do we find encryption schemes that have decryption algorithms with low circuit complexity?”
(Gentry et al., 2009). Gentry’s original approach was to look for a scheme that ”evaluates cir-
cuits at least as complex as its (augmented) decryption circuit.”

Once this is realised it makes little sense to explore variants of those encryption schemes that
rely on Di�e-Hellman problem or factoring, such as RSA, ElGamal, Paillier, Boneh-Gog-Nissim
etc. Each of these schemes rely on some operation - exponentiation, Legendre symbol computing,
pairing etc - that is not yet known to have circuit complexity that are decidable in polylogarithmic
time, which is to say they can be solved in time O(logc(n)) using O(nk) parallel processors.

The dominant decryption operation for scheme based on lattices, on the other hand, typically
are inner product or matrix-vector multiplication. These are operations that are both decidable in
polylogarithmic time.

The justification for this is that the CVP and SVP problems are can be solved in polynomial
time for the lattices with known good bases. Thus, to retrieve a message from a given ciphertext is
equivalent to solve the CVP and SVP problems in polynomial (read practical) time.

4.1 Gentry’s Fully Homomorphic Encryption Scheme

Gentry’s starting point was somewhat homomorphic encryption scheme based on ideal lattices.
Let us recall that this kind of scheme evaluates the ciphertext for a limited number of operations
only. Once a certain threshold is reached, the decryption function is unable to recover the message
sent correctly. Gentry’s stroke of brilliance was to develop two methods called squashing and
bootstrapping that enable one to reduce the noise gather during the execution of a homomorphic
operation so as to allow the process to continue (Gentry, 2009) (Gentry et al., 2009).

1. Using ideal lattices construct an encryption system that is somewhat homomorphic. This
means it can only evaluate low-degree polynomials over encrypted data.

2. Use a technique known as ”squashing” on the decryption circuit of the original somewhat
homomorphic scheme to make it bootstrappable.

3. Bootstrapping the augmented original scheme to make it a fully homomorphic encryption
scheme.

Gentry’s somewhat homomorphic encryption scheme based on ideals is presented below:

30

1. Key Generation For the given ring R and the basis BI of the ideal I, IdealGen(R,BI)

generates the pair of
⇣

Bsk
J , Bpk

J

⌘

. IdealGen(·) is an algorithm that produces the relatively

prime public and the private key bases of the ideal lattice with basis BI such that I+J =
R. A Samp(·) algorithm is also used in the key generation to sample from the given coset
of the ideal, where a coset is obtained by shifting an ideal by a certain amount. The

public key pk =
⇣

R;BI , B
pk
J , Samp()

⌘

and the private key sk = Bsk
J .

2. Encryption For randomly selected vectors ~r and ~g, using the public key basis Bpk
J chosen

from one of the ”bad” bases of the ideal lattice L, the message ~m 2 {0, 1}nis encrypted
by:

c := E(~m) = ~m+ ~r ·BI + ~g ·Bpk
J (4.1.1)

where BI is the basis of the ideal lattice L.

3. Decryption Using the secret key basis Bsk
J the ciphertext is decrypted as follows:

~m = ~c�Bsk
J · b�Bsk

J

��1 · ~ce mod BI (4.1.2)

where b·e is the nearest integer function that returns the nearest integers for the
coe�cients of the vector.

Remark. In the encryption phase, we have that the public key consists of a ”bad” basis Bpk of the
ideal lattice J . More concretely, it is the Hermite Normal Form (see chapter 2.5) of the secret key
basis Bsk.

Example 4.1. The equation used in the decryption part can be a bit di�cult to understand
intuitively, which motivates an example. In the diagram below, the red dots are a lattice, and the
two red arrows represent a basis, B, for this lattice. We have a green vector, ~c⇤ = [2, 2]. We might
ask which point on the lattice ~c⇤ is closest to. If we are just looking at this in the grid reference
frame, ~c⇤ is equidistant from (3, 1)T and (3, 3)T . But within the reference frame of basis B, which
is shown by the red parallelograms, ~c⇤ is closest to (3, 3)T . The value of B · ⌅B�1~c⇤

⌥

is the point

in the lattice to which ~c⇤ is closest in the reference frame of B. ~c = ~c⇤ �B
⌅

B�1~c⇤
⌥

is the vector

from B
⌅

B�1~c⇤
⌥

to the original vector. It could be viewed as the error or remainder when ~c⇤ is
approximated by a point on the lattice. In the diagram below, ~c is the blue arrow.

31

As the basis vectors are ~b
1

= (3, 1)T and ~b
2

= (0, 2)T , we have the basis matrix is:

B =

✓

3 0
1 2

◆

When we actually do the math we find that (3, 3)T is the value of B
⌅

B�1~c⇤
⌥

as:

B · bB�1~c⇤e =
✓

3 0
1 2

◆�

1

6

✓

2 0
�1 3

◆✓

2
2

◆⇡

=

✓

3 0
1 2

◆�✓

2

3

2

3

◆⇡

=

✓

3 0
1 2

◆✓

1
1

◆

=

✓

3
3

◆

As such we have that remainder of ~c⇤ modulo the basis is:

~c = ~c⇤ �B · bB�1~c⇤e

=

✓

2
2

◆

�
✓

3
3

◆

=

✓�1
�1
◆

4.2 Correctness of Somewhat Homomorphic Scheme

4.2.1 Decryption

From a geometrically point of view, we have that decryption function works as long as the secret
key Bsk produces a parallelpiped P(Bsk) that is su�ciently plump to solve BDDP in reasonable

32

time. As it turns out, this happens when the columns of B�1

sk have Euclidean length smaller than
1

2

||~e||, where ~e is the error vector ~e = ~m+~i with ~i 2 I.

The scheme that we described above produces a ciphertext
⇣

~c = ~e+~j
⌘

for some ~j 2 J . Given

that Bsk is a basis of the ideal J , we have that ~j 2 J may be written as ~j = Bsk ·↵ for some ↵ 2 Z,
which means that ~c = Bsk · ↵~e. What the decryption part does is to reduce ~c (mod Bsk), which
can be done as:

~c (mod Bsk) = ~c�Bsk · bB�1

sk · ~ce
= Bsk · [B�1

sk · ~c]
= Bsk[B

�1

sk (Bsk · ~↵+ ~e)]

= Bsk|~↵+B�1

sk · ~e]
As the coe�cients of ~↵ are integers and [·] means taking only the fractional part we may simply
the last expression further such that:

Bsk|~↵+B�1

sk · ~e] = Bsk[B
�1

sk · ~e]
Since we assume that the Euclidean length of the columns B�1

sk is smaller than 1

2

||~e||, we have
that each entry of B�1

sk · ~e is smaller than 1

2

in absolute value. This is due the fact all entries are
inner products of B�1

sk and ~e. It follows that fractional part [B�1

sk · ~e] is equal to B�1

sk · ~e and so

~e (mod Bsk) = Bsk[B
�1

sk · ~e]
= Bsk ·B�1

sk · ~e
= ~e

Now given ~e = ~m+~i, with ~i 2 I it is easy to obtain the original message by reducing ~e modulo BI .

4.2.2 Evaluation

Much of what is presented in this section comes from (Gentry et al., 2009) and (Armknecht et al.,
2015). In coming across all these new definitions and notations the reader would be forgiven if he
finds it a bit overwhelming at first. What might these abstract definitions easier to grasp is the
observation that the evaluation algorithm uses two di↵erent circuits. To begin, it uses a (mod BI)
circuit C (see section 2.4.5) to the plaintexts. Next, it uses a circuit related to C to the ciphertexts
which uses ring operations - not (mod I). This is what we call a generalised circuit.

Definition 4.2. Let C be a mod BI circuit. We call generalised circuit g(C) of C the circuit
formed by replacing C’s AddBJ and MultBI operations with addition and multiplication in the
ring R.

Definition 4.3. Let

CE0 = {C : 8(x
1

, . . . , xt) 2 Xt
Enc

, g(C)(x
1

, . . . , xt) 2 X
Dec

} (4.2.1)

This is to say CE0 is the set of mod-BI circuits that, when generalised, its output is always in XDec

if the inputs are in X
Enc

. We say CE is a set of permitted circuits if CE ✓ CE0 .

33

Definition 4.4. We say is a valid ciphertext with respect to E , public key pk, and permitted
circuits CE if it equals Evaluate(pk, C,) for some C 2 CE , where each 2 is the image of
Encrypt.

Theorem 4.5. Assume CE is the set of permitted circuits containing the identity circuit.Then E
is correct for CE .

Remark. This theorem tells us that Decrypt correctly decrypts valid ciphertexts.

Proof. For = {
1

, . . . , t}, k = ⇡k + ik + jk, where ⇡k 2 P, ik 2 I, jk 2 J and ⇡k + ik 2 X
Enc

,
we have:

Evaluate(pk, C,) = g(C)() (mod Bpk
J)

2 g(C)(⇡
1

+ i
1

, . . . ,⇡t + it) + J

Now, if C 2 CE , then by definition 1.2 we have g(C)(X
Enc

, . . . , X
Enc

) 2 X
Dec

, which means that:

Decrypt(sk,Evaluate(pk, C,)) = g(C)(⇡
1

+ i
1

, . . . ,⇡t + it) (mod BI)

= g(C)(⇡
1

, . . . ,⇡t) (mod BI)

= C(⇡
1

, . . . ,⇡t)

which proves the result.

The key takeaway from this theorem is that the somewhat homomorphically encryption scheme
that Gentry introduced is correct for permitted circuits. That is to say it is fully homomorphic for
some set. The idea now is to extend or maximise this set of permitted circuits.

Definition 4.6. Let r
Enc

be the smallest value such that X
Enc

✓ B(r
Enc

), where B(r)is the ball
with radius r. Let r

Dec

be the largest such that B(r
Dec

) ✓ X
Dec

Thanks to this definition we may now define permitted circuits as:

CE = {C|8{~x
1

, . . . , ~xt} 2 B (rEnc)
t : g(C)(~x

1

, . . . , ~xt) 2 B (rDec)}
This new interpretation transform the problem of maximising the set of permitted circuits into
a geometrical problem. To maximise the the set CE we need to bound the Euclidean norm
||g(C)(~e

1

, . . . ,~et)||.
Theorem 4.7. For a generalised circuit g(C) of permitted circuit C and lattice vectors ~ei, i =
1, . . . , t the Euclidean norm of ||g(C)(~e

1

, . . . ,~et)|| can be bounded in terms of ||~ei|| and ||~ej || such
that:

||~ei + ~ej ||  ||~ei||+ ||~ej || (4.2.2)

||~ei ⇥ ~ej ||  �(R) · ||~ei|| · ||~ej || (4.2.3)

34

Proof. The first inequality follows from the the triangular inequality. We have that ⇥ in this
situation denotes the polynomial multiplication

a(x)⇥ b(x) =
n
X

i=0

i
X

j=0

ajbi�jx
i+j

where n = deg(a(x) + b(x)). This is a bilinear map and its operator norm can be defined as:

�(R) = sup
a,b6=0

||a(x)⇥ b(x)||
||a(x)|| · ||b(x)||

In his (Gentry, 2009, Theorem 7.3.2, p. 71), Gentry applies this result to show that the somewhat
homomorphic encryption scheme that we just have outlined can correctly evaluate circuits of depth
up to:

log log rDec � log log (�(R) · rEnc) (4.2.4)

This tells us then that to maximise the depth of circuits that one may correctly evaluate, we need
to minimise the expansion factor �(R) and rEnc while maximising rDec.

Homomorphic Properties

1. Addition Given two plaintext vectors ~m
1

, ~m
2

2 {0, 1}n, we may verify the additive homo-
morphic property as follows:

~c
1

+ ~c
2

= E(~m
1

) + E(~m
2

)

=
⇣

~m
1

+ ~r
1

·Bi + ~g
1

· bpkJ
⌘

+
⇣

~m
2

+ ~r
2

·Bi + ~g
2

· bpkJ
⌘

= ~m
1

+ ~m
2

+ (~r
1

+ ~r
2

) ·BI + (~g
1

+ ~g
2

) ·Bpk
J

From our calculations we see that ~c
1

+ ~c
2

preserves the format and is within the ciphertext
space. To decrypt the sum of the ciphertext one computes (~c

1

+ ~c
2

) (mod bpkJ) which equals

~m
1

+ ~m
2

+ (~r
1

+ ~r
2

) · BI for the ciphertexts whose noise amount is smaller than 1

2

Bpk
J . For

larger

2. Multiplication We may similarly examine the homomorphic multiplicative property of Gen-
try’s encryption by examining the product of two ciphertext closely. We have:

~c
1

⇥ ~c
2

= E(~m
1

)⇥ E(~m
2

)

=
⇣

~m
1

+ ~r
1

·Bi + ~g
1

· bpkJ
⌘

⇥
⇣

~m
2

+ ~r
2

·Bi + ~g
2

· bpkJ
⌘

= ~m
1

⇥ ~m
2

+ (~m
1

⇥ ~r
2

+ ~m
2

⇥ ~r
1

+ ~r
1

⇥ ~r
2

) ·BI

If the noise |~e
1

⇥ ~e
2

| is su�ciently small enough the multiplication of plaintexts ~m
1

⇥ ~m
2

can
be correctly recovered from the multiplication of ciphertexts ~c

1

⇥ ~c
2

.

35

From the discussion just had we recall that homomorphic operations can be applied only to
ciphertexts when the ciphertexts have a small amount of noises.That is to say if the noise parameter
~m+ ~r ·BI is close to a lattice point then we may proceed with further addition and multiplication
operations. Nonetheless, at some point, we will find that it no longer is possible to decrypt the
ciphertext properly, This means that scheme above remains, for now, a somewhat homomorphic
encryption scheme as the number of operations are limited. Still it is a significant improvement
on BGN, which has a small plaintext space - logL bits for security parameter L. Gentry’s SWHE
allows not only greater multiplicative depth - while essentially allowing arbitrary number of addition
operations - but also a larger plaintext space.

Since the noise grows faster for with the multiplication operations, we have that the number of
possible multiplication operations is less than that of addition.

What to do then? Here is where Gentry introduced his bootstrapping technique. This is essen-
tially a recrypting procedure that produces a so-called fresh ciphertext from the noisy ciphertext
corresponding to the same plaintext.

4.3 Squashing

The key to understand what the squashing transformation does is this: it places a hint about the
secret key ~vsk inside the public key pk.

One way of trying to understand this better is to think of it through an analogy. Let us suppose
that in a Alice’s jewellery store, a chemical reaction is used as a key to open a glove box. For an
employee to open a box, they must use gloves to rub the key against the inner box until the box
dissolves. It turns out, however, that the reaction is too slow and the gloves become sti↵ before
the box dissolves. How can this be solved? Alice may provide each employee accelerants, each box
having its own version, that the employee can put on the outside of box #i just before placing
it inside box #(i + 1). The e↵ect is that the chemical reaction between the key and the box is
heightened, enabling the reaction to terminate before the gloves grow sti↵. The accelerant contains
some information about the chemical component of the key, but on its own, it remains insu�cient
to be used by an employee to construct a key.

4.3.1 SplitKey

This is where a hint about the secret key is placed inside the public key. What does this hint look
like? It consists of a random set of vectors r = {~t

1

, . . . ,~tr} 2 J�1 and a secret subset of vectors
which add up to the original private key:

~vsk⇤ =
X

i2S

~ti (mod I)

In this context S represents the distinguished subset of indices S ✓ {1, . . . , r} for which the equation
above is valid. The input it takes consists of the public and private key as produced by the original
encryption procedure and outputs a tuple (sk, r). The new private key is now a matrix - sk = SK
- such that:

skij =

(

1 if and only if j is the ith member of S

0 else

ris then added to the original public key pk to yield a new public key pk⇤.

36

4.3.2 ExpandCT

Evaluation

The next procedure, poignantly called ExpandCT, serves to ensure that the ciphertext is able
to handle a new shallower decryption circuit. This is completed by the encrypter, rather than the
decrypter, so as to reduce the computational complexity of decryption. ExpandCT computes:

~xi = ~ti ⇥ ~c (mod BI)

where i = 1, . . . , r and ~c is the ciphertext output produced by Enc. The new ciphertext is the
tuple = {~c, ~x

1

, . . . , ~xr}.

Decryption

By taking the new privat key SK as well as the new ciphertext as input, the decryption
algorithm Dec allows the user to extract the message using:

~m = ~c� b
X

i2S

~cie (mod BI)

Proof. In order to extract the relevant ~xi’s, the decryptor computes a set of vectors {~wij}with
i = 1, . . . , s and j = 1, . . . , r with:

~wij = skij · ~cj
We have that a vector ~wij 6= 0 if and only if skij 6= 0. This ensures that one obtains the desired
~xi’s, which are those where i 2 S. By recalling the original decryption algorithm (cite eq?) we have
that:

~m = ~c� b~csk ⇥ ~ce (mod BI)

= ~c� b

X

i2S

~ti

!

⇥ ~ce (mod BI)

= ~c� b
X

i2S

~ti ⇥ ~ce (mod Bi)

= ~c� b
X

i2S

~xie (mod BI)

What Gentry did is that he then went on to show that this scheme is able to evaluate its
decryption circuit, thus making it bootstrappable (Gentry, 2009, chap 10.3).

As part of this transformation we have that the security assumptions come to change a bit. By
introducing rin the public key, Gentry require another di�cult computational problem to ensure
secure communication. This is called the sparse vector subset sum problem (SVSSP)

Definition 4.8. Let S and T be two natural numbers such that S ⌧ T and let q be a prime
number. The challenger sets b {0, 1}. If b = 0, it generates a set ⌧ whose cardinality is |⌧ | = T of
uniformly random integers in [� q

2

, q
2

] such that there exists a subset of cardinality S whose elements
sum to 0 (mod q). The problem to be solved is to guess b.

37

4.3.3 Bootstrapping

The notion of recryption which works by encrypting a ciphertext anew (so that it becomes doubly
encrypted) and then removing the inner encryption by homomorphically evaluating the doubly
encrypted plaintext and the encrypted decryption key using the decryption circuit. As long as the
evaluation algorithm can handle the decryption process plus one more gate, progress can be made
in evaluating the circuit of interest.

Definition 4.9. Let CEbe a set of circuits with respect to which E is homomorphic. E is said to
be bootstrappable with respect to � if:

DE(�) ✓ CE

How is this done? Firstly, we generate two di↵erent public and secret key pairs (pk
1

, sk
1

) and
(pk

2

, sk
2

). The private keys are kept by the client (Alice), while the public keys are shared with the
server (Bob). Next, the encryption of the private key, Epk1(sk1) is also sent to the server (Bob),
who at this point already possess c = Epk

1

(m). As the scheme presented above already can evaluate
its own decryption algorithm homomorphically, the noisy ciphertext is decrypted homomophically
using Epk1(sk1). This result is then encrypted using a di↵erent public key, namely pk

2

, such that
Epk

2

(Dsk
1

(c)) = Epk
2

(m).
To put it even more succinctly: The first decryption of the noisy ciphertext removes the noise,

while the new homomorphic encryption produces a small(er) noise to the ciphertext. This permits
us to compute more homomorphic operations on this ”fresh” ciphertext until we reach (again) the
threshold point. We may now describe Gentry’s construction of a fully homomorphic encryption
scheme as follows: Begin by constructing a somewhat homomorphic encryption scheme and then
apply the squashing method to reduce the circuit depth of the decryption algorithm. Then apply
the bootstrapping technique to obtain a fresh ciphertext. Since bootstrapping can be applied
repeatedly, we are now in a position to compute unlimited number of operations on the ciphertexts,
which is to say we have successfully constructed a fully homomorphic encryption scheme.

It is worth noticing that Gentry’s bootstrapping solution increases the computational cost sig-
nificantly, and this is indeed one major drawback for practically implementing it.

Again, it may be instructive to think of bootstrapping using an analogy (Gentry, 2009, p.10).
Let us return to the Alice’s jewellery store. You will recall that Alice out of paranoia for having
any of her employees steal her jewellery placed them in special boxes that employees could work
on using particular gloves. Now, imagine that Alices glove boxes are defective; meaning the gloves
sti↵en after after an employee uses the gloves for 1 minute. None of Alice’s employees are able to
put together her designs in that short amount of time. But Alice has a solution. She gives to an
employee that is putting together her designs a glove box containing the raw materials, but also
several additional glove boxes. Each of these additional glove boxes holds a copy of her master key.
To assemble the intricate design, the employee manipulates the materials in box #1 until the gloves
sti↵en. Next, he places box #1 inside box #2, where the latter box already contains a master key.
Using the gloves for box #2, he opens box #1 with the master key, extracts the partially assembled
trinket, and continues the assembly within box #2 until its gloves sti↵en. He then places box #2
inside box #3, and so on. When the employee finally finishes his assembly inside box #n, he hands
the box to Alice. It is important to note that this trick will not work unless the employee can open
box #i within box #(i + 1), and have time to make a little bit of progress on the assembly, all
before the gloves of box #(i+ 1) sti↵en.

38

What we see here is analogous with the requirement for a bootstrappable encryption scheme E ,
namely the augmented decryption circuit complexity of E is less than what E is able to homomor-
phically evaluate.

5 Applications

Now that we have had the opportunity to familiarise ourselves with the background, theory, and
underlying security assumptions of some homomorphic encryption schemes it may be of interest to
learn more about possible applications. We should note that even in instances when there are other
methods available FHE-solutions often remain more conceptionally appealing as they are simpler
and easier to explain. In what follows we list a couple of examples that demonstrate the underlying
potential of FHE when applied to practical problems.

5.1 Outside storage

Consider a situation where a financial institution possess both sensitive data and also proprietary
algorithms that they wish to keep secret. It could be an algorithm that based on the data acquired
predicts stocks or bond values. (Naehrig, Lauter, & Vaikuntanathan, 2011) brought forward the
proposal to apply homomorphic encryption to upload both the data and the algorithm in encrypted
form so as to allow outsourcing of the computations to a cloud service.

What is worth pointing out though is that the process of ensuring the algorithm remains secret
is not due to homomorphic encryption. Instead it is part of obfuscation research. The closest
solution to this that homomorphic encryption o↵ers is known as circuit privacy. It, however,
only guarantees that information about the function does not leak by the output - not that one can
encrypt the function itself.

The problem homomorphic encryption o↵ers to solve is rather as follows: Suppose Alice possess
sensitive data, such as a portfolio of stocks, and Bob has proprietary algorithms that make pre-
dictions about stock prices. In case Alice would want to apply Bob’s algorithm, either she would
have to divulge her stock portfolio to Bob, or Bob would have to give the algorithm to Alice. With
homomorphic encryption, however, Alice can encrypt the data with a circuit private scheme and
send it to Bob, who runs the proprietary algorithm and only sends back the result, which can only
be decrypted by Alices private key. Accordingly Bob cannot learn anything about Alice’s data, and
Alice will not have any access to the algorithm’s Bob used.

5.2 Consumer Privacy

As much as most of us dislike advertisement there are instances when targeted, specifically tailored
advertisement is useful to serve the needs of customers. Still, many users express concern about
the privacy of their data, which for our example could be the particular preference of books we are
looking at or where we are currently staying.

(Armknecht & Strufe, 2011) introduced a recommender system where a user receives encrypted
recommendations without the the system being aware of the content. At the centre a rather
straightforward, but highly e�cient homomorphic encryption scheme, which has been developed
exclusively for this purpose. As such they are able to have a function to be computed that chooses
the advertisement for each user while the advertising remains encrypted.

39

(Jeckmans, Peter, & Hartel, 2013) use the somewhat homomorphic encryption scheme of (Brakerski
& Vaikuntanathan, 2011). As such, users are able to obtain recommendations from friends with-
out the identities of the recommenders being revealed. The one requirement though is that the
advertisements are form a third party and that there is no collusion with the provider.

5.3 Medical Applications

One of the most promising areas of research right now is bioinformatics. With the onslaught of
new technologies and as researchers develop new methods for analysing genomic data the cost and
e↵ectiveness of human genome sequences will only improve. As analysing genomic data improves the
cost of sequencing human genome drops thus increasing the quantity of data available for scientific
examination. Nevertheless, to enable researchers to access their data, patients expose themselves
to risks from invasion of privacy (Humber, 2013). As (Ayday, Cristofaro, Hubaux, & Tsudik, 2013)
have remarked, even anonymised data can be re-identified on an individual basis ”using information
available from popular genealogy web sites and other available information”.

There are multiple approaches to protect privacy while ensuring the continuation of research on
data. These include policy-based solutions, de-identification of data, approximate query answering,
as well as technological solutions based on cryptography. The last point is where homomorphic
encryption fits in.

(Lauter & Naehrig, 2014) propose using a homomorphic encryption scheme to address this
problem. In particular, they show how to encode genotype and phenotype data for encryption and
how to apply the Pearson Goodness-of-Fit test, the D0 and r2-measures of linkage disequilibrium,
the Estimation Maximisation (EM) algorithm for haplotyping, and the Cochran-Armitage Test for
Trend. Each of these are standard algorithms that are widely applied in genome analyses. In this
scenario, the user is the data owner, which means that the encrypted data is under the user’s public
key and only he/she can decrypt. With the data encrypted, the service allows doctor to access
vital information such as heart rate, blood pressure, weight etc. to predict the chances of certain
conditions occur.

5.4 Private Queries

Another straightforward application is to enable private queries to a database or a search engine.
Private information retrieval is arguably the simplest example to illustrate this application
(Chor, Goldreich, & Kushilevitz, 1998). Here, there is a server holding a large database (i.e. the
Swedish Land Registry database), and a client who wants to retrieve one record of this database
without the server learning which record was retrieved. Homomorphic encryption makes this happen
by encrypting the index of the record the person wishes to retrieve. The server evaluates the function
fdb(i) = db[i] on the encrypted index, before returning the encrypted result to the client who then
can decrypt it and obtain the plaintext record.

6 Limitations

Despite earning the nickname ”the Swiss Army knife of cryptography” (Barak, 2012) for its versa-
tility, homomorphic encryption does not resolve all issues in cryptography. In this section, we will
briefly focus on three aspects where homomorphic encryption in some manner fall short.

40

6.1 Inputs are all encrypted by the same key

Homomorphic encryption only processes encrypted data with one single key. There are instances
though when one may want to be able to process data that used several keys for encryption. Case
in point, imagine a team of researchers, each with its key, uploading their encrypted data to the
cloud. At this stage, we may want the cloud to aggregate this data and compute useful statistics on
it. Naturally, one would only be able to recover the plaintext result only if all the parties joined to
cooperate, bringing its corresponding private key. A homomorphic encryption scheme that manages
this is referred to as a multikey homomorphic.

Multikey homomorphic encryption is a new concept introduced by (López-Alt, Tromer, &
Vaikuntanathan, 2012). While t also is not without any shortfalls. For instance one has to know
the upper bound on the number of parties at the time of generating the keys, as the parameters
grow with the number of parties involved.

(Clear & McGoldrick, 2015) recently proposed a di↵erent realisation under LWE, that would
later be significantly simplified by (Mukherjee & Wichs, 2016).

6.2 The output is encrypted

While homomorphic encryption allows us to apply arbitrary functions on the encrypted data, the
outcome of such computation is itself a ciphertext, which one can only make sense of with the
private key. There are, however, many instances when one would like to process encrypted data
and get (only) the result of the computation in the clear. Let us consider two di↵erent examples.

Firstly, let us consider a situation where we want to apply a spam filter to an encrypted mail.
While we wish to maintain the content of the e-mail secret we may also want the server to learn to
distinguish between spam/no-spam mails, thus enabling it to only forward non-spam messages.

Secondly, imagine that we have produced a new model for predicting the risk of cancer based
on a number of factors. We now wish to wish to release this to the general public. But, we also
want to withhold the inner mechanics of the model, either for concern over intellectual property, or
because we need to preserve the privacy of patient data that we used to devise the model. In other
words, we want the model itself to be encrypted, but anyone should be able to evaluate the model
on their own indicators and get a decisive result.

What these two examples illustrate are typical applications of functional encryption (the
first example) and code obfuscation (the second example).

6.3 No guarantees of integrity

While homomorphic encryption permits us to compute on encrypted data, it does not provide any
guarantees of integrity for the computed values. That is to say that if we were to encrypt an input
message m using the encryption function e we have no guarantees that the produced ciphertext c
was produced by evaluating e on m.

Verifiable computation, the process of verifying the integrity of remote computation, ad-
dresses this issue. As one might expect, this is a very active research area at the moment as (Walfish
& Blumberg, 2015) outlines in a survey of the practical implications of verifiable computation.

41

7 Summary

This year marks the 40th anniversary of the publication of the RSA-encryption scheme, which in
many ways represents the beginning of the long journey towards realising a fully homomorphic
encryption scheme. Back when it was first introduced, the notion of being able to operate on
encrypted data would have seemed of little relevance for the common person. Fast forward to
today, in the digital/information age we find ourselves living in, and one cannot help but to think
that privacy of data is a more pressing issue than at any time before. Some of our time’s most
dominant industries, including e-banking and online retail, find it crucial to protect their users’
assets and accounts from malicious third-parties. The current paradigm lets the user encrypt his
data and share the keys with the service provider. That is to say the individual is not in control of
his sensitive data.

This is where Homomorphic Encryption schemes enter as a promising direction to take going
forward. They allow any third party to operate on the encrypted data without decrypting it in
advance. Even though the idea of a fully homomorphic encryption scheme had been around for
more than 30 years, it was not until Craig Gentry introduced his paradigm-shifting scheme in 2009
that it was finally realised theoretically. Since then, others have contributed either development of
this particular scheme or by adding other approaches to achieve fully homomorphic schemes. In
the process, they have demonstrated that even though much progress has been made, there is still
much that needs to be improved until fully homomorphic encryption schemes can be employed in
practical applications in real-life.

In this brief overview, we have covered some of the critical milestones leading up to the realisation
of fully homomorphic encryption scheme, including presentations of partially homomorphic schemes
somewhat homomorphic schemes, and lattice theory, as well as providing a more gentle introduction
of Gentry’s groundbreaking result. Moreover, we have also had the opportunity to touch upon
various aspects of applications.

Going forward our focus should be on making these theoretical breakthroughs accessible to
practical applications, such as those outlined in the final section, by developing more e�cient
encryption schemes.

References

Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C. A., & Strand, M. (2015).
A guide to fully homomorphic encryption. IACR Cryptology ePrint Archive, 2015 , 1192.

Armknecht, F., & Strufe, T. (2011). An e�cient distributed privacy-preserving recommendation
system. In Ad hoc networking workshop (med-hoc-net), 2011 the 10th ifip annual mediter-
ranean (pp. 65–70).

Ayday, E., Cristofaro, E. D., Hubaux, J., & Tsudik, G. (2013). The chills and thrills of whole genome
sequencing. CoRR, abs/1306.1264 . Retrieved from http://arxiv.org/abs/1306.1264

Barak, B. (2012). The swiss army of cryptography. Retrieved 2017-08-23, from
https://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/

Beachy, J. A., & Blair, W. D. (2006). Abstract algebra. Waveland Press.
Bellare, M., Boldyreva, A., & ONeill, A. (2007). Deterministic and e�ciently searchable encryption.

Advances in Cryptology-CRYPTO 2007 , 535–552.
Benaloh, J. (1994). Dense probabilistic encryption. In Proceedings of the workshop on selected

areas of cryptography (pp. 120–128).

42

Boneh, D., Goh, E.-J., & Nissim, K. (2005). Evaluating 2-dnf formulas on ciphertexts. In Tcc (Vol.
3378, pp. 325–341).

Brakerski, Z., & Vaikuntanathan, V. (2011). Fully homomorphic encryption from ring-lwe and
security for key dependent messages. In Annual cryptology conference (pp. 505–524).

Chor, B.-Z., Goldreich, O., & Kushilevitz, E. (1998, December 29). Private information retrieval.
Google Patents. (US Patent 5,855,018)

Clear, M., & McGoldrick, C. (2015). Multi-identity and multi-key leveled fhe from learning with
errors. In Annual cryptology conference (pp. 630–656).

Di�e, W., & Hellman, M. (1976, Nov). New directions in cryptography. IEEE Transactions on
Information Theory , 22 (6), 644-654. doi: 10.1109/TIT.1976.1055638

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE transactions on information theory , 31 (4), 469–472.

Gentry, C. (2009). A fully homomorphic encryption scheme. Stanford University.
Gentry, C., et al. (2009). Fully homomorphic encryption using ideal lattices. In Stoc (Vol. 9, pp.

169–178).
Goldwasser, S., & Bellare, M. (1996). Lecture notes on cryptography. Summer course Cryptography

and computer security at MIT , 1999 , 1999.
Goldwasser, S., & Micali, S. (1982). Probabilistic encryption & how to play mental poker keeping

secret all partial information. In Proceedings of the fourteenth annual acm symposium on
theory of computing (pp. 365–377).

Goldwasser, S., & Micali, S. (1984). Probabilistic encryption. Journal of computer and system
sciences, 28 (2), 270–299.

Ho↵stein, J., Pipher, J. C., Silverman, J. H., & Silverman, J. H. (2014). An introduction to
mathematical cryptography (Vol. 2). Springer.

Humber, J. M. (2013). Biomedical ethics and the law. Springer Science & Business Media.
Jeckmans, A., Peter, A., & Hartel, P. (2013). E�cient privacy-enhanced familiarity-based recom-

mender system. In European symposium on research in computer security (pp. 400–417).
Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography. CRC press.
Lauter, K., & Naehrig, M. (2014, June). Private computation on encrypted genomic data.
López-Alt, A., Tromer, E., & Vaikuntanathan, V. (2012). On-the-fly multiparty computation on the

cloud via multikey fully homomorphic encryption. In Proceedings of the forty-fourth annual
acm symposium on theory of computing (pp. 1219–1234).

Mukherjee, P., & Wichs, D. (2016). Two round multiparty computation via multi-key fhe. In
Annual international conference on the theory and applications of cryptographic techniques
(pp. 735–763).

Naehrig, M., Lauter, K., & Vaikuntanathan, V. (2011). Can homomorphic encryption be practical?
In Proceedings of the 3rd acm workshop on cloud computing security workshop (pp. 113–124).

Paillier, P., et al. (1999). Public-key cryptosystems based on composite degree residuosity classes.
In Eurocrypt (Vol. 99, pp. 223–238).

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM , 21 (2), 120–126.

Walfish, M., & Blumberg, A. J. (2015). Verifying computations without reexecuting them. Com-
munications of the ACM , 58 (2), 74–84.

43

